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Abstract: Genome-wide association studies unveiled the associations between the single nucleotide
polymorphism rs16969968 of CHRNA5, encoding the nicotinic acetylcholine receptor alpha5 subunit
(α5SNP), and nicotine addiction, cancer, and COPD independently. Here, we investigated α5SNP-
induced epithelial remodeling and inflammatory response in human COPD airways. We included
26 α5SNP COPD patients and 18 wild-type α5 COPD patients in a multi-modal study. A comparative
histologic analysis was performed on formalin-fixed paraffin-embedded lung tissues. Isolated
airway epithelial cells from bronchial brushings were cultivated in the air-liquid interface. Broncho-
alveolar fluids were collected to detect inflammatory mediators. Ciliogenesis was altered in α5SNP
COPD bronchial and bronchiolar epithelia. Goblet cell hyperplasia was exacerbated in α5SNP small
airways. The broncho-alveolar fluids of α5SNP COPD patients exhibited an increase in inflammatory
mediators. The involvement of the rs16969968 polymorphism in airway epithelial remodeling
and related inflammatory response in COPD prompts the development of innovative personalized
diagnostic and therapeutic strategies.

Keywords: COPD; airways; epithelial remodeling; nicotinic receptors; rs16969968; inflammation

1. Introduction

Chronic obstructive pulmonary disease (COPD) is among the leading causes of mor-
tality and morbidity in the world [1]. Smoking and, more generally, harmful particle
inhalation are the main identified risk factors [2,3]. The remodeling of the airways and an
abnormal inflammatory response are the hallmarks of COPD [4–7]. Despite numerous large
genetic studies on COPD whole lungs or biological fluids [8–10], only alpha-1-antitrypsin
deficiency has been translated into health treatment and care [11,12].

Genome-wide association studies (GWAS) linked single nucleotide polymorphisms of
nicotinic acetylcholine receptors (nAchRs) to pulmonary diseases [9]. The rs16969968 poly-
morphism is localized at position Chr15q25.1, and codes for the CHRNA5 subunit with the
modification D398N (α5SNP) [13–15]. Recent studies have unveiled associations between
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α5SNP and lung cancer [16–18], nicotine addiction [19], and COPD independently [20].
This is particularly important since the rs16969968 polymorphism is estimated to be present
in about 60% of the worldwide population [20,21].

We previously demonstrated using in vivo, ex vivo, and in vitro approaches the con-
tribution of α5SNP in airway epithelial remodeling and the development of emphysema in
murine models, by inducing molecular and cellular changes and promoting the inflamma-
tory response [22,23]. In addition, α5SNP nasal polyps were more inflamed and presented
secretory cell hyperplasia compared to α5WT. Here, we aimed to study the role of the
rs16969968 polymorphism in bronchial and bronchiolar remodeling and immune response
in COPD tissues, isolated airway epithelial cells, and broncho-alveolar lavage fluids (BALF)
from COPD patients.

2. Materials and Methods
2.1. Human Subjects

Patients scheduled for fiberoptic bronchoscopy and/or lung resection for cancer
(University Hospital of Reims, France) were recruited prospectively (n = 44, Supplementary
Materials: Table S1) following standards established and approved by the institutional
review board of the University Hospital of Reims, France (IRB Reims-CHU 20110612), and
included in the cohort for research and innovation in chronic inflammatory respiratory
diseases (RINNOPARI, NCT02924818). The study included patients with COPD who
gave their consent. At inclusion, age, sex, smoking history, and pulmonary function
test results were recorded. All mild, moderate, severe, and very severe stage COPD
patients were recruited for all the analyses, except for the immunohistochemistry and the
immunofluorescent stainings, where only mild and moderate COPD patients were used. At
inclusion, all patients were stable with no acute exacerbation of COPD for at least 4 weeks.
Subjects who had ceased smoking for more than 6 months were considered former smokers.

2.2. Bronchoalveolar Lavage Fluids (BALF)

The bronchoalveolar lavage fluids were sampled as previously described [24]. We
performed the inflammatory mediators’ analysis on the proximal fraction corresponding to
the bronchial compartment (n = 7).

