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Abstract: The combination of near-infrared (NIR) fluorophores and photothermal therapy (PTT)
provides a new opportunity for safe and effective cancer treatment. However, the precise molecular
design of functional NIR fluorophores with desired properties, such as high tumor targetability
and low nonspecific uptake, remains challenging. In this study, a renal-clearable NIR fluorophore
conjugate with high tumor targetability was developed for efficient photothermal cancer therapy. The
isoniazid (INH)–ZW800-1 conjugate (INH–ZW) was synthesized by conjugating an antibiotic drug,
INH, with a well-known zwitterionic NIR fluorophore, ZW800-1, to improve in vivo performance
and fluorescence-guided cancer phototherapy. INH–ZW not only showed rapid tumor accumulation
without nonspecific tissue/organ uptake within 1 h after the injection but also generated thermal
energy to induce cancer cell death under NIR laser irradiation. Compared with previously reported
ZW800-1 conjugates, INH–ZW preserved the ideal biodistribution of ZW800-1 and facilitated im-
proved tumor targeting and PTT. Together, these results demonstrate that the INH–ZW conjugate
has great potential to serve as an effective PTT agent capable of rapid tumor targeting and high renal
clearance, with excellent photothermal efficacy.
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1. Introduction

Near-infrared (NIR) fluorophores have great potential in biomedical applications for
image-guided cancer surgery and photothermal therapy (PTT), with distinct advantages,
including reduced tissue autofluorescence, targeted tumor imaging, and high photothermal
conversion capabilities [1–5]. Ideal NIR fluorophores, as PTT agents, should selectively
accumulate in tumor tissue and clear rapidly from normal tissue for safe and accurate
cancer treatment. To achieve a high tumor targetability and an excellent photothermal
performance, NIR fluorophores armed with carboxyl or amine groups are typically em-
ployed for covalent conjugation with various kinds of specific ligands, including small
molecules [6,7], peptides [8,9], and proteins [10,11].

Several types of cyanine-based fluorophores (e.g., IRDye800CW, Cy5.5, MHI-148, and
ZW800-1) have been previously developed to conjugate with tumor-targeting ligands, such
as cyclic RGD peptide, folic acid, and sorbitol, for in vivo tumor imaging [7,8,12–14]. How-
ever, the efficiency of tumor targeting still remains challenging because the targetability
of ligands can be altered by the physicochemical properties of fluorophores after con-
jugation [8]. Among these conjugatable fluorophores, the zwitterionic NIR fluorophore
ZW800-1 displays no serum binding and exhibits ultralow nonspecific tissue/organ uptake,
rapid renal excretion from the body, and remarkable optical properties, thereby allowing
target-specific imaging after conjugation with ligands [8,15,16].
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Despite the superior in vivo performance of ZW800-1, considerable limitations remain
for the selection of ligands depending on the structural characteristics. According to previ-
ous studies, unbalanced surface charges of the ZW800-1 conjugates result in unexpected
nonspecific uptake, decreased renal excretion, or reduced targetability of ligands during
systemic circulation [9,17]. Thus, the correct combination of ZW800-1 and a tumor-targeting
ligand could play a critical role in the preferential tumor accumulation without nonspecific
uptake and the fast renal excretion to prevent potential cytotoxicity of the conjugate.

Recently, several studies reported the use of MHI-148 conjugates based on isoniazid
(INH), a small molecule inhibitor of monoamine oxidase A that is clinically used as the
first-line anti-tuberculosis medicine, for targeted cancer imaging and therapy [18,19]. Al-
though the MHI-148 and INH conjugate showed significant antitumor efficacy, there is a
fundamental limitation of such NIR fluorophores, namely, persistent nonspecific binding,
uptake, and retention in normal organs, including the heart, lungs, liver, spleen, and
kidneys [18,19]. In this study, we developed a renal-clearable PTT agent, INH–ZW, by
conjugating the zwitterionic NIR fluorophore ZW800-1 with the antibiotic drug INH to
improve the in vivo performance and fluorescence-guided photothermal cancer therapy.
The INH–ZW conjugate preserved the ideal biodistribution of ZW800-1 and compensated
for tumor targetability, thereby acting as a bifunctional phototherapeutic agent.

