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Right ventricular dysfunction represents a common problem in patients with congenital
heart defects, such as Tetralogy of Fallot or pulmonary arterial hypertension. Patients with
congenital heart defects may present with a pressure or volume overloaded right ventricle
(RV) in a bi-ventricular heart or in a single ventricular circulation in which the RV serves
as systemic ventricle. Both subsets of patients are at risk of developing right ventricular
failure. Obtaining functional and morphological imaging data of the right heart is technically
more difficult than imaging of the left ventricle. In contrast to findings on mechanisms of
left ventricular dysfunction, very little is known about the pathophysiologic alterations of
the right heart. The two main causes of right ventricular dysfunction are pressure and/or
volume overload of the RV. Until now, there are no appropriate models available analyzing
the effects of pressure and/or volume overload on the RV.This review intends to summarize
clinical aspects mainly focusing on the current research in this field. In future, there will be
increasing attention to individual care of patients with right heart diseases. Hence, further
investigations are essential for understanding the right ventricular pathobiology.

Keywords: right ventricle, congenital heart defects, imaging, surgical techniques, pathobiology

RIGHT VENTRICULAR FAILURE IN CONGENITAL HEART
DISEASE
In patients with congenital heart disease (CHD), the right ventri-
cle (RV) serves in a bi-ventricular heart as subpulmonal ventricle
or in a single ventricular circulation as the systemic ventricle. RV
dysfunction is a common problem in the clinical care for patients
with CHD. Clinical relevance for research projects in the field of
RV dysfunction is given by the following examples:

Tetralogy of Fallot after intracardiac repair : Volume overload of
the RV due to pulmonary regurgitation results in RV dilatation and
RV dysfunction. Significant RV dilatation with an end-diastolic
volume >170 ml/m2 or an endsystolic volume >85 ml/m2 is asso-
ciated with persistent RV dilatation even after successful surgical
pulmonary valve replacement by using a valved homograft (1).
Other patients with Tetralogy of Fallot develop a “restrictive RV
physiology,” which is associated with decreased cardiac output
after cardiac surgery and the need for prolonged intensive care.

Univentricular heart with RV predominance: Morphology and
function of the systemic ventricle (right versus left) are impor-
tant factors influencing the long-term prognosis after Fontan type
(TCPC, total cavopulmonary connection) repair. Precisely, RV
morphology of the systemic ventricle is associated with a much
worse outcome and RV dysfunction is associated with higher
mortality and morbidity rates in this group of patients (2).

Right ventricular outflow tract obstruction is observed in
numerous congenital heart defects (pulmonary valve stenosis,

double-chambered RV, etc.). Long persisting RV outflow tract
obstruction (RVOTO) will finally lead to systolic and diastolic RV
dysfunction.

After atrial repair using the Senning or Mustard techniques in
patients with d-transposition of the great arteries (d-TGA) the RV
serves as the systemic ventricle. The survival rate of these patients
has been reported with 76% at 20 years of age, the mean age at
death was 27 years (3). The function of the systemic RV determines
the outcome of these patients (4). The same holds true for unoper-
ated patients with AV- and VA-discordance (so called congenitally
corrected transposition of the great arteries, ccTGA). In both con-
ditions, adolescents and young adults are prone to RV failure which
finally necessitates orthotopic heart transplantation (5).

While the mechanisms of left ventricular dysfunction have been
well examined, there is only very limited information available
concerning various aspects of RV dysfunction in the setting of
chronic volume and/or pressure overload. In contrast, given the
low overall mortality of congenital cardiac surgery in neonates and
infants, more and more patients will survive into adulthood when
there is an increased incidence of RV dysfunction. Therefore, the
function of the RV is the major determinant of morbidity and mor-
tality. Nonetheless, precise data on the incidence of RV failure in
patients with CHD are lacking. Patients presenting with the RV as
the systemic ventricle and patients after surgical repair for tetralogy
of Fallot and pulmonary valve insufficiency have the highest risk
for developing heart failure (6). In 2006, the“National Heart, Lung,
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and Blood Institute” (National Institutes of Health, Bethesda, MD,
USA) therefore addressed the top priority for research on the RV
pathophysiology.

Several disease entities predispose to the development of heart
failure as a consequence of a dysfunctional RV. In patients after
repair of Fallot tetralogy, severe pulmonary regurgitation will lead
to RV dilatation and – if not treated adequately – also to left ven-
tricular dysfunction (6). The risk to develop heart failure is even
higher in patients with single ventricles after Fontan procedure (7),
especially in patients with the RV serving as systemic ventricle, who
have the highest risk for RV dysfunction (8).