2.3. Human Primary Airway Epithelial Cell Culture

Human primary airway epithelial cells (hAEC) were obtained from bronchial brush-
ings of COPD patients (n = 10) to establish air-liquid interface (ALI) cultures as previously
described [22,24]. The cells were recovered by scraping the brushes and dissociation using
trypsin-versene. They were counted with ADAM (NanoEnTek) according to NanoEnTek
instructions. One hundred and fifty thousand cells were seeded on 12-well plates con-
taining 0.4 µm Transwells (Corning, Fisher Scientific, New York, NY, USA) coated with
0.3 mg/mL collagen type IV from the human placenta (Sigma-Aldrich, Saint-Louis, MO,
USA). PneumaCult-EX (PnC-Ex, Stem Cell, Vancouver, BC, Canada) medium was used for
initial proliferation in the apical and basal chambers. Upon reaching cell confluency, the
apical medium was removed, and the basal medium was replaced by PneumaCult-ALI
(PnC-ALI, StemCell, Vancouver, BC, Canada) medium. The culture medium was changed
every 2 days and the cells were kept for 15 days in incubators at 37 ◦C, 5% CO2.

2.4. Genotyping

Epithelial cell pellets from bronchial brushings and tissue sections (4 sections of
20 µm of thickness each) trimmed from formalin-fixed paraffin-embedded (FFPE) lung
tissue blocks were processed for DNA purification using the GenElute™ FFPE RNA/DNA
Purification Plus Kit, according to the manufacturer’s instructions [22]. The CHRNA5 gene
was amplified with DNA polymerase TaKaRa LA Taq (TAKARA Bio Inc., Shiga, Japan)
using the following primers: forward 5′-AGTCATGTAGACAGGTACTTCACTCAG-3′,
reverse 5′-TGGAAGAAGATCTGCATTTG-3′. The amplification products were digested
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with the Taq I enzyme, recognizing the following sequence: 5′-TCGA-3′, only present in the
α5WT sequence. The digestion products were then separated by agarose gel electrophoresis
and the gels were imaged using a LAS-1000 Imager for analysis (Aïda software, Raytest,
Courbevoie, France). Eighteen patients were α5WT (41%); 24 were heterozygous α5SNP
(54.5%); and 2 were homozygous α5SNP (4.5%).

2.5. Immunohistochemistry and Immunofluorescent Stainings

Immunohistochemistry and immunofluorescent stainings were performed on FFPE
lung tissues distant from the tumor (n = 24). Three µm sections were processed for hema-
toxylin and eosin staining and analyzed on a white light Eclipse Ci-L microscope (Nikon,
Tokyo, Japan) equipped with a DS-Fi2 camera (20× Ph) to assess epithelium height in
bronchi and bronchioles. The FFPE lung tissue section slides were deparaffinized and
blocked with 10% BSA in PBS for 30 min at room temperature. The tissue sections were
then incubated with the primary antibodies as listed in Supplementary Materials: Table S2
overnight at 4 ◦C in 3% BSA in PBS. After washing with PBS, a second primary antibody
was used for 2 h at room temperature (antibodies are listed in Supplementary Materials: Ta-
ble S2). The sections were washed with PBS and incubated with the appropriate secondary
antibodies in PBS for 30 min at room temperature. The DNA was stained with DAPI for
20 min at room temperature. Images were acquired on a Zeiss AxioImageur (20× Ph)
with ZEN software (v2.0.0.0 2012, Zeiss, Marly le Roi, France) and processed with ImageJ
(v1.53q, National Institutes of Health, Bethesda, MD, USA) for analysis. Five random
fields per section were taken for the bronchial analyses. All the structures were imaged
to quantify basal cell expression, ciliated cells (primary and motile cilia), and proliferative
and secretory cells (Muc5ac, Muc5b, and uteroglobin) for bronchiolar analyses. For each
field, a threshold was established by subtracting the background with a rolling ball radius
of 50.0 pixels, setting the minimum at 0. Basal, proliferative, and PCC were expressed as a
number relative to the total area. Motile cilia are expressed as a percentage of recovery of
the epithelium surface, while secretory cells as a normalized mean grey value between the
two groups.

2.6. Whole-Mount Immunofluorescent Stainings

Methanol-fixed hAEC from ALI cultures were rehydrated by decreasing methanol
concentrations (75%, 50%, and 25% methanol/PBT) before a post-fixation with acetone.
The cells were then blocked with 10% BSA in PBT (PBS + 1% DMSO + 0.1% Triton) for 2 h
at room temperature and incubated for one night at 4 ◦C in 3% BSA/PBT with the primary
antibody anti-Arl13b (17711-1-ap, ProteinTech, Manchester, UK). The DNA was stained
with DAPI for 20 min at room temperature. The clarification of the cells was achieved
by a glycerol gradient (25%, 50%, and 75%) before mounting the slides. The images were
acquired on a Zeiss AxioImager (20× Ph) with ZEN software (V2.0.0.0, 2012, Zeiss, Marly
le Roi, France) and processed with ImageJ (v1.53q, National Institutes of Health, Bethesda,
MD, USA). Primary and motile cilia recovery were quantified and related to the total area.
The lengths were measured as described previously [24].