2. Experimental Section
2.1. Conjugation of Isoniazid to the ZW800-1 NIR Fluorophore (INH–ZW)

All chemicals and solvents were of American Chemical Society grade or high-performance
liquid chromatography (HPLC) purity. The starting materials were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and were used without purification. The ZW800-1 NIR
fluorophore was synthesized as described previously [15,16]. Isoniazid (1.1 mg, 7.9 µM),
also known as isonicotinylhydrazine (INH), was conjugated to ZW800-1 (5 mg, 5.3 µM)
in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride
(DMT-MM; 3 mg, 10 µmol) in DMSO (5 mL) at room temperature for 12 h. The crude
mixture was separated using a preparative HPLC system equipped with a 150 mL PrepLC
fluid handling unit, a manual injector (Rheodyne 7725i; Thermo Scientific, Waltham, MA,
USA), and a 2487 dual wavelength absorbance detector (Waters, Milford, MA, USA). The
molecular weight of the purified INH–ZW conjugate was verified with mass spectroscopy
using an ultra-performance liquid chromatography (UPLC, Waters) device equipped with
micrOTOF-Q II (Bruker, Ettlingen, Germany).

2.2. Optical and Physicochemical Property Analyses

All the optical measurements were performed in phosphate-buffered saline (PBS),
pH 7.4. The absorption spectrum of INH–ZW was measured using a fiber optic FLAME ab-
sorbance and fluorescence (200–1025 nm) spectrometer (Ocean Optics, Dunedin, FL, USA).
The molar extinction coefficient was calculated using the Beer–Lambert equation. The fluo-
rescence emission spectrum of the INH–ZW conjugate was analyzed using a SPARK® 10M
microplate reader (Tecan, Männedorf, Switzerland) at an excitation wavelength of 700 nm
and emission wavelengths ranging from 750 to 900 nm. In silico calculations of the partition
coefficient (logD at pH 7.4) and topological polar surface area (TPSA) were performed
using the Marvin and JChem calculator plugins (ChemAxon, Budapest, Hungary).

2.3. In Vitro Cell Binding and NIR Fluorescence Microscopy

The human colorectal adenocarcinoma cell line HT-29 and mouse embryonic fibrob-
last cell line NIH/3T3 were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cells were maintained in Roswell Park Memorial Institute (RPMI)
1640 or Dulbecco’s Modified Eagle Medium (DMEM) media (Gibco BRL, Paisley, UK) sup-
plemented with a 10% fetal bovine serum (FBS, Gibco BRL) and an antibiotic-antimycotic
solution (100 units/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin
B; Welgene, Daegu, South Korea) in a humidified 5% CO2 atmosphere at 37 ◦C. When the
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cells reached a confluence of approximately 50%, they were rinsed twice with PBS and the
INH–ZW or ZW800-1 NIR fluorophore was added to each well at various concentrations
in the range of 2–50 µM; the cells were incubated for 24 h at 37 ◦C. They were then gently
washed with PBS. NIR fluorescence imaging was performed using a four-filter set on a
Nikon Eclipse Ti-U inverted microscope system. The microscope was equipped with a
100 W halogen lamp, NIR-compatible optics, and an NIR-compatible 10X Plan Fluor objec-
tive lens (Nikon, Seoul, South Korea). Image acquisition and analysis were performed using
the NIS-Elements Basic Research software (Nikon). NIR filter sets containing 750 ± 25 nm
excitation filters, 785 nm dichroic mirrors, and 810 ± 20 nm emission filters were used
to detect the NIR fluorescence signals in the cells. All the NIR fluorescence images were
acquired at identical exposure times and normalized.

