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The fruitful results of tumor immunotherapy establish its indispensable status in the
regulation of the tumorous immune context. It seems that the treatment of programmed
cell death receptor 1 (PD-1) blockade is one of the most promising approaches for cancer
control. The significant efficacy of PD-1 inhibitor therapy has been made in several cancer
types, such as breast cancer, lung cancer, and multiple myeloma. Even so, the
mechanisms of how anti-PD-1 therapy takes effect by impacting the immune
microenvironment and how partial patients acquire the resistance to PD-1 blockade
have yet to be studied. In this review, we discuss the cross talk between immune cells and
how they promote PD-1 blockade efficacy. In addition, we also depict factors that may
underlie tumor resistance to PD-1 blockade and feasible solutions in combination with it.

Keywords: immunotherapy, PD-1 inhibitor, tumor microenvironment, cytotoxic T lymphocytes (CTLs),
immunotherapy resistance, combined immunotherapy
BACKGROUND

Immune surveillance functions of innate and adaptive immune cells can be suppressed by multiple
mechanisms in the tumor microenvironment (TME); the most noted one is the programmed cell
death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway. For example, PD-L1, as
the ligand of PD-1, could overexpress on tumor cells to evade the antitumor immune response by
repressing the activation and function of CD8+T cells (1). Anti-PD-1 is one of the most promising
attractive anticancer immune checkpoint blockers (ICB). Growing evidence shows that not only T
cells but also other immune cells can be promoted by anti-PD-1 directly or indirectly, to suppress
the progression of tumors (2–5). However, despite PD-1 blockade therapies having durable
responses for a minority of patients in clinical trials, there is still an unmet clinical need for the
majority of patients who do not respond to anti-PD-1 (6). Thus, we firstly summarize the cross
talk between immune cells and their possible transformation in the TME after PD-1 blockade
therapy. In the second part, we discuss the primary impact factors of resistance to PD-1 inhibitors,
org December 2021 | Volume 12 | Article 7731681
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such as tumor immune recognition, oncogenic signal pathways,
interferon (IFN), immune contexture, angiogenesis, immunometabolism,
intestinal microbiota, and new immune checkpoints. We also
highlight feasible combined therapy strategies to re-sensitize
tumors to PD-1 blockade.
THE ROLE OF PD-1 AND PD-1
INHIBITORS IN IMMUNE RESPONSE

PD-1
PD-1, a member of the B7-CD28 receptor family, is a
transmembrane protein and widely expressed in B cells, T
cells, natural killer (NK) cells, and myeloid cells (7). As the
ligand of PD-1, programmed cell death ligand 1 (PD-L1) can be
expressed in dendritic cells (DCs), macrophages, T cells, NK cells
(8, 9), and tumor cells (10). Generally, when PD-L1 binds to PD-
1 in the presence of the T cell receptor (TCR) signaling complex,
PD-1 delivers a co-inhibitory signal, leading to the termination
of TCR signaling and inhibition of T cell proliferation (11). PD-1
often uses mono-tyrosine signaling motifs which present in its
cytoplasmic tail, such as immunoreceptor tyrosine-based
inhibitory motif (ITIM) and immunoreceptor tyrosine-based
switch motif (ITSM) (12), to end the CD28/TCR signal by PD-
1 phosphorylation and the recruitment of SHP-2 and SHP-1
(13–15). In the tumor immune context, antigen-presenting cells
(APCs) and tumor cells highly express PD-L1, and they can
interact with PD-1-overexpressed T cells, leading to T-cell
anergy or exhaustion (16, 17). Programmed cell death ligand 2
(PD-L2) is the second ligand for the PD-1 molecule, which is
expressed predominantly by DCs, macrophages, B cells, and
cancer cell populations, depending on microenvironmental
stimulation (18, 19). Similar to PD-L1, PD-L2 plays a crucial
role in evading antitumor immunity. The engagement of PD-1
and PD-L2 can lead to the downregulation of T cell responses,
which inhibits TCR-mediated proliferation and cytokine
production by CD4+ T cells by blocking cell cycle progression
(18). Although PD-1/PD-L2 blockade must be considered for
optimal immunotherapy in antitumor immunity (20), since most
of the research results are focused on the PD-1/PD-L1 pathway,
we mainly discuss the PD-1/PD-L1 axis in this article.

PD-1 Inhibitors
As surface molecules, the activity of PD-1 and PD-L1 can be
easily inhibited by blocking antibodies. Anti-PD-1 therapy is one
of the most successful immune checkpoint blockade therapies
that have been approved to treat a wide variety of cancer types
(Table 1). PD-1 inhibitors competitively bind to PD-1 and block
PD-1/PD-L1 interactions, which subsequently regulate negative
signals on the T cell surface to enhance the functions of effector T
cells and promote the proliferation of T cells (54). Nivolumab
and pembrolizumab are the primary clinically approved PD-1
inhibitors. They are humanized IgG4 antibodies targeting PD-1
with high affinity (55). To ensure that they elicit their inhibitory
effects of PD-1/PD-L1 interactions primarily by direct occupancy
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and steric blockade of the PD-L1-binding site of PD-1 (56), they
minimize the function of effector cells engaging other antibodies.

Pembrolizumab was initially approved for refractory
unresectable melanoma in 2014 (57), known as the first PD-1-
targeted therapy to gain Food and Drug Administration (FDA)
approval. Not long, in 2015, it becomes the first immune
checkpoint inhibitor to be approved as a first-line treatment,
also in melanoma therapy (21). Pembrolizumab is thus approved
to treat a wide variety of cancer types. To date, pembrolizumab
therapy has been licensed in many cancers (27, 30, 58, 59) and
was often conducted primarily in patients with PD-L1-positive
disease (31, 34). In general, a higher level of PD-L1 expression
is associated with a more effective clinic outcome of
pembrolizumab. However, in some cancer types, such as non-
small cell lung cancer (NSCLC) (60), classical Hodgkin’s
lymphoma (cHL) (25), and urothelial carcinoma (UC) (61),
PD-L1 expression did not explicitly correlate with response
to pembrolizumab.

