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Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs)
and their associated cyclins which bind with and activate CDKs in a phase specific
manner. Additionally, several transcription factors (TFs) such as E2F and p53 and
numerous signaling pathways regulate cell cycle progression. Recent studies have
accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in
the regulation of cell cycle. Both lncRNAs andmiRNAs interact with TFs participating in the
regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and
lncRNAs results in human disorders particularly cancers. Understanding the role of
lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for
design of anticancer therapies which intervene with the cell cycle progression. In the
current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle
and their association with human malignancies.

Keywords: cell cycle, microRNA, long non coding RNA, expression, polymorphism
INTRODUCTION

Cell division has a fundamental role in the development multicellular organisms. This process is
accomplished through orderly sequences of happenings that together with each other make the “cell
cycle”. This cycle comprises precise duplication of the genome throughout the DNA synthesis stage
(S phase), and separation of whole sets of chromosomes to one of the daughter cells in the mitosis
stage (M phase). Two “Gap” phases also exist in the cell cycle. The first one (G1) links the
accomplishment of the M phase to the commencement of S phase in the succeeding cycle. G2 splits
the S and M stages. Cells residing in the G1 phase might momentarily or enduringly exit the cell
cycle and go in an inactive or blocked phase namely G0 (1). In the mammalian cells, cell cycle is
regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated
cyclins which bind with and activate CDKs in a phase specific manner (2). Cyclins A and E are
activating factors for CDK2. Cyclin B binds with CDK1. Finally, CDK4/6 is activated by cyclin Ds.
Binding of cyclins with CDKs leads to phosphorylation of CDKs target proteins which finally
permits progression through cell cycle (2). In addition to cyclins, Wee1 kinase and CDC25
phosphatase regulate activity of CDKs by phosphorylation and dephosphorylation reactions,
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respectively (3). Activity of CDKs and cell cycle progression are
inhibited by a number of factors such as p15ink4b, p16ink4a,
p18ink4d, p21Cip1, p27Kip1, and p57Kip2. These factors have a
specific binding affinity for cyclin-CDK complexes (4–6).
Progression through each phase of cell cycle is regulated by
CDKs and their associated proteins/pathways. For instance,
MAPK pathway induced by growth factors enhances
transcription of cyclin Ds in the G1 phase, leading to
activation of CDK4/6 (7). The protein complex formed by
cyclin Ds and CDK4/6 phosphorylates retinoblastoma protein
(pRB), p107 and p130, in the final stages of G1 phase, thus
releasing E2F and enhancing E2F-dependent expression of
growth-stimulating genes (7). At the G1/S boundary, the
complex constructed by cyclin E and CDK2 phosphorylates
pRB and other proteins participating in the regulation of DNA
replication to facilitate G1/S transition (8). Cyclin B-CDK1
complex has several functions such as accomplishment of the
G2 phase processes (9), negative regulation of cytokinesis (10),
and coordination of mitotic-related procedures in the nucleus
and the cytoplasm (11). This complex has a number of targets
Frontiers in Oncology | www.frontiersin.org 2
such as the anaphase-promoting complex/cyclosome (APC/C)
(10). In addition to CDKs, cyclins, and the APC/C which directly
regulate cell cycle progression, other molecules are involved in
this process. For instance, p53 functions in numerous stages to
warrant that cells do not bring their abnormal DNA through cell
division. It halts the cell cycle at the G1 checkpoint through
stimulating synthesis of CDK inhibitor (CKI) proteins. These
proteins attach CDK-cyclin complexes and inhibit their function
extending the time for the activation of DNA repair system. It
also induces DNA repair enzymes. If DNA damage cannot be
fixed, p53 induces cell apoptosis to prevent transmission of the
damaged DNA to the daughter cells (12).

Several lines of evidence point to the role of non-coding
RNAs (ncRNAs) in the regulation of expression or activity of the
above-mentioned proteins (13). Cyclins, CDKs and their
inhibitors, are targets of regulation by ncRNAs at different
levels including transcriptional and post-transcriptional levels
(13). Being classified mainly based on their sizes, ncRNAs
include micro RNAs (miRNAs) and long non-coding RNAs
(lncRNAs). LncRNAs are longer than 200 nucleotides.
FIGURE 1 | The lncRNA SNHG3 recruits EZH2 to the promoter of CDKN1A to induce H3K27me3 and decrease expression of this gene. This gene encodes the
p21 protein which is an inhibitor of cyclin E/CDK2 (33). The lncRNA FOXD2-AS1 enhances recruitment of EZH2 to the promoter of CDKN1B and decreases its
expression via H3K27me3. Therefore, it down-regulates p27 which is an inhibitor of cyclin D (34). These two lncRNAs promote cell progression at G1/S point. Over-
expression of ROR1-AS1 has increased cell proliferation, reduced the G0/G1 phase time of cell cycle, and inhibited apoptosis. This lncRNA can bind to EZH2 and
suppress expression of DUSP5 (35).
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TABLE 1 | The role of lncRNAs in cell cycle control (ANTs, Adjacent normal tissues).

Function Ref

41-3p and CCND1 could regulate prostate
l cycle progression. (36)
4 could promote cancer cell proliferation in Pca.

(37)
a-3p/CDK7 axis could promote cell proliferation

(38)
rogen receptor signaling could inhibit cell cycle

(39)
eting miR-1/CCND1 axis could repress
l cycle arrest in ESCC cells. (23)
ecrease the percentage of cells in the G2/M
egulation of cell cycle arrest and apoptosis could (40)

targeting CDKN1B/EZH2 could arrest the cell
(34)

ld induce S or/and G2/M phase cell cycle arrest,
oliferation, migration, and invasion. (35)

ycle the transition from the G0/G1 stage to the S
g could promote cell proliferation. (41)

could be involved in the development and
(42)

could be involved in cell proliferation, invasion,
elanoma. (43)

ng G1/S cell cycle progression could increase
(31)

21 axis could facilitate HNSCC cell proliferation
(32)

nducing cell‐cycle G1 arrest could inhibit glioma
(44)

ting miR-203a could induce anoikis and cell
e. (45)
p21 could enhance the malignant progress of
could induce cell cycle arrest in the G0/G1 (33)

uld promote cell proliferation, migration, and cell
(46)

81-3p/CCND1 could promote osteosarcoma
(47)

D1 could regulate the proliferation, metastasis,
. (48)
sis and accelerating cell cycle could promote
r. (49)
F1 axis could enhance breast cancer

(50)
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Cancer Type lncRNA Species/number of samples Targets/Regulators Involved
pathways

Prostate Cancer (PCa) LOXL1-AS1 – CCND1, miR-541-3p – LOXL1-AS1 via targeting miR-
cancer cell proliferation and ce

Pca NR2F2-AS1 60 pairs of Pca and ANTs CDK4 – NR2F2-AS1 by regulating CDK

Pca SNHG1 30 pairs of Pca and ANTs miR-199a-3p, CDK7, – SNHG1 via regulating miR-199
in prostate cancer.

Pca MALAT1 – CDK6, Cyclin D1, p27, AR, miR-
320b

– Knockdown of MALAT1 via an
progression in Pca cells.

Esophageal Squamous
Cell Carcinoma (ESCC)

HOTAIR 32 pairs of ESCC and ANTs miR-1, CCND1, Ago2 – Knockdown of HOTAIR via tar
proliferation and lead to G1 ce

Hepatocellular
Carcinoma (HCC)

PCAT6 TCGA database DCAF13, SNRPB2, RPS8,
FKBP1A, PCNA, CCND1, BCL-2

Wnt, HIF-
1

Upregulation of PCAT6 could d
phase. Hence, PCAT6 via the
promote proliferation in HCC.

HCC FOXD2-AS1 105 pairs of HCC and ANTs CDK2, Cyclin E1, CDK4, Cyclin
D1, CDKN1B, EZH2

– Knockdown of FOXD2-AS1 via
cycle in the G0/G1 phase.