2.4. In Vitro Cytotoxicity Assay

Cell toxicity and proliferation were evaluated using the alamarBlue™ (Thermo Sci-
entific, Waltham, MA, USA) assay. The HT-29 cells were seeded onto 96-well plates (1 ×
104 cells per well). To determine cytotoxicity depending on the concentration, the cancer
cells were treated with the INH–ZW conjugate (2, 10, 25, and 50 µM) for 1 h and cultured
for 24 h after treatment. At each assay time point, the incubation cell medium was replaced
with 100 µL of fresh medium, and 10 µL of the alamarBlue solution was directly added to
each 100 µL well; the plates were then incubated for 4 h at 37 ◦C in a humidified 5% CO2
incubator. Finally, the 96-well plates were placed in a microplate reader (SPARK® 10M,
Tecan) to measure the absorption intensity at 570 nm and the fluorescence intensity at 590
nm. Cell viability was calculated using the following formula (A is the average absorbance):
cell viability (%) = (Asample − Ablank)/(Acontrol − Ablank) × 100.

2.5. HT-29 Xenograft Mouse Model

Animal care, experiments, and euthanasia were performed in accordance with proto-
cols approved by the Chonnam National University Animal Research Committee (CNU
IACUC-H-2017-64). Adult (6-week-old) male NCRNU mice weighing approximately 25 g
(n = 3 independent experiments) were purchased from OrientBio (Seongnam, South Ko-
rea). HT-29 cancer cells were harvested and suspended in 100 µL of PBS before being
subcutaneously injected in the right flank of each mouse (1 × 106 cells per mouse). When
tumor sizes reached about 1 cm in diameter, INH–ZW and ZW800-1 were administered
intravenously. Animals were euthanized and imaged over a certain period.

2.6. In Vivo Biodistribution and Tumor Imaging

In vivo NIR fluorescence imaging was performed using an FOBI imaging system
(NeoScience, Suwon, South Korea). Mice were sacrificed 1 and 4 h after injection, and
their main organs (heart, lungs, liver, pancreas, spleen, kidneys, duodenum, and intestine)
were collected and imaged to evaluate the time-dependent biodistribution of INH–ZW.
The fluorescence intensities of the tumors and organs were analyzed using ImageJ version
1.45q (National Institutes of Health, Bethesda, MD, USA). All images were identically
normalized for all conditions.

2.7. In Vivo Photothermal Therapeutic Efficacy

HT-29 tumor mice were intravenously injected with PBS, ZW800-1, or INH–ZW and
anaesthetized after 1 h. The tumors were irradiated with a laser (1.1 W/cm2, λ = 808 nm)
for 5 min. Temperature changes in tumors were monitored using an FLIR® thermal imager
(FLIR Systems, Wilsonville, OR, USA). Data were recorded with a step size of 1 min
throughout the whole laser irradiation process. After 24 h post irradiation, tumors were
excised from the treated mice for subsequent histological analysis with hematoxylin and
eosin (H&E) staining. To confirm the in vivo antitumor effect, the macroscopic morphology
of each group was observed at determined time intervals for 9 days. Tumor volume (V) was
calculated using the following formula: V = 0.5 × longest diameter × (shortest diameter)2.
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2.8. Statistical Analysis

A one-way analysis of variance (ANOVA) and a Tukey’s multiple comparison test
were performed. Differences were considered statistically significant at p < 0.05. The results
are presented as mean ± standard deviation (S.D.) and curve fitting was performed using
Prism software version 4.0a (GraphPad, San Diego, CA, USA).

2.9. Histological Analysis and NIR Fluorescence Microscopy

Resected tumors were preserved for H&E staining and microscopic assessment. The
samples were fixed in 2% paraformaldehyde and flash-frozen in an optimal cutting tem-
perature (OCT) compound using liquid nitrogen. Frozen samples were cryosectioned
(10 µm thick slides), observed by fluorescence microscopy, and then stained with H&E.
Histological imaging was performed on a Nikon Eclipse Ti-U inverted microscope system.
Image acquisition and analysis were performed using the NIS-Elements Basic Research
software (Nikon). All the NIR fluorescence images were acquired at identical exposure
times and normalized.