Nivolumab also displays a good response and favorable safety
profile, particularly in melanoma and NSCLC. Nivolumab was
approved by FDA following its showing a clear advantage in
response over chemotherapy in refractory unresectable
melanoma (62). Soon after, the FDA approved nivolumab for
the treatment of NSCLC after progression on a platinum-based
chemotherapy regimen (41, 63). Also, nivolumab has been
demonstrated durable effects in other cancers (47, 64, 65), and
it appears that combination therapy may further improve them
(50, 66). Nevertheless, research has demonstrated a low response
rate in some hematological tumors, such as follicular lymphoma
(FL) (67) and diffuse large B cell lymphoma (DLBCL) (68). It
may appear to correlate positively with 9p24.1 translocation and
increased PD-L1 expression (69). In addition to nivolumab and
pembrolizumab, cemiplimab is also approved by FDA for the
treatment of advanced cutaneous squamous cell carcinoma (70)
and first-line NSCLC (53). Up till now, more than 1,500 clinical
trials involving PD-1 inhibition are currently supported by the
National Cancer Institute (NCI).
IMMUNE MICROENVIRONMENT

Immunotherapies based on PD-L1/PD-1 blockade have
revolutionized the treatment paradigm for several cancer types.
Their interaction regulates the activation of immune responses
and specifically of T cell responses in physiological conditions. In
the last years, increasing evidence has demonstrated that the
elimination of tumor cells is mainly mediated by cytotoxic T
lymphocytes (CTLs) (71). Several types of immune cells in the
TME, such as tumor-associated macrophages (TAMs), DCs, NK
cells, and immunosuppressive cells, can also interact with each
other to promote or repress tumor progression in direct and
indirect mechanisms by secreting cytokines and chemokines (71).
Indeed, there is a complex picture of the relationship between
checkpoint blockade and immune context. The precise molecular
mechanisms of how PD-1 inhibitors function by stimulation/
inhibition of immune-related cells remain to be fully
December 2021 | Volume 12 | Article 773168
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understood. Here, we will attempt to discuss in detail the cross talk
between immune cells and the critical role of some immune cells
in the efficacy of PD-1 inhibitors therapy (Figure 1).

T Cells
CD8+T Cells
CD8+T cells are a subset of lymphocytes developing in the
thymus. They recognize antigen-presented cells expressing
major histocompatibility complex (MHC) class I molecules
and in turn exert antitumor function (3, 71). Initiation of a
response from CD8+T cells against an antigen requires
corroboration work between CD4+T cells with NK cells and
DCs (3, 72). Activated, antigen-loaded DCs can launch the
differentiation of CD8+T cells into CTLs by cross-presenting
MHC class I molecules to cells (73). CD4+T cells can secrete
cytokines following the interaction with antigens to simulate the
optimal proliferation and activation of CD8+ T cells (74). On the
other hand, NK cells and CD4+T cells can produce chemokines
Frontiers in Immunology | www.frontiersin.org 3
which indirectly induce the activation of CD8+ T cells by
promoting the differentiation and maturation of DC cells (72,
75). Due to such cross talk, CTLs can initiate the antitumor effect
through releasing IFN-g and tumor necrosis factor a (TNF-a) to
induce cytotoxicity in the cancer cells (76).

However, PD-1, as a coinhibitory receptor, could overexpress
on activated CD8+ T cells (77). Once this happens, signals
downstream of TCR may be attenuated and may cause the
exhaustion of CD8+ T cells and ultimately contribute to the
restriction of T cell activation and cytokine production (78). PD-
1 blockade therapy seems to counteract tumor-induced T cell
dysfunctionality by interfering with PD-1/PD-L1 signals; it
releases the negative regulation of T cells and promotes T cells
which produced higher levels of IFN-g to activate antitumor
immune response (79–81). Besides, PD-1 inhibitors reinvigorate
preexisting CD8+T cells within the tumor and promote systemic
T cell immunity priming. Nevertheless, the study revealed
that preexisting tumor-specific T cells may have limited
TABLE 1 | Summary of FDA-approved PD-1 inhibitors in advanced/metastatic cancers.

Agent(s) Pathology Indications Clinical trial Reference

Pembrolizumab Melanoma First-line/
Second-line

KEYNOTE-006 phase 3/KEYNOTE-002
phase 2

(21, 22)

NSCLC First-line (TPS ≥1%, ALK/EGFR wt)
Second-line (TPS ≥1%)

KEYNOTE-042 phase 3/KEYNOTE-010
phase 2/3

(23, 24)

HL Relapsed after ≥ third-line KEYNOTE-087 phase 2 (25)
PMBCL Relapsed after ≥ second-line KEYNOTE-170 phase 2 (26)
MCC First-line KEYNOTE-017 phase 2 (27)
UC First-line cisplatin-ineligible/recurrent after platinum-

based treatment
KEYNOTE-052 phase 2/KEYNOTE-045
phase 3

(28, 29)

HCC Second-line after sorafenib KEYNOTE-224 phase 2 (30)
GC Progression on or after ≥ second-line (CPS ≥1%) KEYNOTE-059 phase 2 (31)
Non-colorectal MSI-H/
dMMR cancer

Previously treated KEYNOTE-158 phase 2 (32)

HNSCC First-line (CPS ≥1%)/
Second-line

KEYNOTE-048 phase 3 KEYNOTE-012
phase 1b

(33)

CC Previously treated (CPS ≥1%) KEYNOTE-158 phase 2 (34)
EC Progression after first-line (CPS ≥10%) KEYNOTE-181 phase 3 (35)

Pembrolizumab +
chemotherapy

NSCLC First-line KEYNOTE-021 phase 2/KEYNOTE-407
phase 3

(36, 37)

EC First-line KEYNOTE-590 phase 3 (38)
Nivolumab Melanoma First-line/second-line CheckMate-037/066 phase 3 (39, 40)

NSCLC Second-line CheckMate-017/057 phase 3 (41, 42)
HL Progressed after ASCT or brentuximab CheckMate-039 phase 1 CheckMate-

205 phase 2
(43)

UC Recurrent after platinum-based treatment CheckMate-275 phase 2 (44)
HCC Previously treated with sorafenib CheckMate-040 phase 1/2 (45)
MSI-H/dMMR colorectal
cancer

Treatment-refractory to all standard therapies CheckMate-142 phase 2 (46)

HNSCC Platinum-refractory, recurrent CheckMate-141 phase 3 (47)
SCLC Third-line CheckMate-032 phase 1/2 (48)

Nivolumab+ Ipilimumab MSI-H and dMMR Treatment-refractory to all standard therapies CheckMate-142 phase 2 (49)
RCC First-line CheckMate-214 phase 3 (50)
NSCLC First-line (PD-L1 ≥1%) CheckMate-227 phase 3 (51)

Cemiplimab CSCC First-line NCT02383212/
NCT02760498 phase 3

(52)

NSCLC First-line (TPS ≥50% EGFR, ALK, or ROS1 wt) NCT03088540 phase 3 (53)
December 2021 | Volume 12 | Art
Tumor types: NSCLC, non-small cell lung carcinoma; HL, Hodgkin lymphoma; PMLBCL, primary mediastinal large B cell lymphoma; MCC, Merkel cell carcinoma; UC, urothelial
carcinoma; HCC, hepatocellular carcinoma; GC, gastric cancer; MSI, microsatellite instability; dMMR, mismatch repair-deficient; HNSCC, head and neck squamous cell carcinoma; CC,
cervical cancer; EC, esophageal cancer; SCLC, small cell lung carcinoma; RCC, renal cell carcinoma; CSCC, cutaneous squamous cell carcinoma. wt, wild-type; TPS, tumor proportion
score; CPS, combined positive score; ASCT, autologous hematopoietic stem cell transplantation.
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reinvigoration capacity and that the T cell response to
checkpoint blockade derives from a distinct repertoire of T cell
clones that may have just recently entered the tumor (82). The
priming of antitumor T-cell immunity in lymphatic drainage
might explain such consequence, which is further explained in
another study. This study showed that tumor-draining lymph
nodes (TDLNs) are enriched for tumor-specific PD-1+T cells
which are closely associated with PD-L1+DCs (83). Suppression
of DCs, accompanied by excess PD-L1 surface expression, may
lead to restrained T cell priming and deviated CD8+ T cell
differentiation in the TDLN. Therefore, it suggests that
progenitor-exhausted T cells can be rescued by immune
checkpoint blockade and then home to the tumor and
populate the TME, to improve tumor control (83). However,
the exact contribution of TDLN versus TME during PD-1/PD-L1
checkpoint blockade therapy remains to be elucidated.