HCC HOXD-AS1 Mouse/human; 20 pairs of HCC
and ANTs

Cyclin A1, Cyclin
B1, Cyclin D1, BCL-2, BAX,
MMP1/2/9

MEK/ERK Knockdown of HOXD‐AS1 cou
and also could suppress the p

Renal Cell
Carcinoma (RCC)

CRNDE 15 pairs of RCC and ANTs APC2, AXIN2, WNT2B, WNT4,
SNAIL2, FZD4, CRNDE, CCND1,
CCNE1

Wnt/b-
catenin

CRNDE by regulating the cell c
stage via Wnt/b-catenin signal

Adrenocortical
carcinoma (ACC)

HOTAIR 77 ACC tissues and 30 normal
adrenal tissues, GEO database

p-GSK3b, p-Rb, Cyclin D1 – HOTAIR via regulating cell cyc
progression of ACC.

Melanoma UCA1 Melanoma patients (n=18)
normal tissues (n=20),

miR-507, FOXM1 – UCA1 via miR-507-FOXM1 ax
and G0/G1 cell cycle arrest in

Melanoma GAS5 47 pairs of melanoma and ANTs Cyclin D1, CDK4, p27, Bcl-2, p21,
Caspase-3, G6PD

– Knockdown of GAS5 by induc
melanoma cell proliferation.

Head & Neck
Squamous Cell
Carcinoma (HNSCC)

MIR31HG – HIF1A, p21, p53, p27, CCND1 – MIR31HG by targeting HIF1A/
and tumorigenesis.

Glioma HOXD-AS2 Mouse c-Myc, Cyclin D1, Cyclin A, E2F1,
p27

– Knockdown of HOXD‐AS2 by
cell growth.

Glioma ANRIL 30 pairs of glioma and ANTs Caspase-3/8/9,miR-203a, CDK2,
Bcl-2, p21, c-Myc

AkT Knockdown of ANRIL via targe
cycle arrest in the G0/G1 phas

Glioma SNHG3 60 pairs of glioma and ANTs KLF2, p21 – SNHG3 by silencing KLF2 and
glioma. Knockdown of SNHG3
phase.

Ameloblastoma (AB) ENST00000512916 26 pairs of AB and ANTs HOXC13, Cyclin D1, CDK2/4/6,
Tubulin

– lncRNA ENST00000512916 c
cycle progression of AB.

Osteosarcoma (OS) FLVCR-AS1 48 pairs of OS and ANTs CCND1, miR-381-3p – FLVCR-AS1 by targeting miR-
growth.

Osteosarcoma (OS) LINC01296 30 pairs of OS and ANTs Cyclin D1, Cyclin E1, CDK2/4 – LINC01296 via targeting cyclin
and cell cycle of osteosarcoma

Breast Cancer LINC00668 TCGA dataset CDK4, Bcl-2, p21 AKT/
mTOR

LINC00668 by inhibiting apopt
the progression of breast canc

Breast Cancer MALAT1 Mouse/human; 40 pairs of
breast cancer and ANTs

miR-124,CDK4, E2F1 – MALAT1 via miR-124/CDK4/E
progression.
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TABLE 1 | Continued

Function Ref

RUSC1-AS1 via inhibiting cell cycle progression through the
axis could induce apoptosis in breast cancer cells. (51)
of SNHG6 could promote cell cycle progression, proliferation,

EMT of breast cancer cells. (52)
TUG1 by targeting the RND3/MT2A axis could block the cell
lerated apoptosis in PaC cells. (53)
NEAT1 by regulating miR-365/RGS20 axis could induce cell
the G0/G1 phase and inhibit cell proliferation and invasion. (54)

CLMAT3 could induce the G0/G1 cell-cycle arrest in CRC cells.
(55)

XIAP-AS1 could arrest the cell cycle at the G0/G1 phase, and
cell proliferation and invasion in CRC. (53)

NR2F2-AS1 via downregulating Cyclin D1 could induce cell
the G0/G1 phase in CRC. (56)
NR2F2−AS1 could induce G1 arrest by downregulating CDK6 in

(57)
ssion of ROR1-AS1, the G0/G1 phase time of cell cycle was
ce, ROR1-AS1 by suppressing the DUSP5/CDKN1A axis could
cell proliferation.

(35)

cting P53 could promote cell proliferation in CRC. Knockdown of
induce G0/G1 phase arrest. (58)
y affecting CDKN1C could modulate cell cycle progression in
wn of STEAP3-AS1 could arrest CRC cells at the G0–G1 phase. (59)
SNHG12 via regulating Wnt/b-catenin signaling could block cell
ion at the G1-G0 phase in PTC. (60)
PANDAR could promote apoptosis and suppress the
d cell cycle in TC cells. (61)
rough modulation of the cell cycle could contribute to gastric
sion. (62)
gulating cell cycle pathway via the miR-340-5p/CDK1 axis could
ell proliferation, migration, and invasion. (63)
iR‐149‐5p/Cdk6 axis could participate in NSCLC progression.

(64)
y regulating the NEAT1/miR-146b-5p axis via Wnt/b-catenin
inhibit endometrial cancer cell cycle and viability. (65)
ulating cell cycle could promote the proliferation of AML cells.

(65)

of CDKN2B-AS1 via the miR-324-5p/ROCK1 axis by regulating
promote LSCC cell proliferation. (66)
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Cancer Type lncRNA Species/number of samples Targets/Regulators Involved
pathways

Breast Cancer RUSC1-AS1 48 pairs of breast cancer and
ANTs

KLF2, CDKN1A – Knockdown of
KLF2/CDKN1A

Breast Cancer SNHG6 45 pairs of breast cancer and
ANTs

Cyclin D1, PCNA, Snail, Vimentin,
E-cadherin

– Overexpression
migration, and

Pancreatic cancer
(PaC)

TUG1 Mouse/human; 42 pairs of PaC
and ANTs

EZH2, MT2A, RND3 – Knockdown of
cycle and acce

Oral Squamous Cell
Carcinoma (OSCC)

NEAT1 30 pairs of OSCC and ANTs miR-365, RGS20, cyclin D1,
Vimentin,
E-cadherin,
N-cadherin,

– Knockdown of
cycle arrest at

Colorectal cancer
(CRC)

CLMAT3 – Cdh1, p27Kip1, Skp2 – Knockdown of

CRC XIAP-AS1 75 pairs of CRC and ANTs E-cadherin, ZO-1, vimentin, N-
cadherin, p63, Cyclin D1, Cyclin E,
c-Myc, Cyclin A

– Knockdown of
be involved in

CRC NR2F2-AS1 60 pairs of CRC and ANTs Cyclin D1 – Knockdown of
cycle arrest in

CRC NR2F2-AS1 63 pairs of CRC and ANTs CDK6 – Knockdown of
CRC.