3. Results and Discussion
3.1. Synthesis and Characterization of INH–ZW Conjugate

Initially, the zwitterionic NIR fluorophore ZW800-1 was designed by Choi et al. to
have a balanced net surface charge, resulting in ultralow nonspecific uptake and rapid
renal clearance [15]. Furthermore, the carboxyl group in the structure of ZW800-1 en-
abled conjugation with various targeting ligands such as cyclic RGD peptide [8], adaman-
tane [20], and sorbitol [7] for tumor imaging, pamidronate [17] for bone imaging, and
2-(4-biphenyl)ethylamine [21] for elastin imaging. As summarized in Figure 1, the ZW800-1
conjugates achieved target-specific imaging; however, the structural changes after conjuga-
tion could result in unexpected uptake by tissues/organs, including the skin, lungs, liver,
cartilage, and pancreas, and delayed excretion from the body. In this study, we designed a
rapid renal-clearable INH–ZW conjugate, by combining ZW800-1 with the small-molecule
INH to improve tumor targetability, for use in effective photothermal cancer treatment.
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Figure 1. Structures of ZW800-1 [15] and its conjugates with various targeting ligands (e.g., cRGD-ZW800-1 [8], ADM-
NIRF [20], Sorbitol-ZW800 [7], PAM-ZW800-1 [17], and CyZW-599 [21]) reported previously for NIR fluorescence imaging.
Comparison of in vivo performance characteristics from the current study and previous studies in terms of targetability,
nonspecific tissue/organ uptake, and excretion time. Abbreviations: Bo, bone; Ca, cartilage; El, elastin; Ki, kidneys; Li, liver;
Lu, lungs; Pa, pancreas; Sk, skin; Tu, tumor; N/A, not applicable.

The INH molecule was covalently conjugated to the ZW800-1 fluorophore through
amide bond formation via a condensation reaction in the presence of a coupling agent
(Figure 2a). The INH–ZW conjugate was purified using a preparative HPLC system, and
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analyzed via liquid chromatography–mass spectrometry (LC–MS) to verify the successful
synthesis, for further use in in vitro and in vivo studies (Figure 2b). Additionally, the in
silico prediction of the physicochemical properties, including hydrophobicity (logD) and
polarity (TPSA), of the INH–ZW conjugate was performed using JChem (ChemAxon)
(Figure 2c). INH–ZW showed similar optical properties to those of ZW800-1. Importantly,
the increased hydrophobicity and polarity of the INH–ZW conjugate may have played
critical roles in the improved tumor targeting. The maximum absorption and fluorescence
emission spectra of the INH–ZW conjugate in the NIR region were measured at 768 and
790 nm, respectively (Figure 2d). This suggests that the INH–ZW conjugate can be used for
photothermal cancer treatment when combined with an 808 nm NIR laser.
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fluorescence emission spectra of the INH–ZW conjugate. Optical measurements were performed in PBS at pH 7.4. In silico
calculations of logD at pH 7.4 and the topological polar surface area (TPSA) were performed using the Marvin and JChem
calculator plugins (ChemAxon, Budapest, Hungary).