On the other hand, the report found that PD-L1 can also be
upregulated on T cells (84). PD-L1-expressing T cells can
suppress immunity on neighboring T cells and polarize
macrophages toward a tolerogenic phenotype via the PD-L1–
PD-1 axis in the TME, which in turn both suppresses T cell
activation and promotes tumor growth (84). It is still not clear
whether PD-1 inhibitors also play a role based on this theory.
Accordingly, the precise molecular mechanisms of T cell
function stimulated by PD-1 inhibitors remain to be clarified.
Frontiers in Immunology | www.frontiersin.org 4
CD4+T Cells (T Helper Cells)
CD4+T cells participate in the activation and expansion of CD8+T
effectors; they induce an antitumor response by providing
regulatory signals (85–87). In the tumor context, MHC class II
molecules can present antigenic peptides recognized by CD4+T
cells (88, 89). MHC-class II+ tumors can be directly killed by CD4+
CTLs. For the MHC-class II-negative tumor cells, CD4+ T cells
can produce a vast range of cytokines that mediate inflammatory
and effector immune responses (90, 91); TNF and IFN-g are the
most important cytokines that are mainly produced by T helper
(Th) 1 cells. Additionally, CD4 Th1 cells also display antitumor
responses by activating NK cells (90) and M1 TAM (92, 93),
inhibition of angiogenesis (94), and/or induction of tumor
senescence (95).

To date, the specific contribution of CD4 immunity to PD-1
blockade therapy efficacy is still unknown. In NSCLC,
proliferation and low PD-1/LAG-3 co-expression of CD4 at
baseline were responsive to PD-1 blockade ex vivo and in vivo
(96). In cHL, PD-1 blockade therapy has strong antitumor effects
on MHC-II-expressing tumors mediated by cytotoxic CD4+ T
cells in murine models (97). These provide strong evidence that
CD4 immunity might be an entry point to achieve efficacious
clinical responses under PD-1 blockade therapies. Further
research is needed to reveal the specific contribution of CD4+
T cells.
FIGURE 1 | The cross talk between immune cells in TME and the role of immune cells in the efficacy of PD-1 inhibitor therapy. CD8+T cells recognize antigens
requiring a corroboration work between CD4+T cells with NK cells and DCs, and M1 TAM can exert antitumoral effects due to the stimulation of IFN-g produced by
CD8+ T cells. In addition to these immunostimulatory cells, the immunoinhibitory cells including CAFs, Tregs, M2 TAMs, and MDSCs can construct an immunosuppressive
microenvironment to restrict the antitumor effect. Anti-PD-1 binds to PD-1 on immune cells which can block PD-1/PD-L1 interactions and recover the antitumor function of
those cells. PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2; IFN-g, interferon gamma; TNF, tumor
necrosis factor; CTL, cytotoxic T lymphocyte; DC, dendritic cell; NK, natural killer cell; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; CAF, cancer-
associated fibroblast; TAM, tumor-associated macrophage; M1, type 1 macrophage cell; M2, type 2 macrophage cell; MHC, major histocompatibility complex; TCR, T cell
receptor; TME, tumor microenvironment.
December 2021 | Volume 12 | Article 773168
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NK Cells
NK cells can spontaneously kill cells and thus are presumed to be
key innate immune effectors in cancer immunosurveillance; it
belongs to the family of innate lymphoid cells (ILCs) (98). IFN-g
produced by NK cells during early-phase immune responses can
directly kill tumor cells and promote the differentiation of naive
CD4+ T cells toward Th1 cells to facilitate cell-mediated
immunity (99). Thus, NK cells are critical components both in
humoral immunity and in cellular immunity.

As an inhibitory receptor, PD-1 can express on NK cells (100,
101) and prevent the activation of NK cell function when
engaging with its ligand which is expressed on the surface of
target tumor cells or APC (102). PD-1+ NK cells may be
inhibited in killing tumor cells instead of being anergic in PD-
L1+ tumors, which means that PD-1 is an important checkpoint
for NK activation and PD-1 blockade might elicit an antitumor
NK cell response (102). In high PD-L1 expression head and neck
cancer (HNC) patients, the study observed that PD-1 blockade
increased cetuximab-mediated NK cell activation and
cytotoxicity (103). Besides, tumors might drive the
development of PD-L1-expressing NK cells that acquire
immunoregulatory functions; such cell population can directly
inhibit CD8+ T cell proliferation in a PD-L1-dependent manner
(104). These results show the importance of the PD-1/PD-L1 axis
in inhibiting NK cell responses in vivo, and future research is
needed to determine the specific mechanism of the PD-1
pathway in the antitumor response of NK cells.

DCs
DCs, known as specialized APC, transport tumor antigens to
draining lymph nodes and cross-present antigens viaMHC I and
II to activate cytotoxic T lymphocytes (105). DC maturation is
necessary to T cell proliferation and differentiation; the final
antitumor immunity is also associated with co-stimulatory
molecules and cytokines which are expressed as the mature
markers on DCs, such as CD80/CD86 and IL-12 (106).