CRC ROR1-AS1 75 pairs of CRC and ANTs DUSP5, CDKN1A, EZH2 – After overexpre
shortened. Hen
promote CRC

CRC SNHG1 86 pairs of CRC and ANTs Bax, p53, p21 – SNHG1 by affe
SNHG1 could

CRC STEAP3-AS1 Mouse/TCGA database CDKN1C, STEAP3, CDK2, CDK4,
Cyclin E2, acetyl-H3

– STEAP3-AS1 b
CRC. Knockdo

Papillary Thyroid
Carcinoma (PTC)

SNHG12 Mouse/human; 30 pairs of PTC
and ANTs

MMp2, Cyclin D1 Wnt/b-
catenin

Knockdown of
cycle progress

Thyroid Carcinoma
(TC)

PANDAR 75 pairs of TC and ANTs Chk1, Cdc25A, Cyclin D1, Bax,
Bcl-2

– Knockdown of
proliferation an

Gastric Cancer (GC) HNF1A-AS1 GC tissues (n=99) nontumorous
gastric tissues (n=8),

EGR1, miR-661, CDC34, CDK2/4,
Cyclin E1, p21

– HNF1A-AS1 th
cancer progres

GC CASC11 80 pairs of GC and ANTs miR-340-5p, CDK1, Cyclin A2,
Cyclin B1, PIK1

– CASC11 by re
promote GC c

Non-Small Cell Lung
Cancer (NSCLC)

HNF1A-AS1 Mouse/human; 60 pairs of
NSCLC and ANTs

miR-149-5p, Cdk6, p21, p27,
Cyclin D1

– HNF1A‐AS1/m

Endometrial Cancer NEAT1 GEO database c-Myc, MMP9, LEF1
miR-146b-5p

Wnt/b-
catenin

Progesterone b
pathway could

Acute Myeloid
Leukemia (AML)

HOTTIP Bone marrow blood samples
from 80 AML patients and 24
healthy controls

miR-608, DDA1 – HOTTIP via reg

Larynx Squamous Cell
Carcinoma (LSCC)

CDKN2B-AS1 60 pairs of LSCC and ANTs miR-324-5p, PARP,
Caspase-3, p21, ROCK1, PCNA

– Overexpression
cell cycle could
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According to their structural features, lncRNAs are categorized
into different classes among them are intergenic, intronic and
natural antisense lncRNAs (14). In addition to their regulatory
roles on gene expression at transcriptional and post-
transcriptional levels, lncRNAs act as protein scaffolds to
regulate interactions between proteins (15). Expressions of a
number of lncRNAs are stimulated by DNA damage. These
transcripts contribute in DNA damage responses and
carcinogenic processes (13). Meanwhile, there is a reciprocal
interaction between miRNAs and a number of cell cycle
regulators in a way that miRNAs regulate expression of cell
cycle regulators, and expression of miRNA is regulated by cell-
cycle-dependent transcription factors (16). Such interactive
network is implicated in the pathogenesis of a number of
disorders particularly cancer. Most of miRNAs are first
transcribed from their encoding genes into primary miRNAs.
Then, they are changed to precursor miRNAs, and eventually
mature miRNAs. These steps are performed in both nucleus and
cytoplasm. Mechanistically, miRNAs interact with the 3′ UTR of
their target transcripts resulting in degradation their or
inhibition of their translation. Yet, miRNAs binding with the
5′ UTR, coding regions, and promoters, has also been
demonstrated (17). In the current review, we describe the role
of lncRNAs and miRNAs in the regulation of cell cycle and their
association with human malignancies.
LNCRNAS AND CELL CYCLE CONTROL

Numerous lncRNAs have been shown to regulate cell cycle
progression directly through modulation of expression of
CDKs/cyclins or indirectly through regulation of TFs that
control expression of CDKs/cyclins. For instance, the known
oncogenic lncRNA MALAT1 regulates cell cycle progression at
G1 phase since its knock down has resulted in cell cycle arrest at
this step and enhanced expression of cell cycle inhibitors p53,
p16, p21, and p27, while suppressing expression of cyclin A2 and
CDC25A (18). Moreover, this lncRNA has a crucial role in up-
regulation of expression of B-Myb, an oncogenic TF
participating in G2/M progression (18). Thus, MALAT1
regulates cell cycle progression in different phases through
modulation of expression of cell cycle regulators.

ANRIL is an lncRNA being transcribed from the INK4 locus
in an antisense direction to p15 (19). This lncRNA participates in
epigenetic suppression of expression of the INK4 locus through
recruitment of polycomb repression complex 2 (PRC2). Such
function specifically represses expression of p15 (20). Expression
of CDK inhibitors is also regulated by other lncRNAs including
lncRNA-HEIH. This up-regulated lncRNA in the hepatitis B
virus-associated hepatocellular carcinoma decreases expression
of p15, p16, p21, and p57, through cooperation with EZH2, thus
regulating cell cycle transition at G0/G1 (21).

HOTAIR has been shown to regulate expression of genes
which are principally associated with cell cycle progression (22).
HOTAIR silencing has led to cell cycle arrest at G0/G1 in
addition to modulation of expression of cell cycle-related
proteins (22). Experiment in esophageal squamous cell
Frontiers in Oncology | www.frontiersin.org 5
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carcinoma cells has also verified the impact of HOTAIR silencing
on suppression of cell proliferation and induction of G1 cell cycle
arrest. This lncRNA serves as a molecular sponge to suppress
miR-1 expression and subsequently increase expression of cyclin
D1 (23). In ovarian cancer cells, HOTAIR increases expression of
cyclin D1 and cyclin D2 through negatively regulating miR-206
expression (24).

A number of lncRNAs have been shown to regulate
expression of p53 thus affecting cell cycle regulation by this
TF. These lncRNAs include both oncogenic and tumor
suppressor ones. Examples from the former group include
PVT1 and ANRIL which enhance MDM2-associated
Frontiers in Oncology | www.frontiersin.org 6
degradation of p53 (25, 26). On the other hand, LOC572558
enhances expression of p53 through regulation of its
phosphorylation (27). Moreover, MEG3 RNA interacts with
the promoter region of p21 to increase p53 accumulation (28).
Meanwhile, p53 as a TF can alter expression of several lncRNAs.
For example, the lncRNA-p21 has been shown to be transcribed
from a genomic region adjacent to p21Cip1. This lncRNA is a
direct target of p53. LncRNA-p21 silencing has affected
expression of a number of p53-target genes with the exception
of p21 gene (29). Moreover, the lncRNA PANDA is transcribed
from a promoter region of p21 in response to DNA damage
through a p53-dependent route (30). Therefore, lncRNAs exert
TABLE 3 | Role of cell cycle-associated lncRNAs as prognostic markers.

Sample Number Kaplan-Meier Analysis Univariate/Multivariate Cox Regression Ref

60 pairs of PCa and ANTs Higher expression of NR2F2-AS1 was associated
with lower OS rate.

_
(37)

TCGA database Higher expression of PCAT6 was associated with
lower OS and DFS rates.

Higher expression of PCAT6 was associated with TNM stage.
(40)

105 pairs of HCC and ANTs Higher expression of FOXD2-AS1 was associated
with lower OS rate.

Higher expression of FOXD2-AS1 was associated with tumor number
and tumor size. (39)

20 pairs of HCC and ANTs Higher expression of HOXD-AS1 was associated
with lower OS rate.

Higher expression of HOXD-AS1 was associated with histologic grade.
(35)

77 ACC tissues and 30 normal _ HOTAIR was an independent
prognostic factor for DFS and OS of ACC patients. (42)

60 pairs of glioma and ANTs Higher expression of SNHG3 was associated with
lower OS rate.

High expression of SNHG3 is an independent prognostic factor for
glioma. Higher expression of SNHG3 was associated with KPS and
tumor grade.

(33)

48 pairs of OS and ANTs Lower expression of FLVCR-AS1 was associated
with lower OS rate.

Lower expression of FLVCR-AS1 was associated with distant
metastasis and size of tumor. (47)

30 pairs of OS and ANTs Higher expression of LINC01296 was associated
with lower OS rate.

_
(48)

48 pairs of breast cancer and ANTs Higher expression of RUSC1-AS1 was associated
with lower OS rate.

Higher expression of RUSC1-AS1 was associated with TNM stage,
tumor size, and lymphatic metastasis. (51)

42 pairs of PaC and ANTs Higher expression of TUG1 was associated with
lower OS rate.

Higher expression of TUG1 was associated with TNM stage, tumor
size, and lymphatic metastasis. (53)

30 pairs of OSCC and ANTs Higher expression of NEAT1 was associated with
lower OS rate.

Higher expression of NEAT1 was associated with TNM stage, lymph
node metastasis, and clinical stage. (54)

75 pairs of CRC and ANTs Higher expression of XIAP-AS1 was associated
with lower OS rate.