3.2. In Vitro Cancer Cell Binding and Cytotoxicity

To confirm the cellular binding and cytocompatibility of the INH–ZW conjugate,
the HT-29 cancer cell line was used for in vitro assessment. To estimate cytotoxicity, the
alamarBlue assay was performed to determine the relative viability of HT-29 cancer cells
after incubation with the INH–ZW conjugate at various concentrations (2, 10, 25, and
50 µM). Interestingly, no significant cytotoxicity to the HT-29 cancer cells was observed,
even at the high INH–ZW concentration of 50 µM (Figure 3a). This suggests that no
significant toxicity was induced by the INH–ZW conjugate. Additionally, the intracellular
distribution of the INH–ZW conjugate was observed with NIR fluorescence microscopy
after 24 h of incubation in HT-29 cancer cells. Although fluorescence signals of INH–
ZW, which corresponded to intracellular localization, were detected in the cancer cells
24 h post treatment, the observed fluorescence intensity was low and slightly higher than
that of cells treated with ZW800-1 (Figure 3b). The fluorescence signals of the INH–ZW
conjugate in the cancer cells were barely evident at high concentrations of 25–50 µM, and
they were unmeasurable in the concentration range of 2–10 µM (Figure 3c). Moreover, the
binding specificity of INH–ZW on normal cells was investigated using the fibroblast cell
line NIH/3T3. As shown in Figure 3d,e, the INH–ZW conjugate exhibited relatively weak
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binding affinity in normal cells compared with HT-29 cancer cells. This demonstrates that
the INH moiety would provide more favorable binding to cancer cells. In accordance with
Lipinski’s rule, the theoretical TPSA value (200.97 Å2) of INH–ZW was greater than 140 Å2,
which tends to be poor at permeating cell membranes [22]. These results indicate that the
zwitterionic property of INH–ZW may have reduced the cellular uptake of the INH moiety,
which is consistent with the good cytocompatibility of the INH–ZW conjugate.
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Figure 3. (a) Cell viability assay of the INH–ZW conjugate using HT-29 cancer cells. The percentage cytotoxicity was
determined after 24 h of treatment with various concentrations of the INH–ZW conjugate. (b) Live cancer cell binding
of the INH–ZW conjugate and ZW800-1 in HT-29 cells. Relative fluorescence intensities in (c) HT-29 and (d) NIH/3T3
cells 24 h after treatment with various concentrations of the INH–ZW conjugate or 25 µM ZW800-1. (e) Live normal cell
binding of the INH–ZW conjugate in NIH/3T3 cells. The phase contrast and NIR fluorescence images of the cell line were
obtained using 25 µM INH–ZW or ZW800-1. Data are expressed as the mean ± S.D. of the three independent experiments.
Images are representative of three independent experiments. All NIR fluorescence images have identical exposure times
and normalization. Scale bars = 100 µm.

3.3. Time-Dependent In Vivo Tumor Imaging and Biodistribution

The in vivo tumor targetability and biodistribution of INH–ZW were investigated in
an HT-29 xenograft mouse model. To determine the tumor accumulation of the INH–ZW
conjugate compared to that of ZW800-1, tumor-bearing mice were intravenously adminis-
tered 10 nmol of INH–ZW or ZW800-1 and monitored using a real-time NIR fluorescence
imaging system (Figure 4a). Based on the time-dependent NIR fluorescence images, the
high fluorescence intensity at the tumor site treated with the INH–ZW conjugate was main-
tained until 1 h after injection, while the fluorescence signal of tumor treated with ZW800-1
rapidly decreased without tumor-specific accumulation until 4 h after injection (Figure 4b).
In terms of the tumor-to-background ratio, the optimal time point for conducting PTT
was determined to be 1 h after INH–ZW administration, to avoid unnecessary damage to
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adjacent tissues. This finding demonstrated that the INH moiety of the INH–ZW conjugate
played a key role in the improved tumor targeting and would allow this conjugate to be
applied for photothermal cancer treatment. Additionally, the biodistribution of INH–ZW
was confirmed by analyzing and comparing the fluorescence signals from the major organs
excised from mice 1 and 4 h after injection (Figure 4c). Importantly, the INH–ZW conjugate
showed no significant organ/tissue uptake 1 h after injection owing to the rapid renal
excretion, which is a well-known characteristic of the ZW800-1 NIR fluorophore. The
renal-clearable INH–ZW conjugate was dominantly detected in the bladder, with strong
fluorescence 1 h after injection, and it was completely eliminated from the body after only
4 h (Figure 4d). Compared with previously reported ZW800-1 conjugates, the INH–ZW
conjugate preserved the ideal biodistribution of ZW800-1 and facilitated the improved tu-
mor imaging within 1 h of injection. Since the INH–ZW conjugate could be accumulated in
tumors at 1 h post injection, we further performed histological analysis combined with NIR
fluorescence microscopy. The NIR fluorescence microscopic image revealed the existence
of INH–ZW in the tumor tissue (Figure 4e).
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Figure 4. In vivo HT-29 tumor targeting efficiency and biodistribution of the INH–ZW conjugate. (a) NIR fluorescence
imaging 4 h after injection of INH–ZW and ZW800-1. (b) Time-dependent fluorescence intensities at the tumor sites
targeted by INH–ZW and ZW800-1. (c) Quantitative fluorescence analysis of intraoperative dissected organs 1 and 4 h
after injection of INH–ZW. (d) Biodistribution and resected organs imaged 1 and 4 h after injection of INH–ZW. Tumor-
bearing mice were intravenously injected with 10 nmol of INH–ZW or ZW800-1 and imaged for 4 h. (e) H&E staining and
NIR fluorescence imaging of the resected tumor tissues 1 h after injection of INH–ZW. The tumor sites are indicated by
arrowheads. Abbreviations: Bl, bladder; Du, duodenum; He, heart; In, intestines; Ki, kidneys; Li, liver; Lu, lungs; Mu,
muscle; Pa, pancreas; Sp, spleen; Tu, tumor; PI, post injection. Scale bars = 1 cm (white bars) and 300 µm (black bar).
Images are representative of three independent experiments. All NIR fluorescence images had identical exposure times and
normalization. Data are expressed as the mean ± S.D. of three independent experiments.