Cardiac resynchronization therapy (CRT) has been shown to
improve mortality and morbidity in adult patients with refrac-
tory heart failure and prolonged QRS duration. In children and
CHD patients treated with CRT heart failure symptoms have been
found to improve at a mean follow-up of 0.7 years (9). However
long-term data are lacking and it remains a major challenge to
define potential candidates in the subset of patients with CHD
and heart failure who will benefit from CRT as pediatric data from
controlled trials are lacking (10).

Currently, stem cell therapy with cardiac progenitor cells
(CPCs) is under evaluation in clinical trials (11). Rupp and
coworkers could impressively show first results of stem cell ther-
apy in children. In 2010, an infant with hypoplastic left heart
syndrome was reported to improve after successful intracoronary
administration of autologous bone marrow-derived progenitor
cells (12–14).

Taking these features and the consequences for lifelong care for
these patients into account, there is a need to initiate research
projects addressing the pathophysiology of the RV under the
conditions of pressure and/or volume overload.

CHALLENGES OF RIGHT VENTRICULAR IMAGING
Imaging of the RV aims at obtaining morphological and func-
tional data. The anatomy of the RV makes it more difficult to
achieve imaging data on muscle mass as well as ventricular volumes

during systole and diastole compared to the left ventricle. Magnetic
resonance imaging (MRI) has gained wide acceptance to evalu-
ate RV morphology and function. Imaging of the RV nowadays
aims at giving prognostic information for patients with RV vol-
ume and/or pressure overload. In patients with a systemic RV, the
combination of a RV end-diastolic volume index above 150 ml/m2

(by MRI or multi-detector computed tomography imaging) and
data from exercise tests (peak exercise systolic blood pressure
below 180 mmHg) was found to identify patients with a 20-fold
higher annual event rate compared to patients without these risk
factors (15).

The right and left ventricle strongly interact. Therefore it is
impossible to view abnormalities of the RV without taking the
left ventricle into account (16), what had also been shown by an
animal model of RV dilatation caused by ischemia. The occlusion
of the right coronary artery with intact pericardium resulted in a
decrease in LV end-diastolic volume and contractility which was
the result of acutely altered RV geometry (17).

In Tetralogy of Fallot, MRI is the gold standard for lifetime
imaging (Figure 1A). Echocardiographic parameters such as the
tissue Doppler-derived isovolumetric acceleration (IVA) index
have been found to correlate with the impaired regional and global
longitudinal RV systolic function in a study comparing echocar-
diographic data with global RV volume and ejection fraction
obtained by MRI (18). Comparing echocardiography parameters
and MRI data (Figure 1B) remains difficult: parameters obtained
by echocardiography such as the myocardial performance index
and the isovolumic acceleration index do not correlate with the RV
ejection fraction and pulmonary regurgitation fraction derived by
cardiac MRI (19).

The RV performance can be reproducibly assessed in patients
with Tetralogy of Fallot by measuring the tricuspid annular
plane systolic excursion (TAPSE). The correlation of TAPSE with
right ventricular ejection fraction (RVEF) is a matter of debate:
whereas some groups report a correlation between TAPSE and
RVEF in patients with pulmonary arterial hypertension (PAH)

FIGURE 1 | (A) Magnetic resonance imaging scan of a patient with ccTGA and dilatation and dysfunction of the systemic right ventricle. (B) Main
echocardiographic and MRI parameters to study the function of the right ventricle.
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associated with CHD (20), other groups recently showed that
TAPSE cannot be used to determine RVEF and is not associ-
ated with exercise performance in patients after repair for Fallot
tetralogy (21).

Echocardiography has been described as reproducible and
accurate for assessing RV volumes when compared to MRI mea-
surements. However, additional equipment, such as knowledge
based reconstruction models like the VentriPoint System®, is
needed to obtain these data by echocardiography (22).

Tissue Doppler techniques allow the non-invasive estimation
of ventricular filling pressures in patients with single RV. It was
found that the strain rate strongly correlates with the invasively
measured ventricular end-diastolic pressure (23).

New imaging options using tracer techniques are emerging
and will give an opportunity for the simultaneous assessment
of cardiac performance at different levels in vivo. These tech-
niques will make it possible to assess coronary flow, myocar-
dial perfusion, oxygen delivery, metabolism, and contraction
simultaneously (24).