Higher expression of XIAP-AS1 was associated with TNM stage.
(53)

60 pairs of CRC and ANTs Higher expression of NR2F2-AS1 was associated
with lower OS rate.

Higher expression of NR2F2-AS1 was associated with TNM stage and
lymph node metastasis. (56)

63 pairs of CRC and ANTs Higher expression of NR2F2-AS1 was associated
with lower OS rate.

_

TCGA database Higher expression of STEAP3-AS1 was
associated with lower OS rate.

_
(59)

80 pairs of GC and ANTs _ Higher expression of CASC11 was associated with TNM stage and
lymph node metastasis. (63)

60 pairs of NSCLC and ANTs Higher expression of HNF1A-AS1 was associated
with lower OS rate.

Higher expression of HNF1A-AS1 was associated with TNM stage and
lymph node metastasis. (64)

Bone marrow blood samples from
80 AML patients and 24 healthy
controls

Higher expression of HOTTIP was associated
with lower OS rate.

_
(65)

60 pairs of LSCC and ANTs Higher expression of CDKN2B-AS1 was
associated with lower OS rate.

Higher expression of CDKN2B-AS1 was associated with advanced
clinical stage and lymph node metastasis. (66)

72 pairs of CC and ANTs Higher expression of NEAT1 was associated with
lower OS rate.

Higher expression of NEAT1 was associated with TNM stage and
lymph node metastasis. (69)

102 pairs of CC and ANTs Higher expression of NEAT1 was associated with
lower OS and PFS rates.

Higher expression of NEAT1 was associated with TNM stage, tumor
size, and lymph node metastasis. (70)

11 pairs of PA and ANTs Higher expression of SNHG8 was associated with
lower OS rate.

Higher expression of SNHG8 was associated with tumor differentiation
and clinical stage. (72)

67 pairs of breast cancer and ANTs Higher expression of LINP1 was associated with
lower OS and DSF rates.

_
(72)
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functional roles both at upstream and downstream of cell cycle-
associated TFs such as p53.

The lncRNA EMS has been identified as a direct target of c-
Myc. This lncRNA acts as an oncogenic transcript that facilitates
G1/S transition. Functional studies have shown interaction
between EMS and the RNA binding protein RALY to increase
the stability of E2F1 transcript and enhance its expression (31).
The oncogenic lncRNA MIR31HG has been shown to promote
cell proliferation, facilitate cell cycle progression, and suppress
cell apoptosis. This lncRNA modulates cell cycle transition
Frontiers in Oncology | www.frontiersin.org 7
through regulation of HIF1A and p21 expressions (32). In
addition, SHNG3 is another dysregulated lncRNA in diverse
cancers. This lncRNA has higher expression in glioma tissues
and cell lines compared with normal counterparts. Forced over-
expression of SNHG3 has increased proliferation, quickened cell
cycle progression, and suppressed cell apoptosis via silencing
KLF2 and p21 through recruitment of EZH2 to their promoter
(33). FOXD2-AS1 is another oncogenic lncRNA whose knock
down results in cell cycle arrest in the G0/G1 stage, inhibition of
colony development, cell proliferation, and suppression of tumor
FIGURE 2 | A schematic diagram of the regulation of mitochondrial apoptosis, Wnt/b-catenin, JAK-STAT, and PI3K/AKT signaling pathways via different miRNAs in
various human cancers. Ectopic expression of some miRNAs including miR-345-5p, miR-561, miR-302b, miR-362-3p, and miR-34a could impede the mitochondrial
apoptotic pathway via targeting caspase 3 and 9, Bcl-2, Bax, and Bim which can play an effective role in cell death suppression in variety of tumor cells (94, 95).
Besides, miR-214, miR-320, miR-188, miR-374a, and miR-574-5p could activate the Wnt/b-catenin pathway in tumor cells through modulating GSK-3b, FOXM1,
CCND1, and C-myc, and thereby promoting cell differentiation and proliferation as well as enhancing EMT and cell migration and invasion in different human cancers
(96, 97). Additionally, miR-340, and miR-574-5p could regulate the JAK-STAT signaling pathway via targeting STAT3, SOCS3, and Survivin which have a significant
role in regulating tumor cell growth and metastasis in various tumor cells (98, 99). In addition, aberrant expression of miR-214, miR-106b-5p, and miR-561 could
negatively modulate PTEN and PIP3 in PI3K/AKT signaling pathway in different human cancers such as ovarian cancer, melanoma, and NSCLC cells (96, 100, 101).
November 2020 | Volume 10 | Article 608975
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TABLE 4 | Function of miRNAs in cell cycle transition (ANTs, Adjacent normal tissues).

Function Ref

17 could promote G1/S cell cycle transition, cell
ulate chemosensitivity. (102)
could decrease cell proliferation, induce cell
nhance cell apoptosis. (103)
3A could repress proliferation, meanwhile by
lerate cell cycle at G1 phase. (104)
roliferation and regulate cell cycle at G2/M

(104)
could inhibit cellular growth, suppress cellular
ce cell cycle arrest at G1 phase. (105)
ne expression could induce cell cycle arrest and

(106)
, MDM2, and TFDP1 could provoke G1 arrest,
cell proliferation, migration and invasion, as (107)

by targeting MDM2 could induce G1 arrest in
(108)

NE2 could inhibit proliferation and enhance G1/
(109)

1 could inhibit cell proliferation and promote
(110)

E could promote cell proliferation G1/S
(111)

2F8 could inhibit proliferation and enhance G0/
(111)

could inhibit proliferation and promote G0/G1
(112)

uld inhibit glioblastoma cell proliferation and cell
(113)

1 could inhibit glioma cell proliferation and
(113)

1 could inhibit human glioma cell proliferation
(114)

D1 could inhibit cell proliferation and cell cycle
(107)

ld inhibit glioma cells proliferation and G0/G1
(115)

ld inhibit glioma cell proliferation and cell cycle
ptosis via suppressing Wnt/b-catenin signaling. (111)
DNMT3A could inhibit cell proliferation and

a. (110)
could inhibit proliferation and G1/S transition.

(110)
could inhibit proliferation and enhance G1

(116)
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Cancer type microRNA Species and number of samples Targets/Regulators/Signaling
pathways

Hepatocellular
Carcinoma (HCC)

miR-23a-3p mouse/human; 30 pairs of HCC and ANTs PCDH17 MiR-23a-3p by targeting PCDH
growth, and metastasis and reg

HCC miR−214−3p 98 pairs of HCC and ANTs MELK MiR-214-3p by targeting MELK
cycle arrest at G1 phase, and e

HCC miR-30b-5p 90 pairs of HCC and ANTs DNMT3A, USP37, CCND1 MiR-30b-5p by targeting DNMT
suppressing USP37 could dece

HCC miR-3613-3p GEO database BIRC5, CDK1, NUF2, ZWINT,
SPC24

MiR-3613-3p could affect cell p
phase.

Colon Cancer miR-195-5p 42 pairs of colon cancer and ANTs CDK8 MiR-195-5p by targeting CDK8
migration and invasion, and ind

Colon Cancer miR-6734 _ p21 MiR-6734 by increasing p21 ge
apoptosis in colon cancer cells

Colorectal Cancer
(CRC)

miR-4711-5p mouse KLF5, MDM2, TFDP1 MiR-4711-5p by targeting KLF
induce apoptosis, and suppres
well as stemness.

CRC miR-193a-5p/-146
a-5p

_ MDM2, p53 MiR-193a-5p and miR-146 a-5
CRC cells via p53.

CRC miR‐744 mouse/human; 64 pairs of CRC and ANTs/
TCGA dataset

RFC2, CCNE2 MiR‐744 by targeting RFC2/CC
S arrest.

CRC miR-133a-3p 20 pairs of CRC an ANTs SENP1 MiR-133a-3p by targeting SNE
G1/S arrest.