3.4. In Vitro and In Vivo Photothermal Effects

The photothermal properties of the INH–ZW conjugate (10 µg/100 µL PBS; 100 µM
as a single dose of 0.4 mg/kg) and PBS (100 µL) solutions were investigated through
a 1 min exposure to 808 nm laser irradiation (1.1 W/cm2). Temperature changes were
recorded at intervals of 10 s using an FLIR® thermal imager. Under NIR laser irradiation,
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the temperature of the INH–ZW solution rapidly increased from 24.5 to 89.2 ◦C over 1 min,
while the PBS solution showed no temperature change (Figure 5a). The temperature of the
INH–ZW solution remarkably increased to ~80 ◦C during the first 30 s of laser irradiation
and reached up to ~90 ◦C during the next 30 s of irradiation (Figure 5b). This demonstrated
that the INH–ZW conjugate had a highly efficient photothermal conversion capability;
thus, it is a promising PTT agent. In addition, the photothermal conversion efficiency (η)
of the INH–ZW conjugate was calculated to be 34.1%, which was based on the previous
method [23]. This value is comparable to that of a sorbitol–ZW800 conjugate (32.6%)
reported previously [14]. To confirm the photostability of the INH–ZW conjugate, the
absorbance of the INH–ZW solution was repeatedly measured at 770 nm after every 1 min
of laser irradiation. As expected, the absorption values of the INH–ZW solution gradually
decreased during the 5 min of laser irradiation, which indicated that the heptamethine
cyanine core of ZW800-1 degraded after exhibiting light-to-heat conversion (Figure 5c).
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Figure 5. (a) In vitro thermal images of the INH–ZW solution (10 µg/100 µL in PBS; 100 µM concentration is equivalent
to a single dose of 0.4 mg/kg) and PBS alone (100 µL) exposed to an 808 nm laser (1.1 W/cm2) for 1 min. The maximum
temperature was automatically recorded using an infrared thermal camera as a function of the irradiation time. (b) Temper-
ature changes in the solutions in each sample were monitored during the 1 min of laser irradiation. (c) Photostability of the
INH–ZW solutions under laser irradiation. The absorbance changes in 5 µM INH–ZW solutions were measured at 770 nm
during the 5 min of laser irradiation. Data are expressed as the mean ± S.D. of three independent experiments.

Furthermore, the PTT capability of the INH–ZW conjugate in vivo was investigated
using an HT-29 tumor-bearing mouse model. Mice were intravenously injected with INH–
ZW, ZW800-1, or PBS 1 h before laser irradiation, and tumor sites were subsequently
exposed to 808 nm laser irradiation at 1.1 W/cm2 for 5 min. The temperature of tumors
treated with INH–ZW rapidly increased up to ~56 ◦C, while the temperatures of tumors
injected with PBS or ZW800-1 reached only ~42 ◦C during the 5 min of laser irradiation
(Figure 6a). Importantly, tumor temperatures in the INH–ZW treatment group peaked after
3 min of laser irradiation and remained at ~56 ◦C until the final 2 min of laser irradiation,
which was sufficient to induce the apoptosis of cancer cells directly (Figure 6b). This result
indicates that the INH–ZW conjugate can be utilized as a tumor-targeted PTT agent for
effective cancer treatment.
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group were monitored during the 5 min of 808 nm laser irradiation. Data are expressed as the mean ± S.D. of three
independent experiments.