DCs are necessary for anti-PD-1 efficacy. Anti-PD-1-
activated T cells secrete IFN-g, which in turn primes a
transcriptomic shift in DC phenotype; DCs produce IL-12
upon sensing IFN-g to stimulate effector T cell responses (107–
109). The activation of the non-canonical nuclear factor kappa-
light-chain enhancer of the activated B cell (NF-kB) pathway is
also required for checkpoint efficacy, for it can enrich IL-12-
producing DCs (107). Additionally, evidence of direct regulation
is still emerging. PD-1 expression has recently been identified on
DCs in the specific tumor context (110, 111). The result of an
ovarian study demonstrated that PD-1 expressed on the tumor-
associated DC can suppress NF-kB activation and the release of
immune regulatory cytokines and restrict the upregulation of
co-stimulatory molecules (111), which mediate immune
suppression. PD-1 inhibition seems to increase the co-
stimulatory molecule expression of DCs (112). In addition, the
specific ablation of PD-1 on intratumoral DCs resulted in
enhanced priming of tumor-specific CD8+ T cells to secrete
IL-2 and IFN-g (110). While DCs are the major antigen-
presenting cells for cross-presenting tumor antigens to T cells
Frontiers in Immunology | www.frontiersin.org 5
and promoting antitumor response, PD-L1 expression on DCs
can be upregulated by inflammatory cytokines, especially IFNs.
Such upregulation is likely to prevent the overexpansion of
tumor-infiltrating lymphocytes and eventually dampen the
antitumor responses (113, 114). These results might provide
additional insights into the role PD-1/PD-L1 plays on DCs to
facilitate antitumor response and the mechanisms of immune
checkpoint blockade therapy efficacy.
TAMs

TAMs are major components of infiltrated leukocytes in tumors,
which dominantly orchestrate cancer-related inflammation
(115). They can be divided into two subtypes: M1 and M2.
Anti-tumorigenic M1 macrophages express high levels of TNFa,
inducible nitric oxide synthase (iNOS), and MHC class II
molecules. They exert antitumoral effects due to the
stimulation of IFN-g produced by CD8+ T cells and CD4+T
cells (71). Inversely, pro-tumorigenic M2 macrophages are
marked with a high level of arginase 1 (ARG1) and CD206
expression (116). M2 cells can secrete STAT3 to the TME for
impairing responses from CTLs when their number increases in
the stroma (117). Besides, M2 cells can express inhibitory ligands
PD-L1, which bind to inhibitory receptor PD-1 constitutively
expressed in T cells to activate them, directly inhibiting TCR
signals to restrain the antitumor function of T cells (118).

Primary macrophages transform into the M1 or M2
phenotype which can be induced by PD-1 signaling pathways
(119). TAMs display detectable PD-1 levels in the tumor
microenvironment; PD-1 blockade therapy contributed to both
a direct and an indirect impact on TAMs. Indirectly, checkpoint
blockade-activated T cells can accumulate TAMs by secrete
factors (such as IFN-g) to remodel the TME toward a tumor
hostile environment rich in iNOS+ TAMs (119). In direct
regulation, PD-1 deficiency in TAMs shifts their phenotype
toward an antitumor profile, with higher levels of TNF-a,
iNOS, and MHC II (120). Myeloid-specific PD-1 deletion was
as effective at limiting tumor growth as global PD-1 deletion and
more effective than selective ablation of PD-1 in T cells (121).
TAM PD-1 expression negatively correlates with phagocytic
potency against tumor cells; TAM infiltration is skewed toward
high CD206 and ARG1 macrophages dampening antitumor
immune responses (122, 123). Anti-PD-1 therapy can
surprisingly reverse this trend, increasing the expression of
iNOS, TNF-a, and IL-6, which may augment antitumor
immunity (124). Accordingly, the inhibition of PD-1 expressed
on TAMs can shift them to the M1 phenotype and form an
antitumor TME.

Immunosuppressive Cells
Immunosuppressive cells, unlike immune cells, have a positive
effect on antitumoral immunity. There are some immunoinhibitory
cells that display negative cross talking in TME, including
cancer-associated fibroblasts (CAFs), regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and M2 TAMs
December 2021 | Volume 12 | Article 773168
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(mentioned above). Tregs repress the proliferation of both CD8+
and CD4+T cells through releasing transforming growth factor b
(TGF-b) (125). CAFs promote the rate of glycolytic metabolism
and further constitute a glucose-deficient TME. CTLs tend to
decrease their number when encountered with such conditions
(126). It is not yet known whether these have a role in promoting
the efficacy of PD-1, but studies have shown that they are crucial
in immune resistance, which will be discussed in detail in a
subsequent paragraph.
DRUG RESISTANCE AND COMBINED
THERAPY

Anti-PD-1 therapy has shown significant efficacy in clinical trials
and has been approved for treating several cancers in clinic
therapy. However, the occurrence of primary or acquired drug
resistance will cause the patient to be ineffective to PD-1
blockade therapy or eventually the recurrence of malignant
tumors (127). There are internal and external causes of tumor
resistance to PD-1 blockade. The internal causes focus on
the inherent characteristics of tumor cells; these include
defective tumor immunorecognition, epigenetic regulation,
abnormal oncogenic signaling, and IFN-g signal pathway,
while the external causes are mainly emanated from the
tumor microenvironment, such as exhaustion of T cells,
immunosuppressive cells and cytokines, tumor metabolites,
new immune checkpoints, and intestinal microflora (128).
Here, we summarize the primary resistant mechanisms to anti-
PD-1 (Figure 2). In addition, we highlight emerging combined
treatment strategies that might prolong the efficacy of PD-1
blockade or enable immunotherapy to impinge on previously
intractable cancer types.

Defective Tumor Immunorecognition
Some studies have shown that carcinomas with robust T cell
immunosurveillance can evade recognition through diverse
genetic and immune-related mechanisms, including loss of
tumor neoantigens and defect in antigen presentation.

Loss of Tumor Neoantigens
Despite that cancer immunoediting can suppress tumor growth,
it can establish favorable conditions within the tumor
microenvironment to facilitate tumor outgrowth of the
immune system which no longer recognizes the tumor (129).
A neoantigen is an antigen encoded by the mutant gene of tumor
cells. It is cross-presented via DCs and recognized by mature
activated T cells. Emerging research supports the critical role of
neoantigens in response to PD-1 blockade therapy. For instance,
it highlights that neoantigen-specific CD8+T-cell responses were
parallel to tumor regression in a responder of NSCLC patients
treated with pembrolizumab (130), indicating that anti-PD-1
therapy enhances tumor neoantigen-specific T cell responses. In
addition, in NSCLC patients who developed acquired drug
resistance after single anti-PD-1 or anti-PD-1 combined with
anti-CTLA-4 therapy, the loss of neoantigens has been found
Frontiers in Immunology | www.frontiersin.org 6
based on complete exome sequencing of tumor cells (131). It
means that the PD-1-blocking therapy may be less effective if the
tumor does not contain a mutation that can be a target. Despite
the underlying mechanism being still unclear, evidence
highlights that the combination of radiotherapy (RT) and anti-
PD-1 is considered a promising strategy (132). Most likely, it is
dependent on RT-induced cell damage that may express somatic
mutations that generate neo-antigens, which have the potential
to serve as targets for a more robust immune response (133). In
preclinical triple-negative breast tumor models, data show that
radiotherapy can enrich tumors of functionally active. Curative
capacity has been enhanced when radiotherapy is combined with
immunostimulatory and a-PD-1 monoclonal antibodies (mAbs)
(134). Similarly, cancer cell death induced by chemotherapy is
thought to promote tumor antigen release and antigen
presentation and stimulate immune effectors. Combining
checkpoint inhibitors with standard-of-care chemotherapy has
been successful in non-small cell lung carcinoma (135, 136) and
triple-negative breast cancer (137). Besides, individualized
mutanome vaccines, an RNA-based poly-neo-epitope approach
to mobilize immunity against a spectrum of cancer mutations,
were applied to patients in melanoma and obtained a complete
response to vaccination in combination with PD-1 blockade
therapy (138). These results mean that the combination of PD-1
blockade with an agent that can facilitate tumor cells to generate
neo-antigen may increase antitumor immunity.