CRC miR−598 8 CRC and ANTs INPP5E, CCND1, p27 MiR−598 by suppressing INPP
transition.

CRC miR-1258 mouse/human; 60 pairs of CRC and ANTs E2F8, CCND1, p21, p27, CDK2 MiR-1258 by directly targeting
G1 arrest.

Medulloblastoma miR-221-3p _ EIF5A2, CDK4, CCND1, Bcl-2,
Bad

MiR-221-3p by targeting EIF5A
arrest and apoptosis.

Glioblastoma
multiforme (GBM)

miR-1179 mouse/human; 89 GBM tissues and 10
normal brain tissues/CGGA database

E2F5, CDK2, CDK6 MiR-1179 by targeting E2F5 co
induce G0/G1 arrest.

glioma miR-1468-5p mouse/CGGA database RRM1, AKT/ERK MiR-1468-5p by targeting RRM
induce G1/S arrest.

glioma miR-520d-5p mouse/human; 31 glioma tissues and 8
normal brain tissues/CGGA and TCGA
databases

PTTG1 MiR-520d-5p by targeting PTT
and induce G0/G1 arrest.

glioma miR-519d-3p 20 pairs of glioma and ANTs CCND1 MiR-519d-3p by targeting CCN
G1/S transition.

glioma miR-940 mouse/human; 14 low grade glioma tissues,
18 GBMs and 7 non-cancerous brain tissues/
CGGA database

CKS1, CDC2, CDK2, CyclinE1 MiR-940 by targeting CKS1cou
phase transition.

glioma miR−770 63 pairs of glioma and ANTs CDK8, Wnt/b-catenin MiR-770 by targeting CDK8 co
G1/S transition and induce apo

glioma miR-129-5p 17 glioma tissues and 9 normal brain tissues DNMT3A, Cyclin A2, CDK2 MiR-129-5p by directly targetin
induce G1 phase arrest in gliom

glioma miR-188 81 glioma tissues and 26 normal brain tissues c-Myc, Cyclin D1, b-catenin MiR-188 by targeting b-catenin

Gastric Cancer (GC) miR-383 60 pairs of GC and ANTs CCNE2 MiR-383 by targeting Cyclin E2
arrest and apoptosis.
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TABLE 4 | Continued

Function Ref

10/Cyclin D1could suppress GC cell
ell cycle transition. (117)
uld enhance cell proliferation, G1/S transition,
ells via JAK-STAT signaling pathway.

(99)

cancer cell cycle progression at G1 phase
xis in a feedback loop. (114)
could induce cell cycle arrest and apoptosis in

K signaling pathway. (118)
p27 and PPP2R2A could promote the
er via the G1/S cell cycle pathway. (119)
uld enhance PDAC proliferation by
on via disruption of RBL2/E2F4-repressing (120)

ould inhibit proliferation, invasion, and G1/S
EMT. (121)

could attenuate proliferation, and confer G0/G1
via suppressing EMT. (122)

could suppress cell proliferation, induce G1/S
N/AKT signaling. (100)

uld induces cell growth inhibition, G0/G1 phase
(123)

could repress cell proliferation, G1 phase
(123)

ld induce cell cycle arrest in the G1/S phase.
(124)

N1A could promote cell proliferation and G0/
(117)

1 and CDC34 could inhibit proliferation and G1/
(125)

E, cyclin D, CDK could mediate G1 phase, and
ncer progression. (126)
uld decrease proliferation, adhesion, cell cycle
poptosis.

(94)

lular cycle arrest, thus leading to apoptosis of
(127)

could impede the proliferation of human
ell-cycle arrest and early apoptosis. (128)
promote cell proliferation and G1/S transition.

(129)
A and PIK3CB could inhibit proliferation and
arrest in G0/G1 phase. (122)
clin E1could induce G1/S phase arrest.

(130)
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Cancer type microRNA Species and number of samples Targets/Regulators/Signaling
pathways

GC miR-129-5p mouse/human; 60 pairs of GC and ANTs/
TCGA dataset

HOXC10, Cyclin D1 MiR-129-5p by targeting HOXC
proliferation and facilitate G1/S

GC miR-340 42 pairs of GC and ANTs SOCS3, p-STAT3, Survivin,
JAK-STAT

MiR-340 by targeting SOCS3 c
and attenuate apoptosis in GC

GC miR-218 mouse/126 pairs of GC and ANTs CDK6, CyclinD1, E2F1, SLIT2,
SLIT3

MiR-218 could suppress gastric
through CDK6/Cyclin D1/E2F1

Pancreatic Cancer
(PC)

miR-144-3p 40 pairs of PC and ANTs PRR11, p-JNK, p-p38, p-ERK,
CyclinD1, Cdc25A, p21 MAPK

MiR-144-3p by targeting PRR1
pancreatic cancer cells via MAP

Pancreatic Ductal
Carcinoma

miR-590-3p 60 pairs of pancreatic ductal carcinoma and
ANTs

PPP2R2A, MiR-590-3p by directly inhibitin
development of pancreatic canc

Pancreatic
Adenocarcinoma
(PDAC)

miR-17-5p mouse/human; 26 pairs of PDAC and ANTs RBL2, E2F4 MiR-17-5p by targeting RBL2 c
accelerating G1/S phase transit
complexes.

Lung Cancer miR‐377‐5p 30 pairs of lung cancer and ANTs AKT1, CCND1, fibronectin,
vimentin, Foxo1, p27kip1,
p21Cip1, E‐cadherin

MiR‐377‐5p by targeting AKT1
phase transition via suppressing

Lung Adenocarcinoma
(LUAD)

miR-486-5p mouse/human; 76 pairs of LUAD and ANTs/
GEO and TCGA databases

NEK2 E-cadherin, N-
cadherin, vimentin, MMP-2,
MMP-9

MiR-486-5p by targeting NEK2
arrest and also inhibit metastas

Non-Small Cell Lung
Cancer (NSCLC)

miR-561 68 pairs of NSCLC and ANTs P-REX2a, PTEN, Cyclin D1,
CDK2, Bcl-2, Bax, caspase 9/3,
AKT

MiR-561 by targeting P-REX2a
arrest and apoptosis via the PT

NSCLC miR-7-5p 85 pairs of NSCLC and ANTs PAK2 MiR-7-5p by targeting PAK2 co
arrest, and apoptosis.

NSCLC miR‐34b‐3p 100 pairs of NSCLC and ANTs/GEO database CDK4 MiR‐34b‐3p by targeting CDK4
transition, and cell apoptosis.

NSCLC miR-613 mouse/human; 56 pairs of NSCLC and ANTs CDK4 MiR-613 by targeting CDK4 co

Osteosarcoma (OS) miR−106b−5p 18 pairs of OS and ANTs CDKN1A, p21 MiR−106b−5p by targeting CD
G1 transition in OS.

OS miR-671-5p mouse/human; 20 pairs of OS and ANTs CCND1, CDC34 MiR-671-5p by targeting CCND
S transition.

OS miR-299-5p _ Cyclin D, Cyclin E, CDK, P16,
P21

MiR-299-5p via targeting cyclin
promote cell proliferation and c

OS miR-34a _ DUSP1, Bax, Bcl-2, CCNE,
CCND1, E-cadheri, b-
catenin

MiR-34a by targeting DUSP1 c
arrest in G0/G1 phase and cell

OS miR-22 _ _ MiR-22 could induce G0/G1 ce
OS cells.

cervical cancer (CC) miR-140-3p mouse/human; 44 pairs of CC and ANTs/
TCGA database

RRM2, Cyclin A, Cyclin B1,
Cyclin D1, PI3K

MiR-140-3p by targeting RRM2
cervical cancer cells to induce c

CC miR-92a 74 pairs of CC and ANTs p21 MiR-92a by inhibiting p21 could

Epithelial Ovarian
Cancer (EOC)

miR-337-3p mouse/human; 105 pairs of EOC and ANTs PIK3CA, PIK3CB, PI3K/Akt
pathway

MiR-337-3p by targeting PIK3C
induce apoptosis and cell cycle

ovarian cancer (OC) miR-107 mouse CCNE1 MiR-107 by directly targeting cy
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TABLE 4 | Continued

Function Ref

ld promote cell proliferation and G1/S arrest
kt signaling pathway.