SURGICAL ASPECTS IN CHD WITH RV PRESSURE/VOLUME
OVERLOAD
Surgery in patients with CHD is directed at protecting RV func-
tion as long as possible in conditions that present with RV volume
and/or pressure overload.

There is evidence suggesting that pulmonary insufficiency and
the resulting RV volume overload have detrimental consequences
on RV function and clinical parameters such as exercise capacity
(25). In addition, RV dilatation due to severe pulmonary regur-
gitation has been associated with arrhythmias, heart failure, and
sudden cardiac death in patients after repair of Fallot tetralogy
(26–29).

Although an association of transannular repair in Fallot tetral-
ogy with pulmonary regurgitation and its negative consequences
on RV function has been established, the survey published by Al
Habib et al. (25) clearly demonstrates that these techniques are
still widely used and probably influenced by anatomical condi-
tions (such as a low z-score of the pulmonary valve diameter)
which limit the surgical techniques available for palliating the situ-
ation. In order to answer the question regarding“the best potential
repair”in patients with Fallot tetralogy and hypoplastic pulmonary
valve and arteries, a large prospective collaborative investigation
would be necessary aiming at acquiring follow-up data extending
over several decades (25).

Nevertheless, many centers now recommend early pulmonary
valve replacement before first symptoms of heart failure will
develop (30).

Implantation of a pulmonary valved conduit is now considered
a standard procedure for surgical repair of many complex con-
genital cardiac anomalies with RVOTO and/or pulmonary insuf-
ficiency. However, the degeneration of allogeneic and xenogenic
pulmonary valve conduits require repeated conduit replacements
during a patient’s lifetime. The ideal conduit has not been
developed up to now (31).

Xenogenic decellularized tissue-engineered pulmonary valve
conduits (TEPVC) recently failed to offer a true advantage and
showed a high failure rate (32). Future research is directed at

developing autologous valved conduits. Currently, these tech-
niques are under evaluation in animal experiments (33, 34).

The correction of residual anatomic defects (e.g., pulmonary
regurgitation in patients with Fallot repair) earlier in life seems
appropriate given the pathophysiology of RV deterioration in these
patients. However, data are lacking evaluating a more conservative
and observant regimen until conduit placement versus a concept
with earlier surgical intervention.

Acute RV failure is a major risk factor for mortality of patients
after orthotopic heart transplantation when pulmonary vascular
disease is present such as in chronic left heart failure. An early mor-
tality rate of 19% has been reported in this subset of patients (35).
Reports suggest that the early placement of a RV assist device may
serve as a bridge to recovery of patients with RV-failure following
heart transplantation (36, 37).

There are new surgical techniques on the horizon aiming at
improving RV systolic function in patients with dilated RV after
surgery for CHD. Tang and coworkers have recently published
a mathematical model analyzing the effects of placing an elastic
band in the RV on RVEF (38). Therefore, progress in treatment of
RV dysfunction is also expected from modern surgical methods
emerging in the future.

EXPERIMENTAL RESEARCH WITH FOCUS ON RV
DYSFUNCTION
Research focusing on RV dysfunction – especially in the context
of congenital heart defects – is urgently required. We need to bet-
ter understand the underlying pathophysiological mechanisms of
RV dysfunction in patients with CHD. Even though the RV, when
compared to the left ventricle, differs on a morphological, physio-
logical, and molecular level, the RV has gained in scientific interest
in the last few years. Extensive work has just begun in order to
unravel the etiology of RV dysfunction.

The morphology of the RV,which has a thinner wall than the left
ventricle, enables a quick adaptation to changes in preload under
physiological conditions. An important mechanism of adaptation
of the RV to high pressure is to increase wall thickness by accumu-
lating muscle mass (hypertrophy) and to assume a more rounded
shape (39). The cell size is increased due to addition of sarcomeres
and an increase in protein synthesis. Protein synthesis in cardiomy-
ocytes is directly induced by stretch and enhanced by autocrine,
paracrine, and neurohumoral influences. The increase in after-
load is sensed by integrins and stretch-activated ion channels in
cardiac cells [myocytes, fibroblasts, endothelial cells (40)]. Inte-
grins are membrane crossing heterodimers that are both firmly
attached to the extracellular matrix (ECM) and the cytoskeleton.
This allows the transduction of mechanical stress into intracellular
chemical signals which are relevant for the synthesis of contractile
proteins and proteins for autocrine and paracrine signaling (41,
42). The local response to pressure overload is enhanced in the
same way by systemic (neurohumoral) influences, e.g., activation
of the renin-angiotensin and sympathetic systems.