3.5. In Vivo Photothermal Therapeutic Efficacy

To evaluate the in vivo phototherapeutic effect of INH–ZW, the tumor sizes were
monitored continuously for 9 days after the NIR laser treatment (Figure 7a). Without the
PTT agent INH–ZW, the tumors in mice treated with PBS or ZW800-1 followed by laser
irradiation showed similar growth rates to those of the tumors of mice treated with PBS
alone, indicating that there were no therapeutic effect and tissue damage caused by only
laser irradiation. With the PTT agent, tumor growth in the INH–ZW and laser-treated mice
was effectively inhibited (Figure 7b). This demonstrated that the combination of INH–ZW
and NIR laser irradiation could completely ablate the tumor without recurrence during
the course of the treatment. Additionally, no signs of body weight loss and mortality
were evident in the INH–ZW treatment group, which demonstrated the high biosafety of
this treatment (Figure 7c). Furthermore, the tumors harvested from each group 24 h after
different treatments were stained with H&E to confirm the histological changes (Figure 7d).
In comparison to the PBS and ZW800-1 groups, which showed no cell damage, most cells
in the tumors treated with INH–ZW and laser irradiation were apparently necrotic, which
was indicated by a reduced cell number and shrunken nuclei. This result demonstrates
that the INH–ZW conjugate generated a mean tumor temperature of ~56 ◦C that was
sufficiently higher than the threshold temperature (~42 ◦C) in the PBS and ZW800-1 groups
to induce cell apoptosis and necrosis. These findings indicate that the INH–ZW conjugate
could be successfully used as a bifunctional agent for tumor-targeted imaging and effective
photothermal cancer treatment.
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Figure 7. In vivo NIR phototherapeutic efficacy. (a) Representative photos of tumor size changes in
HT-29 tumor-bearing mice for 9 days after different treatments. The laser groups were treated with
1 h post injections of PBS, ZW800-1, and INH–ZW, followed by 808 nm laser irradiation (1.1 W/cm2)
for 5 min. The tumor sites are indicated by arrowheads. Scale bars = 1 cm. (b) Tumor growth rates
and (c) body weights of each treatment group were monitored for 9 days. Data are expressed as the
mean ± S.D. of three independent experiments. (d) Tumor sections stained with H&E from each
group after 24 h of different treatments. Scale bars = 100 µm.

4. Conclusions

In this study, we synthesized a renal-clearable ZW800-1 conjugate (INH–ZW) that
could specifically target a tumor, and applied it in real-time NIR fluorescence imaging
and photothermal cancer therapy. The INH–ZW conjugate exhibited not only rapid tu-
mor accumulation but also a high renal clearance within 1 h of injection. Moreover, the
molecular characteristics of INH–ZW enabled the generation of thermal energy under
808 nm laser irradiation, leading to the complete ablation of the tumor with no evident
side effects. The bifunctional INH–ZW conjugate preserved the significant advantages
of the zwitterionic NIR fluorophore ZW800-1 and compensated for tumor targetability,
which demonstrated its suitability for fluorescence-guided cancer phototherapy. In this
regard, the optimal design of the ZW800-1 conjugates can provide a principled approach
for improving in vivo performance with low nonspecific uptake, which is an important
consideration for the clinical use of contrast agents. In conclusion, INH–ZW shows great
promise as a phototherapeutic agent for tumor-targeted imaging and photothermal therapy
in various biomedical applications.

Author Contributions: H.H. designed the experiments; M.H.P., G.J., B.Y.L. and E.J.K. performed the
experiments; M.H.P. and H.H. wrote the paper. All authors have read and agreed to the published
version of the manuscript.
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