(96)

uld enhance G1 arrest and inhibit EMT
O3 signaling. (122)
ression could enhance cell proliferation,
diminish apoptosis. (131)
CDC25A could suppress breast cancer
. (132)
could inhibit cell proliferation and promote G0/

(133)
ld suppress breast cancer cell proliferation,
apoptosis via regulating ERK/MAPK pathway. (134)
/CCND1 could restrict prostate cancer growth

(135)
lating EZH2 could block the G1/S transition by

(136)
ld regulate cancer cell proliferation and G1/S

(137)
ould induce G0/G1 arrest, cell differentiation,

(138)
ould decrease proliferation and enhance G0/

(135)

d CCND3 could suppress tumor growth by
rest. (139)
, SHC1, and CDK2 could induce apoptosis
e in cancer cells. (140)
C growth, induce G0/G1 arrest and promote
d p53 signaling pathways. (141)

could promote proliferation and inhibit G1
(142)

XB7 could inhibit proliferation, invasion,
hase, and apoptosis of OSCC cells. (143)
CH2 could inhibit the viability, proliferation,
phase, and promote apoptosis of NPC cells (141)

CND1, CCND2, CDK2, and CCNE2 could
nicity via retarding G1/S phase transition in (144)

2 could suppress cell proliferation and induce
(145)

could promote G1/S arrest, migration and
aling. (146)
TR3A could suppress cell proliferation and
rrest. (147)
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Cancer type microRNA Species and number of samples Targets/Regulators/Signaling
pathways

OC miR−214 124 pairs of OC and ANTs PTEN, PIP3, GSK−3b, PI3K/Akt
pathway

MiR−214 by targeting PTEN co
and inhibit apoptosis via PI3K/A

Renal Cell Carcinoma
(RCC)

miR-362-3p mouse/human; 25 pairs of RCC and ANTs SP1, FOXO3, p-RB, CCND1,
Snail, AKT

MiR-362-3p by targeting SP1 c
Progression in RCC via Akt/FOX

clear cell Renal Cell
Carcinoma (ccRCC)

miR-181a 42 pairs of ccRCC and ANTs KLF6 MiR-181a by targeting KLF6 ex
accelerate G1/S transition, and

Breast Cancer (BC) miR‐99a‐5p mouse/human; 84 pairs of BC and ANTs CDC25A, marker ki67, Cyclin
D1, p21

MiR‐99a‐5p by downregulating
progression and G1/S transition

BC miR-1301-3p 60 pairs of BC and ANTs ICT1, Bad, Bax, Bcl-2, CDK4,
CCND1

MiR-1301-3p by targeting ICT1
G1 arrest and apoptosis.

BC miR-543 _ ERK2, RSK2, MSK1, ERK/
MAPK

MiR-543 by targeting ERK2 cou
block cell cycle, and induce cel

Prostate Cancer (PCa) miR-501-3p 22 pairs of PCa and ANTs CREPT, CCND1 MiR-501-3p by targeting CREP
and increase G0/G1 arrest.

PCa miR−26a, miR−138 _ EZH2, CCNE2, CCND1,
CCND3, CDK6

MiR−26a and miR−138 by regu
targeting the cell cycle network

Acute Lymphoblastic
Leukemia (ALL)

miR-144 mouse/human; 59 ALL PB samples and 47
normal control samples

FMN2 MiR-144 by targeting FMN2 co
transition.

Acute Myeloid
Leukemia (AML)

miR−192 mouse/human; 10 AML BM tissues CCNT2, p16, p21, p27 MiR−192 by targeting CCNT2 c
and apoptosis.

AML miR‐345‐5p 29 AML PB samples, and 29 healthy PB
samples

AKT2, CCND1, CDK4, CDK6,
Rb, Bax, Bcl-2, PARP,
caspase3, PI3K/Akt

MiR‐345‐5p by targeting AKT2
G1 arrest and apoptosis.

_ miR-4779 mouse/human; 10 pairs of colon cancer and
ANTs

PAK2, CCND3 MiR-4779 by targeting PAK2 an
inducing apoptosis and G1/S a

_ miR-5582-5p mouse GAB1, SHC1, CDK2 MiR-5582-5p by targeting GAB
and cell cycle arrest at G1 phas

Head and Neck
Squamous Cell
Carcinoma (HNSCC)

miR-34a 39 pairs of HNCC and ANTs FUT1, AXL, MAP2K1, AREG,
p53, MAPK, ErbB

MiR-34a could suppress HNSC
senescence via MAPK, ErbB, a

Oral Squamous Cell
Carcinoma (OSCC)

miR-155 46 OSCC tissues and 25 normal control p27Kip1 MiR-155 by regulating p27Kip1
arrest and apoptosis.

OSCC miR-376c-3p 49 pairs of OSCC and ANTs HOXB7 MiR-376c-3p by suppressing H
migration, cell cycle at G0/G1 p

Nasopharyngeal
Carcinoma (NPC)

miR-130a-3p mouse/human; 56 NPC tissues and 45 normal
nasopharyngeal tissues

BACH2, E-cadherin,
Vimentin, N-cadherin

MiR-130a-3p by suppressing B
invasion, and cell cycle in G0/G
via regulating EMT pathway.

NPC miR−150 mouse/human; 8 NPC and ANTs CCND1, CCND2, CDK2,
CCNE2

MiR−150 by directly targeting C
inhibit proliferation and tumorige
NPC.

Esophageal
Squamous Cell
Carcinoma

miR-219-5p 20 pairs of ESCC and ANTs CCNA2 MiR-219-5p by targeting CCNA
G2/M arrest.

Esophageal
Carcinoma (EC)

miR-29c-3p 30 pairs of EC and ANTs CCNA2, p53 MiR-29c-3p by targeting CCNA
invasion in EC cells via p53 sign

Papillary Thyroid
Cancer

miR-1256 49 pairs of PTC and ANTs HTR3A MiR-1256 by directly targeting H
induce cell cycle G0/G1 phase
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growth in the xenograft model. FOXD2-AS1 and reduced
expression of CDKN1B through recruitment of EZH2 to its
promoter region (34). ROR1-AS1 in an up-regulated lncRNA in
colon cancer tissues, particularly in stage III and IV and more
massive tumors. Forced over-expression of ROR1-AS1 has
increased cell proliferation, reduced the G0/G1 phase time of
cell cycle, and inhibited apoptosis. This lncRNA can bind to
EZH2 and suppress expression of DUSP5 (35).

Figure 1 shows the molecular mechanism of involvement of a
number of lncRNAs in cell cycle regulation. These lncRNAs
recruit EZH2 to the promoter regions of their target genes.

Table 1 shows the results of studies which assessed the role of
lncRNAs in cell cycle control.

The interaction between lncRNAs and cell cycle-related
proteins can alter response of cancer cells to chemotherapeutic
agents. For instance TUG1 has a role in induction of
chemoresistance in small cell lung cancer cells through
regulation of LIMK2b expression. Knockdown of TUG1 has
resulted in the accumulation of cells at G1-phase (67). NNT-AS1
via MAPK/Slug pathway could be involved in cisplatin
chemoresistance in non-small cell lung cancer (68). Table 2
summarizes the results of studies which assessed the role of
lncRNAs in this regard.