Defective Antigen Presentation
Effective tumor antigen presentation to CD8+T cells relies on
class I MHC (139, 140). Loss of heterozygosity and genetic
deficiencies of b2-microglobulin (B2M) are both crucial ways
that lead to the loss of MHC molecules (140–142), which
promote resistance to PD-1 blockade due to the inability of
CD8+T cells to recognize tumor antigens and specifically kill
tumor cells (143). Thus, to recover the ability of antigen
presentation may represent potential avenues that can be
combined with immunotherapy.

The impairment of antigen presentation can be induced by
epigenetic regulation. DNA methylation is thought to regulate
the expression of tumor-associated antigens by downregulating
the level of MHC class I. Studies have shown that the capability
of DNA methyltransferase inhibitors (DNMTi) to upregulate
MHC class I and MHC class II has appeared in many cancers
(144, 145). Enhancer of zeste homolog 2 (EZH2), a catalytic
component in the polycomb repressive complex 2 (PRC2), plays
a crucial role in the mediation of histone h3 lysine 27 tri-
methylation (H3K27me3) (146). Research revealed a negative
correlation between the expression levels of EZH2 and MHC I
antigen presentation molecules (147). The study also found that
tumor progression of an anti-PD-1-resistant head and neck
squamous cell carcinoma (HNSCC) model can be suppressed
by combinatorial treatment of an EZH2 inhibitor and anti-PD-1.
Paradoxically, in ovarian cancer models, EZH2 inhibition has
nothing to do with the alteration of the class I antigen
presentation of ovarian cancer cells (148), indicating that the
regulation of EZH2 on antigen presentation may be cancer-type
specific. Therefore, the impairment of antigen presentation may
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promote tumor immune escape while providing a potential
strategy to overcome resistance to PD-1 inhibitor therapy.

Oncogenic Signal Pathways
Cancer is a genetic disease that can be induced by multiple
genetic alterations, which are commonly caused by abnormalities
of several key oncogenic pathways (149), like the phosphatase
and tensin homolog (PTEN) signal pathway and mitogen-
activated protein kinase (MAPK) signal pathway. Here, we
mainly describe the two most common pathways, which have
been proven to be closely related to PD-1 inhibitor resistance.

Research found that loss of PTEN in tumor cells in clinical
patients of melanoma correlates with decreased T-cell
infiltration, expansion, and inferior outcomes with PD-1
inhibitor therapy (150). PTEN loss-of-function mutations in
tumors were significantly increased in non-responders who
were treated with anti-PD-1 antibodies (151). Additionally, one
of the most common pathways activated by loss of expression of
the tumor suppressor PTEN is the phosphatidylinositol 3-kinase
(PI3K) pathway, which plays a critical role in cancer by
regulating several critical cellular processes. Thus, the PI3Kb
inhibitor, which is thought to regulate AKT activity in tumors
with PTEN loss, has been applied to PTEN-deficient melanoma
mouse models and demonstrated to enhance the efficacy of both
PD-1 and CTLA-4 inhibitors (150). Accordingly, the regime that
Frontiers in Immunology | www.frontiersin.org 7
anti-PD-1 combined with PI3K-AKT pathway inhibitors may
benefit cancer patients in the future.

The RAF/MEK/ERK pathway which is the classic routine in
the MAPK pathway is also critical for human cancer; the pathway
can be primed by activated RAS interacting with RAF kinase (152–
154). Furthermore, RAS, RAF, and MEK are also frequently
amplified or mutated in various cancers, accompanied by the
activated MEK-ERK signaling pathway (155). KRAS, the
component of RAS, is one of the most frequently mutated
oncogenes in human cancers and participates in the mechanism
of PD-1 inhibitor resistance (156). Similarly, BRAF, another
mutated oncogene, has the vast majority in number harboring
an activating point mutation (V600E) (157). This oncogenic
mutation leads to constitutive activation of the MAPK signaling
pathway and increased oncogenic potential through a variety of
mechanisms, including reduced apoptosis, increased invasiveness,
and increased metastatic behavior (158). Recent in vitro data
suggest that BRAF V600E could also contribute to immune
escape (157, 159). Based on these, selective inhibition of BRAF
has been shown to induce an activated CD8+ T cell infiltrate, as
well as increase melanoma MHC expression and melanoma
antigen presentation early during treatment both in preclinical
models and in human melanoma tissue samples (159–161). The
study also suggested that combined BRAF and MEK inhibition
with PD-1 blockade immunotherapy in BRAF-mutant melanoma
FIGURE 2 | Key mechanisms of resistance to anti-PD-1 inhibitors. The mechanisms of resistance including internal and external causes. The internal causes focus
on the inherent characteristics of tumor cells, it includes defective tumor immunorecognition, epigenetic regulation, abnormal oncogenic signaling, and IFN-g signal
pathway. The external causes are mainly emanated from the tumor microenvironment, such as exhaustion of T cells, immunosuppressive cells and cytokines, tumor
metabolites, new immune checkpoints, and intestinal microflora. B2M, B2-microglobulin; LAG3, lymphocyte-activation gene 3; TIM3, T cell immunoglobulin and
mucin domain-containing molecule 3; VEGF, vascular endothelial growth factor; JAK, Janus kinase.
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can increase the frequency of long-lasting antitumor responses
(162). Thus, the inhibition of the RAF/MEK/ERK signaling
pathway may be a promising therapeutic strategy for cancer
dysregulated in this pathway.

IFNs
IFN-g, effector cytokines of T cells, can directly exert an effective
antitumor immune response by recognizing the corresponding
receptors on tumor cells or indirectly promote the cross-
activation of CD8+ T cells by upregulating antigen-presenting
machinery to attack tumor cells (163). Classically, IFN-g inhibits
the proliferation of tumor cells and promotes their apoptosis, as
it can activate signal transducer and activator of transcription 1
(STAT1) through using the Janus kinase (JAK) signal transducer
and activator of the transcription pathway (127). Recent studies
have implicated that defects in such pathways involved in IFN-
receptor signaling and antigen presentation are associated with
primary and acquired resistance to PD-1 blockades, such as
inactivating mutations in JAK1 and JAK2 (143, 164). It may
result in PD-L1 not being able to be reactively expressed and
failing to attract T cell infiltration due to lack of chemokine
production which is controlled by the IFN-g pathway
downstream of JAK1/2 (165). Considering that preexisting T
cells in the tumor are a requisite for response to anti-PD-1
therapy (166), the absence of reactive PD-L1 expression may
implicate a poor response to PD-1 blockade therapy, because of
the impairment of tumor-infiltrating T cells (164).