The hypertrophic response of cardiomyocytes to pathological
conditions leads to changes at the transcriptional level such as an
increase of protein synthesis and alterations of fetal genes. Typ-
ical markers for fetal gene expression that are merely expressed
in fetal ventricles are atrial and brain natriuretic peptides, skeletal
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α-actin or β-myosin heavy chain (43). It was shown in ovine stud-
ies that pressure and volume overload alter the expression levels
of myocyte enhancer factor 2, GATA-4, Nkx2.5, transcriptional
enhancer factor 1, and specificity protein (Sp) 1 (44). Another ele-
gant study with pulmonary insufficient mice also exhibited altered
expression levels of these transcription factors reflecting changes in
transforming growth factor (TGF)-β signaling, ECM remodeling,
and apoptosis (45). One of the hallmarks of maladaptive cardiac
growth is the α- to β-isotype switch of the major thick filament
protein myosin heavy chain (MHC) (α-MHC/β-MHC switch) in
cardiomyocytes. In pressure overloaded RV associated with PAH,
the α-MHC content is reduced from about 30 to ±5% (46). The
adenosine triphosphate-ase (ATPase) activity of β-MHC is lower
than that of α-MHC. The disappearance of α-MHC results in a
significant decrease in systolic function (47). The myocardial reg-
ulatory proteins troponin, tropomyosin, and tropomodulin have
potential implications in the pathobiology of heart failure (48, 49).
Their precise role in failure of the RV in conditions associated with
volume overload or increased afterload is yet to be analyzed.

The ECM is an essential part of the matrix scaffold of the
heart and consists predominantly of collagen with relatively small
amounts of fibronectin, laminin, and elastin. The close proxim-
ity of the contractile apparatus implies that the ECM influences
the systolic and diastolic function as well as ventricular size and
shape (50, 51). Increased collagen content of the heart (fibrosis)
is tightly linked to TGF-β1. In addition, the excessive degradation
of the matrix by matrix metalloproteinases (MMPs) will adversely
affect myocardial systolic and diastolic function (50, 52, 53). The
TGF-β1 and MMP signaling are linked in a complex fashion (52).
Experimental (53) and clinical (46) data show increased fibrosis in
the myocardium under conditions of increased pulmonary after-
load. At present it remains unclear to what extent these changes are
related to RV ischemia and disturbed RV microcirculation. Most
of the studies investigating these problems have been conducted
with left ventricular strain and failure models, but it is not known
how extensively these mechanisms contribute to RV failure.

Angiotensin II (Ang II), Endothelin-1 (ET-1), and other neu-
rohormones are able to induce hypertrophic pathways within the
cardiomyocyte, in part, by formation of reactive oxygen species
(ROS) (54). In left ventricular failure, increased generation of ROS
and reactive nitrogen species (RNS) and a reduced activity of cyto-
protective enzymes are documented (55). The contribution of ROS
and RNS to RV failure has to be investigated.

Neutrophils may be an important source of excessive ROS
formation in heart failure. In parallel with the recruitment of
immune cells, proinflammatory cytokines play a complex role in
the development of heart failure. Hemodynamic and clinical para-
meters of disease severity correlate with increased serum levels and
expression of the proinflammatory cytokines tumor necrosis fac-
tor (TNF)-α, interleukin (IL)-1, and IL-6 by cardiomyocytes (56).
Recent data demonstrate that TNF-α has a pivotal role in adverse
myocardial remodeling and inhibition of TNF-α. The binding
protein etanercept can attenuate the progression to heart failure
in experimental volume overload (57). A recently detected IL-1-
related protein, IL-33, is a functional ligand of the IL-1 receptor
family member [IL-1 receptor – like protein transmembrane iso-
form (ST2L)] which is produced by cardiac fibroblasts in response

to mechanical strain (58). Increased levels of IL-1 receptor-like
protein soluble isoform (sST2) predict mortality and transplanta-
tion in patients with chronic heart failure, independent of B-type
natriuretic peptide (BNP) or atrial natriuretic peptide (proANP)
levels (59). Hitherto, there is no information on the precise role
of cardiac inflammation and immune activation in the failing RV.
Recent evidence suggests that stimulation of NADPH oxidases
(a known target of Ang II and ET-1) and ROS formation may
be of critical importance in mediating the slow cardiac response
to stretch. The positive inotropic effect of ET-1 requires intact
NADPH oxidase activity and protein kinase A (PKA) signaling.
The latter may be directly activated by ROS formation, opening
the possibility that the NO-redox state of the myocardium may
directly affect protein phosphorylation and the inotropic state,
independent of adrenergic receptor stimulation (60).