The importance of cell cycle-associated lncRNAs as
diagnostic/prognostic markers have been assessed in several
studies. Higher expression of NR2F2-AS1, PCAT6, FOXD-
AS1, SNHG3, FLVCR-AS1, and some other lncRNAs has been
associated with lower OS rate. Table 3 summarizes the results of
these studies.

miRNAs and Cell Cycle Control
These small transcripts participate in the regulation of cell cycle
control via modulation of checkpoints and DNA repair
mechanisms (16, 74). Moreover, they regulate expression of
cyclins, CDKs, cyclin-dependent kinase inhibitors, and TF-
associated proteins such as Rb (16). For instance, the miR-15a-
16-1 cluster has been shown to induce cell cycle arrest at the G1
through suppressing expression of CDK1, CDK2, and CDK6 as
well as D1, D3, and E1 cyclins (75–77). miR-188 suppress cell
cycle transition at G1/S through inhibition of expression of
cyclins D1, D3, E1, and A2 as well as CDK4 and CDK2. This
miRNA also reduces Rb phosphorylation and decreases E2F
transcriptional activity (78). miR‑424 has been shown to regulate
cell cycle progression in the G2/M phase through inhibition of
expression of CDK1 probably via the Hippo and the extracellular
signal‑regulated kinase pathways (79). Moreover, regulation of
CDK5 by miRNA-26a has been shown to control cell
proliferation, apoptosis and tumor growth in an animal model
of diffuse large B-cell lymphoma (80). Expression of CDK5 is also
regulated by the tumor suppressor miRNA-505-5p in cervical
cancer cells (81). Notably, this CDK has a distinct feature from
other CDKs which is that it is not activated via interaction with
cyclins. Instead, it is activated through binding with p35 and p39,
or their cleaved proteins namely p25 and p29 (82).

Expression of cell cycle-related TFs is also regulated by
miRNAs. For example, miR-17-92 cluster, miR-17-5p, miR-
20a, miR-149*, miR-330, and miR-331-3p have been shown to
T
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TABLE 5 | Role of cell cycle regulating miRNAs in conferring resistance to chemotherapeutic agents.

Function Ref

otherapeutic agents by targeting MDR related genes
inhibit HCC cell growth via inducing G2/M arrest. (155)
EZH2 could inhibit HCC progression, induce cell
hase and increase drug-induced apoptosis. (156)
y targeting TYMS could influence 5-Fluorouracil
ce cell proliferation and promote G0/G1 arrest in CRC (152)

g CHK1, and WEE1could promote acquisition of drug
nd accelerate G2/M transition in colon cancer cells. (157)
g FOXM1 could enhance the sensitivity of human
5-Fu and Oxaliplatin and induce cell cycle arrest at (151)

ng CCND1could retard G1/S transition and suppress
sis, and sensitize NPC cells to cisplatin via PI3K/Akt (144)

g CCND1 could inhibit cell cycle progression at G1/S
NPC cells to chemotherapy. (158)
g ANK2 could ameliorate drug resistance and
otes cell cycle arrest at the G0/G1 phase in GC (159)

ZH2 could trigger G2/M cell cycle arrest, enhance
and inhibit migration and invasion of human gastric (160)

ote cell cycle arrest at G2 and cell death in the
el in mesothelioma. (161)
targeting mTOR and PLK1 could increase cisplatin
ll proliferation, induce conversion from G1 to S phase,
sis.

(140)

eting CCND2 could inhibit cell propagation, migration,
oost apoptosis, chemosensitivity, and G0/G1 arrest in
ce pancreatic carcinoma cells.

(162)

of miR-21/-221 could arrest cell cycle at G1 phase
is, and sensitize the effects of Gemcitabine in
rcinoma.

(163)

upregulate miR-26a and miR-30b in BC. MiR-26a and
g CCNE2 could induce cell growth suppression and (164)

ting E2F1/ATM axis could enhance breast cancer cell
n and promote G1/S arrest in BC cells. (165)
a by targeting Wee1 and Chk1 could retard G2/M
ing Cyclin E could induce G1/S arrest in response to
notoxic stress.

(166)

eting IGF1R could confer cisplatin resistance and
est at G2/M phase by regulating Akt activity and (162)

(Continued)
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Cancer type microRNA Human/Animal Targets/Regulators Involved
pathways

HCC miR-122 _ MDR1, Bcl-w, CCNG1, Cyclin
B1

_ MiR-122 with chem
and Cyclin B1 coul

HCC miR-101 mouse/human; 93 pairs of HCC and
ANTs

EZH2 _ MiR-10 by targeting
cycle arrest at G1 p

CRC miR-192/miR-215 _ TYMS, p53, p27, p21, CDK6,
CDK2, CCND1, CCNE,

_ MiR-192/miR-215 b
resistance and redu
cells.

colon cancer miR-195 _ CHK1, WEE1, CCNB1, GFP _ MiR-195 by targetin
resistance to 5-FU

colon cancer miR-320 50 pairs of colon cancer and ANTs FOXM1, Cyclin D1, c-MYC Wnt/b-catenin MiR-320 by targetin
colon cancer cell to
G0/G1 phase.

NPC miR-374a mouse/human; 70 fresh NPC tissues,
20 fresh nasopharynx tissues and 149
paraffin-embedded NPC tissues

CCND1, c-MYC, c-JUN,
PDCD4, E-cadherin, N-
cadherin, Snail, E2F1, Rb

PI3K/Akt,
b-catenin

MiR-374a by target
cell growth, metast
signaling pathway.

NPC miR-16 mouse/human; 63 fresh NPC and 15
NP tissues

CDK4, c-Myc, E2F1 _ MiR-16a by targetin
phase and sensitize

GC miR-647 16 pairs of GC and ANTs ANK2, FAK, MMP2, MMP12,
CD44, SNAIL1

_ MiR−647 by targeti
metastasis and pro
cells.

GC miR-31 _ ZH2, E-cadherin, N-cadherin,
vimentin

_ MiR-31 by targeting
the chemosensitivit
cancer cells.

Malignant
Mesothelioma (MM)

miR-34a _ _ _ MiR-34a could prom
presence of doceta

Epithelial Ovarian
Cancer (EOC)

miR-100 mouse PLK1 mTOR MiR-100 by directly
sensitivity, inhibit ce
and promote apopt

PC miR-373-3p GEO database CCND2, GADD45A, CDC6,
CCNB1, p21, p53

_ MiR-373-3p by targ
and invasion, and b
gemcitabine resista

Pancreatic
Adenocarcinoma

miR-21/-221 _ PTEN, RECK, p27kip1 _ Antisense inhibition
and induce apopto
pancreatic adenoca

BC miR-26a, miR-
30b

_ CCNE2 _ Trastuzumab could
miR-30b by targetin
G1 arrest.

BC miR-302b _ E2F1, ATM, PARP, Caspase
3

_ MiR-302b by regula
sensitivity to cisplat

_ miR-16, miR-26a public databases Wee1, Chk1, Cyclin E _ MiR-16 and miR-26
arrest and by targe
p53 activation by g

melanoma miR-30a-5p _ IGF1R, p53 Akt MiR-30a-5p by targ
induce cell cycle ar
protein level of p53
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suppress expression of E2F1, thus inducing cell cycle arrest in
different tissues (83–86). On the other hand, miR-106a, miR-290,
and miR-17-92 have been shown to target pRB or other proteins
from this family (87–90).

A number of miRNAs such as miR-504 and miR-1285
regulate expression of p53 (91). Meanwhile, p53 has been
shown to alter expression of several miRNAs such as miR-34a/
b/c (92, 93). Thus, several miRNAs are implicated in the
regulation of cell cycle progression through p53-mediated
pathways. Figure 2 illustrates the role of a number of miRNAs
in the cell cycle control.

Table 4 summarizes the function of miRNAs in cell
cycle control.