IFN-b, belonging to type I IFN that is associated with innate
immune responses (167), was proved to be suppressed by lysine-
specific histone demethylase 1 (LSD1) (168). Ablation of LSD1 in
cancer cells increases repetitive element expression; this leads to
dsRNA stress and activation of type 1 IFN, which promotes
antitumor T cell immunity and sensitizes refractory tumors to
PD-1 blockade in a melanoma mouse model (168). The
remarkable ability of LSD1 inhibition to convert a tumor resistant
to PD-1 blockade to a tumor responsive to PD-1 blockade provides
a means to increase the efficacy of anti-PD-1 cancer therapy and
potentially turn “cold” tumors “hot” (169). It may suggest LSD1
inhibition combined with PD-1 blockade as a novel cancer
treatment strategy. In addition, long-term IFN-b transcription can
also promote the occurrence of resistance to anti-PD-1 therapy by
inducing intratumoral augment of Tregs and myeloid cells, which
cause T cell depletion and immunosuppression (170). Thus, IFNs
display the consequence of resulting in T cell depletion and
immunosuppression, although they can also promote the effect of
tumor-specific CD8+T cells.

Immune Contexture
As noted, research of immune checkpoint blockade therapy was
concentrated on reversing tumor-specific T cell dysfunction.
CD8+T cells play an essential role in the scope of T cell-
directed immunotherapy. Thus, the exhaustion of CD8+T cells
induced by several factors can also be a crucial reason for PD-1
blockade resistance (143).

Epigenomic modifications might underlie CD8+T cell
exhaustion. These long-lasting, exhaustion-associated
Frontiers in Immunology | www.frontiersin.org 8
epigenetic programs limit the rejuvenation of antigen-specific
CD8 T cells during PD-1 blockade therapy. A study displayed
that initial DNA-methylation programs could restrict T-cell
expansion and clonal diversity during PD-1 blockade
treatment (171). The administration of DNA-demethylating
agents before ICB therapy reversed these programs and
enhanced the reinvigoration of antitumor CD8 T cells.
Moreover, the latest clinic trials concerning epigenetic
therapies also suggest that histone deacetylase inhibitors may
synergize with PD-1 blockade to overcome resistance (172, 173).
What they found highlights epigenetic programs among
exhausted T-cells as a potential mechanism to explain PD-1
blockade therapeutic failures. Besides, research found that co-
stimulatory molecules like CD28 can also suppress the function
of effector T cells and reduce the response to anti-PD-1 therapy
by blocking the CD28-B7 co-stimulatory pathway (13). In
addition to the regulation of epigenetic change and co-
stimulatory pathway over CD8+T cells, other immune-
suppressive cells also have more or less indirect effects on it,
impacting drug resistance of anti-PD-1 therapy.

MDSCs are defined as immature myeloid cells, which can be
induced to expand by tumor progression and play an
immunosuppressive role in multiple cancers (174, 175). The
recruitment of immunosuppressive MDSCs has shown complex
protumorigenic outcomes following anti-PD-1 therapy (176).
One mechanism of this recruitment may be driven by anti-PD-1-
activated T cells, which partially trigger a tumor-intrinsic NLRP3
inflammasome signaling cascade (176, 177). This signaling
cascade constitutes an adaptive resistance pathway, the genetic
and pharmacological inhibition of which can enhance the
efficacy of anti-PD-1 immunotherapy by inhibiting the tumor
infiltration of MDSCs (176). On the other hand, checkpoint-
activated CD8+ T cells can induce the differentiation and
survival of protumorigenic TAMs and MDSCs by stimulating
tumor production of CSF1 by secreting more TNF-a (178).
These prompt us to hypothesize that neutralizing MDSCs and
preserving T cell function may elicit robust immunotherapy
responses by the combined actions of ICB agents together with
targeted agents (179). Paradoxically, in HNSCC, it demonstrates
reduced granulocytic MDSC infiltration post-PD-1 blockade
(180). Thus, it is still unclear whether this model involves
different mechanisms of MDSC recruitment or whether
blockade of PD-1 inhibits MDSC proliferation directly.

TAM is another type of myeloid cells. It can impact the
response to immunotherapy by activating triggering receptors
expressed on myeloid cells 2 (TREM2) (181). TREM2 deficiency
was associated with the transformation of macrophage subsets
and an increase of intratumoral CD8+ T cells, some of which
expressed PD-1. The observation found that tumor macrophage
infiltrates enhanced T-cell-mediated control of tumor growth
after the anti-TREM2 therapy; the anti-TREM2 mAb to tumor-
bearing mice blunted tumor growth and strongly enhanced the
efficacy of anti-PD-1 immunotherapy (181). Efforts are
currently ongoing to complement checkpoint blockade with
treatment targeting myeloid cells (115), including depletion of
myeloid cells from tumors, blocking their pro-tumoral
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functions, or restoring their immunostimulatory properties
(182, 183). These results may be applied as a theoretical basis
to clinical trials.

Tregs can inhibit TCR-mediated activation and proliferation
of CD4+/CD8+T cells to promote tumor immune evasion.
Simultaneously, EZH2 has a critical role in maintaining the
identity and function of Tregs; it has been proved that Ezh2
deficiency in Tregs stimulates antitumor immunity with
enhanced T cell infiltration and elevated effector function
(147). Mechanistically, Ezh2 functioned in regulating the
stability of Foxp3 protein which is specifically expressed by
Tregs. Based on these, the synergistic impact of the
combination of EZH2 inhibition and anti-PD-1 has been
found in an anti-PD-1-resistant model of HNSCC. It is
explained that EZH2 inhibition can enhance tumor cell Class I
MHC expression in vivo including in highly resistant models
(147). Thus, it is promising that try to improve the efficacy of
anti-PD-1 therapy by combining it with Ezh2 inhibitors.

CAFs are activated fibroblast cells during cancer
development, contributing to the establishment of an
immunosuppressive TME (184). Despite T cells being
recovered from the capability against tumor cells following
anti-PD-1 therapy, CAFs can act as a formidable barrier to T
cells by secreting-related factors, resulting in T cell exclusion
from tumor nests (185). TGF-b, a factor released by CAFs,
promotes T-cell exclusion and blocks Th1 effector phenotype
acquisition, which eventually results in resistance to PD-1
blockade therapy (186, 187). Inhibition of TGF-b unleashed a
potent, enduring cytotoxic T-cell against tumor cells to prevent
refractory. In mice with progressive liver metastatic disease,
blockade of TGF-b signaling improves the susceptibility to
anti-PD-1 therapy and suggests that TGF-b inhibition could
prevent, but not reverse, CAF differentiation (186). NOX 4 is a
specific downstream target of TGF-b. Inhibition of NOX 4 can
“normalize” CAF to a quiescent phenotype and promote
intratumoral CD8+ T-cell infiltration, overcoming the
exclusion effect (185). These trials show that the regulation of
CAFs through repressing the related downstream pathway or
factors may have a synergistic effect on the anti-PD-1 therapy.