In conditions with increased afterload (i.e., in pulmonary
hypertension) the systolic right coronary artery flow is reduced
as assessed by MRI (61). There is little information how the RV
branches of the right coronary artery adapt to RV remodeling
and chronically increased wall stress. Current suggestions favor a
similar pattern as observed in the left ventricle: increased oxygen
extraction at rest and a higher dependence on increased coro-
nary flow to meet increased myocardial oxygen demand. During
cardiac hypertrophy, a mismatch between the numbers of capil-
laries and the size of the cardiomyocytes can result in myocar-
dial hypoxia, contractile dysfunction, and apoptosis (62). It is
not known at present whether microvessels in RV hypertrophy
vanish or whether angiogenesis matches the degree of hypertro-
phy. RV capillary density and vascular endothelial growth factor
(VEGF) expression are increased in chronic hypoxic pulmonary
hypertension (63).

While cardiomyocyte apoptosis is rare in the normal heart (1
apoptotic cardiomyocyte in 104 to 105 cells) (64), it has been
shown that the apoptosis rate increases up to 1 in 400 cardiomy-
ocytes in human heart failure (65). In the rat model of pulmonary
artery banding, the apoptosis rate of RV cardiomyocytes has been
shown to be elevated (66). In the mouse model apoptosis has
been related to lethal dilated cardiomyopathy (67). There is no
information on the impact of chronic RV volume overload on
RV cardiomyocyte apoptosis available at present. Blocking apop-
tosis using broad spectrum caspase inhibitors has been shown to
reduce LV ischemia reperfusion injury in the experimental setup
(68, 69), but currently there is no information on the effect of such
treatment on RV structure and function.

Notable analyses of gene expression patterns and epigenetic
modifications during maladaptive processes in the heart revealed
differences between the left and RV (70, 71). Thus, the cardiac
biomarkers BNP and ANP have distinct expression patterns in
the left and RV of mouse hearts after epigenetically modifications
on their promoter regions, such as acetylations and methylations
(72). Furthermore, studies with rabbits could impressively demon-
strate transcriptional and translational differences between the two
chambers of the heart after banding of the thoracic aorta and the
pulmonary artery, respectively. Manipulations resulted in altered
expression profiles of genes which are involved in energy metab-
olism, signaling pathways associated with actin, Integrin-linked
kinase (ILK), calcium handling, or cardiac tissue development
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(73). MicroRNAs (miRNAs) get more and more into the cen-
ter of attention in cardiovascular research. Several studies pro-
vided information about dysregulated miRNAs, such as miRNA-
195, miRNA-208, and miRNA-133 in hypertrophic hearts. This
evidence may offer new therapeutic opportunities (74).

Congenital heart defects and other diseases associated with RV
impairment show a wide variety of causes (Figure 2). Many genes
and complex signaling pathways are involved in heart development
and processes of heart adaption during altered conditions. So far,
efforts in research on RV pathomechanisms had been focused on
PAH (75) underscoring the lack of studies concerning other dis-
eases of the right heart. There is an incredible lack in exploring
disease mechanisms caused by volume overload on the RV which
is especially of importance after the correction of Tetralogy of
Fallot.

Until now, there is merely one study known about volume over-
load of the RV in a small animal model, possibly due to technical
difficulties in implementation. Reddy and colleagues generated
the first murine model for pulmonary insufficiency and analyzed
its physiologic and molecular characteristics. In their model, RV
volume overload resulted in declined heart function and altered
expression of various genes that are involved in mitochondrial and
G protein-coupled receptor signaling (45). In contrast, few studies
with large animal models exist. Recently, researchers analyzed the
effects of volume overload (by pulmonary artery shunting) and
pressure overload (by pulmonary artery banding), respectively, on
the RV in fetal lambs. All animals showed altered expression levels
of the transcriptional activators MEF-2, GATA-4, Nkx2.5, SP-1,
and SP-3, which are important for early developmental processes
(44). In contrast to shunting in lambs, RV volume overload could
also be produced by pulmonary insufficiency, e.g., by surgical tech-
niques such as a suture plication of the pulmonary valve leaflets
in piglets (76) or in sheep by the widening of the RV outflow tract
using a transannular patch (77). In conclusion, scientists should
develop models to better understand the pathological processes in
the RV as a lot of questions still remain unanswered.