The interaction between miRNAs and cell cycle controlling
proteins has impl icat ions in defining response to
chemotherapeutic agents. For instance miR-192/miR-215 and
miR-320 could affect response of cancer cells to 5-Fluorouracil
resistance (151, 152). In addition, miR-100 could increase
cisplatin sensitivity, inhibit cell proliferation, induce conversion
from G1 to S phase and promote apoptosis through directly
targeting mTOR and PLK1 (140). miR-374a is another miRNA
which alters chemoresistance phenotype in nasopharyngeal
carcinoma. In this type of cancer, miR-374a decreases
proliferation, migratory aptitude, invasiveness, metastatic
ability, and resistance to cisplatin. Functionally, miR-374a
decreases expression of CCND1 to attenuate activity of the
pPI3K/pAKT/c-JUN axis through making a negative-feedback
circle. This miRNA also inhibits downstream signals associated
with cell cycle transition (144). miR-9600 has been demonstrated
to attenuate tumorigenesis and metastatic potential of lung
cancer cells via inhibiting expression of STAT3. Besides, miR-
9600 improved response of cancer cells to paclitaxel and cisplatin
through this axis and enhancement of chemotherapy-associated
apoptosis (153). Besides, miR-106b-5p has a crucial impact in
modulation of cisplatin resistance in lung cancer through
inhibiting expression of PKD2 (154). Table 5 summarizes the
data regarding the role of miRNAs in conferring resistance to
chemotherapeutic agents.

Cell cycle-regulating miRNAs can be used as prognostic
markers in cancer. Low expression of several miRNAs such as
miR-129-5p, miR-29c-3p, miR-140-3p, miR-7-5p, miR-940,
miR-107, miR-671-5p, and iR-299-5p has been associated with
shorter survival rate of patients with certain types of cancers.
Table 6 summarizes the results of studies which assessed this
aspect of miRNAs.
DISCUSSION

Several lncRNAs and miRNAs have been shown to regulate cell
cycle at different stages thus influencing the proliferation rate.
Abnormal function of these transcripts might lead to the
development of human cancers. Cell cycle is regulated by
several lncRNAs through epigenetic modulation of gene
expression regulation of transcription factors modulation of
translation mRNA stability, and enhancement of protein-
protein interactions (15). Recruitment of EZH2 to the
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promoter region of target genes is a common mechanism of
action of some of these lncRNAs. Dysregulation of cell cycle-
related lncRNAs is regarded as a hallmark of cancer. A number
of these lncRNAs also contribute in controlling the proliferation
rate of normal differentiated cells or during organogenesis,
therefore being important in the context of regenerative
medicine and in cell senescence studies. For instance, Malat1
controls differentiation of myogenic cells and muscle
regeneration (168). In addition, H19 regulates myoblast
differentiation and muscle regeneration (169). However, most
of the cell-cycle regulatory roles of lncRNAs have been assessed
in the context of cancer.

miRNAs also exert functional roles in the regulation of cell
cycle. A comprehensive genome-wide screen of cell cycle-
associated miRNAs has led to identification of a distinctive
group of miRNAs that target almost all cyclins/CDKs. These
miRNAs are extremely potent in impeding cancer cell
proliferation (170). Systemic administration of a number of
these miRNAs using nanoparticle delivery methods has
repressed tumor progression in a number of xenograft
models indicating the role of these miRNAs in the treatment
of cancer (170). The prominent role of cell cycle-regulatory
miRNAs in the pathogenesis of cancer has been further
highlighted by the observed dysregulation of these transcripts
in the cancer stem cells (CSCs) (171). These miRNAs have been
shown to target several genes that regulate cell cycle
progression among them are PTEN (172), JAK1, SOX4,
STAT3, AKT, EZH1, HMGA2 (173), CDK4/6, NOTCH1 (174),
and ZEB1/2 (175). Therefore, cell-cycle regulatory miRNAs
represent important targets for intervention with the invasive
and metastatic properties of cancer cells which are associated
with CSC phenotypes. Furthermore, identification of miRNAs
with distinctive functions in CSCs and normal stem cells would
facilitate design of specific targeted therapies for cancer patients
Frontiers in Oncology | www.frontiersin.org 14
with fewer side effects in normal tissues. This research avenue
needs to be explored in future studies.

As lncRNAs have important roles in the regulation of activity
of miRNAs through serving as molecular sponges for these small
transcripts, identification of this type of interactions between cell
cycle-related lncRNAs and miRNAs would pave the way for
better recognition of the molecular mechanism of cell cycle
progression. Several lncRNAs act as competing endogenous
RNAs for miRNAs, thus regulating expression of cell cycle-
associated miRNAs. Examples include (but not limited to):
loc285194/miR-211 (176), HOTAIR/miR-1 (23), HOTAIR/
miR-206 (24), and ANRIL/miR-384 (177). In addition to this
kind of interaction between lncRNAs and miRNAs, some
lncRNAs serve as precursors for miRNAs. Such situation exists
between H19 and miR-675 (178). While E2F1 enhances
expression of H19 lncRNA (179), miR-675 suppresses pRB
expression (180). In turn, pRB inhibits E2F-associated
transcription of H19 constructing a self-regulated network
between H19 and pRB (13). These examples obviously show
the complex network between lncRNAs, miRNAs, and TFs.

Expression of cell cycle-associated non-coding RNAs directly
influences the survival of patients with diverse cancer types. This
speculation is based on the obtained data from both high and low
throughput studies. An example of former type of studies is a study
which assessed RNA seq data of a large cohort of patients with
colorectal cancer. Authors have reported several differentially
expressed cell cycle genes and miRNAs which regulate expression
of these genes. Subsequently, they verified correlations between
expression levels of these genes/miRNAs and patients’ survival
(181). Moreover, these non-coding RNAs can contribute in the
construction of diagnostic panels for diverse types of cancers.

Taken together, cell cycle-associated lncRNAs/miRNAs are
potential therapeutic targets for management of cancer and
possible biomarkers for prediction of cancer course. However,
TABLE 6 | The role of cell cycle controlling miRNAs as diagnostic/prognostic markers in cancer.

Sample number Kaplan-Meier analysis Multivariate cox regression Ref

TCGA dataset of GC patients Low expression of miR-129-5p was associated with shorter OS rate. _ (117)
30 EC patients Low expression of miR-29c-3p was associated with shorter OS rate. _ (146)
CC patients from TCGA database Low expression of miR-140-3p was associated with shorter OS rate. _ (128)
85 NSCLC patients Low expression of miR-7-5p was associated with shorter OS rate. Low expression of miR-7-5p was

correlated with advanced TNM stage.
(123)

glioma patients from CGGA
database

Low expression of miR-940 was associated with shorter OS rate. _ (115)

OC patients from TCGA database Low expression of miR-107 was associated with shorter OS rate. _ (130)
20 OS patients Low expression of miR-671-5p was associated with shorter OS rate. _ (125)
OS patients from GEO database High expression of miR-299-5p was associated with shorter OS rate. _ (126)
26 PDAC patients High expression of miR-17-5p was associated with shorter OS rate. _ (120)
glioma patients from CGGA
database

Low expression of miR-1468-5p was associated with shorter OS rate. _ (113)

GBM patients from CGGA database Low expression of miR-1179 was associated with shorter OS rate. _ (113)
GC patients from databases Low expression of miR-218 was associated with shorter OS rate. _ (114)
98 HCC patients Low expression of miR-214-3p was associated with shorter OS and RFS

rates.
_ (103)

90 HCC patients Low expression of miR-30b-5p was associated with shorter OS rate. _ (104)
124 NSCLC patients Low expression of miR-9600 was associated with shorter OS rate. Expression of miR-9600 was correlated

with advanced TNM stages and lymph
node involvement.

(153)
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lack of specificity in the regulatory roles of some of these
transcripts limits their application in the clinical settings.
Future studies should focus on identification of the network
between these two kinds of transcripts and TFs using high
throughput techniques. The results of these studies would
fulfill the prerequisite step for design of targeted therapies.
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