As mentioned above, one of the major obstacles that remain
to be overcome is the restriction of T cells’ function in the
immunosuppressive microenvironment formed by Tregs,
MDSCs, and TAMs. The adoptive cell therapy (ACT) with
chimeric antigen receptor (CAR)-redirected T cells is an
attractive anticancer strategy. The breakthrough with CAR-T
cell therapy was achieved, targeting B-cell hematologic tumors
(188–191), while there is less efficacy in solid tumors. Research
shows that TGF-b can be produced in most human tumors and
markedly inhibits tumor antigen-specific cellular immunity.
CAR-T lymphocytes have generated the resistance to TGF-b
suppression, which expresses dominant-negative TGF-b
receptors, to counteract these immunomodulatory activities
(192). Such a result demonstrates their superior antitumor
activity in animal models. Thus, combining engineered CAR-T
cells with PD-1 antagonists makes a great deal of sense. There are
promising results in both the pre-clinic model and case report
Frontiers in Immunology | www.frontiersin.org 9
(193, 194), presenting a large opportunity for the field of cellular
engineering and immune checkpoint therapy.

Accordingly, the abovementioned studies indicate that the
resistance to PD-1 inhibitors is directly related to the dysfunction
of T cells caused by its epigenetic change, while other immune-
related cells can also indirectly result in immune evasion via
impacting the antitumor immunity progression of T cells.

Angiogenesis
The angiogenic tumor vasculature plays a vital role in regulating
the response to cancer immunotherapy. Vascular abnormalities
restrict T cell trafficking into the intratumor via upregulating
vascular endothelial growth factor (VEGF) and gene-related to
proangiogenic (195). Study has suggested that the VEGF signal
induces the expression of the factor-related apoptosis antigen
ligand (FasL)-mediated cell death on vascular endothelial cells,
which in turn poses a formidable physical barrier to vascular
material exchange (195). Additionally, the tumor neovasculature
also decreases immature DCs and expands Treg cells and MDSC
populations (195, 196). The modulation of tumor vasculature
includes anti-angiogenesis and vascular normalization, which
can induce the depletion of Tregs and regulatory B cells,
enhancement of M1 TAMs, and activation of T cells, to reduce
immunosuppression. The modulation can make favorable
conditions for the infiltration of CD8+ cells and allow the
effectiveness of immune checkpoint blockade (197). Immune
checkpoint inhibitors have also shown promise in combination
with anti-angiogenic in solid tumors (198), such as NSCLC and
colorectal cancer (199). Thus, anti-angiogenesis and
immunotherapy are documented to work synergistically
together, showing promise for the resistance of PD-1 inhibitors.

Deregulation of Immunometabolism
Immune cells undergo complex shifts in metabolic states;
immunosuppressive metabolites in TME can inhibit antitumor
immunity by inhibiting immune cell infiltration (200–203).

Aerobic glycolysis is indispensable to CD8+T effector cells. It
can be restricted by tumor cells that outcompete T cells for
glucose uptake (81). In pretreatment of melanoma tumors,
hypoxia-associated genes are highly expressed in the tumors
that are subsequently resistant to PD-1 blockade compared with
those from responding tumors (204). A high concentration of
lactic acid can also blunt aerobic glycolysis of CD8+T cells and
correlate with primary resistance on PD-1 blockade (205). A
database analysis of patients with melanoma revealed strong
negative associations between tumor lactate dehydrogenase
expression and markers of CTL activation (201). Separately,
indoleamine 2,3-dioxygenase (IDO), generated by tumors and
immune cells, can enhance Treg and MDSC production and
activity and inhibit the effect on T-cell immunity (206). IDO is
the initial and rate-limiting enzyme in the degradation of
tryptophan through the kynurenine pathway. A report found a
significantly higher kynurenine/tryptophan ratio in NSCLC
patients with early progression on nivolumab, suggesting that
IDO might contribute to primary resistance to anti-PD-1
monoclonal antibodies (207). Despite that, the following
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clinical studies have shown that the efficacy of the IDO1 selective
inhibitor plus PD-1 inhibitor is not as good as that of PD-1
blockade treatment alone (208). The combination therapy of
IDO inhibitors and PD-1 antibodies may become a study
direction for overcoming immunotherapy resistance. In
addition, adenosine also is an immunosuppressive molecule
that can suppress effector T cells and NK cells and increase
Treg numbers (209, 210). Accordingly, metabolic disorders can
encumber proper T cell activation and effector functions, which
is a potential mechanism of resistance to PD-1 blockade. It is
believed that the combined strategy based on this can bring
gratifying results.

Disorder of Intestinal Microbiota
The gastrointestinal microbiome has been demonstrated to play
an essential role in regulating the immune response function
during cancer therapy (211–214). There is a group of active
microorganisms that live in symbiosis with the host in the
human intestinal tract and may cause tumor resistance to anti-
PD-1 when it gets disordered (215, 216). Concordantly, a result
has displayed that the responders to PD-1 blockade had a
differential composition of gut bacteria (217). It has shown an
“unfavorable” gut microbiome with low diversity and high
relative abundance. Such a population may impair systemic
and antitumor immune responses mediated by the limited
intratumoral T cells, myeloid infiltration, and weakened
antigen presentation capacity (211). Enhanced responses of
anti-PD-1 therapy have been observed in mice that accepted
fecal microbiome transplantation of the responder to PD-1
blockade. On the other hand, the efficacy of anti-PD-1 in mice
receiving a non-responder could be restored by administration of
specific genera enriched in responding patients in these mice. In
addition, these specific genera were associated with increased
intratumoral immune infiltrates mediated by the recruitment of
CD4+T cells into the tumor bed and increased ratio of CD4+T
cells to Tregs in response to PD-1 blockade (217). Besides, fecal
microbiota transplant also overcomes resistance to anti-PD-1
therapy in melanoma patients (218). This suggests that
regulating the gut microbiota may potentially enhance
antitumor immune responses as well as response to immune
checkpoint blockade.