FIGURE 2 | Main mechanisms of right ventricular dysfunction.

Besides the great advantage of large animal models because of
their better comparability to human disease settings and easier
implementation of operation techniques, large animals produce
high costs and are more laborious in keeping. One of the most
important strategies to uncover the etiology of diseases associated
with the right heart will be the use of genetic approaches and
small animal models. Even conspicuous is the predominant uti-
lization of rodent animal models such as mice and rats based on
their many advantages like the presence of a four chambered heart
and an extensive knowledge of their genetics (75). The most com-
monly used rat models to study pulmonary hypertension apply
techniques such as monocrotaline (78), hypoxia (79), constriction
of the pulmonary artery by banding or clipping (80, 81). Fawn
hooded rats spontaneously develop a PH phenotype (82).

Current efforts in studying RV pathomechanisms in the setting
of experimental PAH generated new interesting findings. Sutendra
and colleagues could show that in monocrotaline treated rats the
earlier described metabolic shift is not sustained during the devel-
opment of RV failure (78). Furthermore, Carvedilol is a substance
known to reduce RV hypertrophy in experimental PAH. Drake and
colleagues analyzed the effect of Carvedilol treatment on rats after
development of RV failure using chronic hypoxia and treatment
with a VEGF receptor inhibitor. This study displayed an altered
gene expression profile thereby revealing the mode of action and
mechanisms of RV failure (79).

All these models, however, could not reflect the real clini-
cal presentation of patients with RV dysfunction. The strengths
and weaknesses of various animal models emphasize the urgent
need for better models to uncover the disease mechanisms in
the RV. Mice overexpressing signaling components such as sero-
tonin transporter (SERT), bone morphogenetic protein receptor-2
(BMPR-2), or S100A4 that are involved in right heart failure could
only demonstrate details of maladaptive processes in the right
heart. More detailed analyses such as investigations in the RV spe-
cific ubiquitin-proteasome signaling (83) or analyses of the role
of components like cyclooxygenase 2 (84) are needed for gaining
deeper insights into right heart diseases. Besides metabolic shift-
ing, ECM remodeling processes are of further interest in research
of RV failure in congenital heart defects. For instance, the mal-
adaptive increase of ECM components in the RV of patients in the
first weeks after heart transplantation can be found reduced after
3 years (85) underlining the importance of this topic in cardiology.
Walker and colleagues discovered changes in the phosphorylation
of key contractile proteins, like troponin T, myosin-binding pro-
tein C (MBP-C), and myosin light chain 2 (mlc2) under the setting
of pressure overloading in calves (86). These results show once
again that RV pathological mechanisms differ from those of the
left ventricle, but the knowledge of RV disease mechanisms is still
insufficient. A lot of open questions remain such as why meta-
bolic remodeling occurs or whether the immune response in PAH
patients is the cause or consequence of the disease (87).

CONCLUSION
In the future, RV dysfunction will represent a growing problem
due to the increasing number of patients with CHD surviving
into adulthood with the morphological RV serving as the systemic
ventricle. In addition, patients after pulmonary artery conduit
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implantation are at risk for developing RV dysfunction due to
volume or/and pressure overload during their whole lifetime.

At present,most knowledge of RV dysfunction is mainly derived
from diseases of the left ventricle. Experimental work has to be
performed to obtain more insight into the pathophysiology of
RV dysfunction. Modern imaging techniques such as molecular
imaging may give more information on the myocardial metabo-
lism during RV dysfunction. Current pharmacological treatment
is based on a small panel of drugs, which exert no right heart spe-
cific properties. Therefore, future research has to be focused on
developing a targeted drug therapy for these patients.

We expect major improvements in the therapy of RV dysfunc-
tion by technologies that will enable the placement of smaller
ventricular assist devices in patients presenting with acute and
chronic right heart failure. Stem cell therapy is another promising
therapeutic approach worth mentioning.

However, the knowledge gained by translational and molecular
biological research will lead to a more targeted therapy for treating
the failing RV.
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