New Immune Checkpoints
During checkpoint blockade with anti-PD-1 inhibitors, other
inhibitory checkpoints might become coordinately upregulated
and in turn lead to therapeutic failure (219). T-cell
immunoglobulin mucin 3 (TIM-3), a member of the TIM
family of immunomodulatory proteins, has been identified as a
critical regulator of CTL exhaustion with co-expression of PD-1
(220). Such co-expression means that the most dysfunctional
subgroup of T cells does not produce IL-2 and IFN-g and
eventually causes adaptive resistance. The mechanism has
demonstrated that the increased Tim-3-mediated escape of
exhausted TIL from PD-1 inhibition was mediated by PI3K/
Akt complex downstream of TCR signaling in HNSCC (219).
In vitro, the anti-Tim-3-blocking antibody reverses resistance to
anti-PD-1 in PBMC from lung cancer patients (221). On the
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other hand, significant antitumor activity was observed after
sequential addition of anti-Tim-3 mAb to overcome adaptive
resistance to anti-PD-1 mAb in a murine HNSCC model (219).
Thus, combination therapy targeting TIM-3 and PD-1 signaling
pathways might be effective against the resistance of
mono-immunotherapy.

Lymphocyte activation gene 3 (LAG-3) can selectively be
expressed on activated T cells, NK cells, DCs and may get
compensatory upregulation. The regulatory function of LAG-3
on T cells is similar to that of PD-1, which delivers suppressive
signaling to hinder antitumor response (222). LAG-3 also
competes for binding to MHC class II, which leads to
decreased efficacy of MHC class II-mediated antigen
presentation (223). The upregulation of LAG-3 in tumors of
melanoma and lung cancer patients with acquired resistance to
anti-PD-1 therapy has been demonstrated (223). There
appeared to be a synergistic benefit of anti-LAG-3/anti-PD-1
combinatorial immunotherapy compared with anti-PD-1
monotherapy. In addition, a higher proportion of effector
T cells were observed in mice treated with anti-LAG-3/anti-
PD-1 than in PD-1 monotherapy groups. These suggest that
anti-LAG-3/anti-PD-1 combinatorial immunotherapy may act
synergistically (224). The roles of other checkpoints are still
unconfirmed in anti-PD-1 resistance, such as TIGIT. Thus, a
more particular knowledge of these new immune checkpoints
may provide a rationale for designing combination treatments in
the future.
CONCLUSIONS

In this review, we primarily describe a complex story of the
relationship between anti-PD-1 and TME. The initiation of the
antitumor effect depends on the cross talk between immune cells
(Figure 1). Besides T cells, other immune-activating cells, like NK
cells, DCs, and M1 TAMs, also contribute to anti-PD-1 efficacy
through direct or indirect mechanisms. Furthermore, PD-1
blockade can target PD-1 expressed on these cells directly or
reactivate CD8+ T cells to induce these immune-activating cell
responses indirectly within the TME. Also, the review briefly
displays the mechanisms that possibly contribute to primary or
acquired resistance to PD-1 blockade, including the internal and
external causes; the former focuses on the inherent characteristics
of tumor cells while the other is mainly emanated from the tumor
microenvironment (Figure 2). Due to the different reasons for
drug resistance, the appropriate combination immunotherapy is
also different, which is also discussed in detail in this article. It
means that using a combination of such strategies is more suitable
than using one approach alone for stimulating an antitumor
immune response in some situations. A future challenge for
researchers and clinicians is to achieve the satisfactory efficacy
of immunotherapy. It means that the mechanisms of tumor
immune evasion and immune drug resistance should be
clarified as much as possible. It also plays a crucial role in the
exploration of predictive markers, which are associated with the
response rate of immunotherapy and improved clinical outcomes.
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48. Antonia SJ, López-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP,
et al. Nivolumab Alone and Nivolumab Plus Ipilimumab in Recurrent
Small-Cell Lung Cancer (CheckMate 032): A Multicentre, Open-Label,
Phase 1/2 Trial. Lancet Oncol (2016) 17(7):883–95. doi: 10.1016/S1470-
2045(16)30098-5

49. Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M,
et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA
Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic
Colorectal Cancer. J Clin Oncol: Off J Am Soc Clin Oncol (2018) 36
(8):773–9. doi: 10.1200/JCO.2017.76.9901

50. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B,
Choueiri TK, et al. Nivolumab Plus Ipilimumab Versus Sunitinib in
Advanced Renal-Cell Carcinoma. N Engl J Med (2018) 378(14):1277–90.
doi: 10.1056/NEJMoa1712126

51. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W,
Carcereny Costa E, et al. Nivolumab Plus Ipilimumab in Advanced Non-
Small-Cell Lung Cancer. N Engl J Med (2019) 381(21):2020–31.
doi: 10.1056/NEJMoa1910231

52. Rischin D, Migden MR, Lim AM, Schmults CD, Khushalani NI, Hughes BGM,
et al. Phase 2 Study of Cemiplimab in Patients With Metastatic Cutaneous
Squamous Cell Carcinoma: Primary Analysis of Fixed-Dosing, Long-Term
Outcome of Weight-Based Dosing. J Immunother cancer (2020) 8(1):e000775.
doi: 10.1136/jitc-2020-000775

53. Sezer A, Kilickap S, Gümüs ̧ M, Bondarenko I, Özgüroğlu M, Gogishvili M,
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GLOSSARY
APC antigen-presenting cell
ARG1 Arginase 1
B2M b2-microglobulin
cHL classical Hodgkin’s lymphoma
CTL cytotoxic T lymphocyte
CAF cancer-associated fibroblast
DC dendritic cell
DLBCL diffuse large B cell lymphoma
DNMTi DNA methyltransferase inhibitor
EZH2 enhancer of zeste homolog 2
FDA Food and Drug Administration
FasL factor-related apoptosis antigen ligand
FL follicular lymphoma
HNC head and neck cancer
HNSCC head and neck squamous cell carcinoma
H3K27me3 histone h3 lysine 27 tri-methylation
ICB immune checkpoint blocker
ITIM immunoreceptor tyrosine-based inhibitory motif
ITSM immunoreceptor tyrosine-based switch motif
ILC innate lymphoid cell
IDO indoleamine 2,3-dioxygenase
IFN interferon
iNOS inducible nitric oxide synthase
JAK Janus kinase
LSD1 lysine-specific histone demethylase 1
LAG-3 lymphocyte activation gene 3
MHC major histocompatibility complex
MAPK mitogen-activated protein kinase
mCRPC metastatic castration-resistant prostate cancer
mAb monoclonal antibody
MDSC myeloid-derived suppressor cell
NK natural killer cell
NSCLC non-small cell lung cancer
NCI National Cancer Institute
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
PD-1 programmed cell death receptor 1
PD-L1 programmed cell death ligand 1
PD-L2 programmed cell death ligand 2
PRC2 polycomb repressive complex 2
PTEN phosphatase and tensin homolog
RT radiotherapy
STAT1 signal transducer and activator of transcription 1
TDLNs tumor-draining lymph nodes
TME tumor microenvironment
TCR T cell receptor
TAM tumor-associated macrophage
TNF-a tumor necrosis factor a
Th1 cell T helper 1 cell
Treg regulatory T cell
TGF-b transforming growth factor b
TREM2 triggering receptor expressed on myeloid cells 2
TIM-3 T-cell immunoglobulin mucin 3
UC urothelial carcinoma
VEGF vascular endothelial growth factor
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