2.7. May-Grünwald-Giemsa Stainings

May-Grünwald-Giemsa (MGG) staining was performed on FFPE lung tissues (n = 11).
Slides were deparaffinized and rehydrated by decreasing ethanol concentrations (100%,
95%, and 70%). Then, the slides were placed in Jenner Stain Stock solution at 50% (eosin,
methylene blue, 26114-01, CliniSciences, Nanterre, France), followed by Giemsa Stain Stock
solution at 6% (eosin, methylene blue, azure B, GGS500, CliniSciences, Nanterre, France).
The slides were dehydrated using ethanol gradients (95% and 100%) and xylene solution
before mounting. The images were acquired on a slide scanner (VS120, Olympus, Tokyo,
Japan) with Olyvia software (Olympus OlyVIA 2.9, Tokyo, Japan). Bronchi were imaged
and inflammatory cells, namely the eosinophils, basophils, neutrophils, and lymphocytes,
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were manually counted using QuPath software, Belfast, UK [25]. The epithelial length was
set as a reference.

2.8. Microbiological Analysis

Endobronchial samples (bronchial aspiration or BALF, n = 15) were collected, and
extended microbiological culture was performed, as previously described [26,27]. The
samples and their dilutions (1/1.000 for bronchial aspiration) were cultured in Columbia
blood agar, chocolate agar, Schaedler agar, and Pseudomonas selective cetrimide agar
(Thermo Fisher Scientific, Waltham, MA, USA), at 37 °C for 48 h for aerobic and 5% CO2
cultures and 5 days for anaerobic cultures. All colonies that appeared to be morphologically
distinct were quantified as colony-forming unit (CFU) per mL and identified using MALDI-
TOF mass spectrometry (MALDI Biotyper®, Bruker Daltonics, Billerica, MA, USA). The
α-diversity of the airway microbiota was evaluated with the Shannon index (a marker of
intra-individual diversity).

2.9. Immunoblot Analysis

Cytokines and chemokines expression in BALF (1 mL, n = 3 α5WT, and n = 4 α5SNP)
were assayed by a proteome profiler array according to the R&D system’s instructions
(ARY022B). The final detection was obtained by streptavidin-HRP and chemiluminescence.
The membranes were then imaged using a LAS-4000 gel imager (Fujifilm, Tokyo, Japan)
for analyses (Supplemental Figure S5). The detected signals were digitally quantified
using ImageJ. The values were normalized to the positive and negative controls for each
membrane. A cut-off was applied considering an interval of 5% between the mean grey
values of the range of positive minus negative controls. All inflammatory mediators
whose expression was lower than this value were considered undetected. The α5SNP
expression was normalized to α5WT and reported to 1. The abundance represented the
quantities of inflammatory mediators’ expression in the BALF of COPD patients, including
α5WT and α5SNP. It was defined by standardizing the difference between the positive
and negative controls of both α5WT and α5SNP COPD patients. All the inflammatory
mediators’ expression values were calibrated on this difference in expression in the two
groups and then normalized to their negative control. The results were expressed as mean
values of each group and reported in the heatmap according to their abundance in BALF.
Very high: comparative detection higher than 50% of positive control; high: between 50 and
25%; medium: between 25 and 10%; low: between 10 and 5%; and very low: less than 5%.

2.10. Statistics

The data are expressed as mean values ± SEM, and percentages. Differences between
groups were determined using the Student’s t-test one-tailed or to the hypothetical value
of 1.00, representing the reference for the α5WT subjects. For microbiological analysis,
Mann–Whitney and Fisher’s tests were used. A p-value < 0.05 was considered significant.

3. Results

We first analyzed the impact of α5SNP on bronchial remodeling, using genotyped
lung tissues obtained from COPD patients. The epithelial height and proliferation index
did not differ between α5SNP and α5WT respiratory epithelia (Figure 1).

Interestingly, there was a 54% increase in primary ciliated cells (PCC) (83.30± 7.69 PCC/mm
of epithelium vs. 44.94 ± 7.66, p < 0.01) in α5SNP COPD epithelia (Figure 1b,c and Supple-
mentary Materials: Figure S1). Mucins secretory cells were also increased in α5SNP but
did not reach statistical significance (Figure 1b,c). Basal, multiciliated (MCC), and inter-
mediate cells were equally distributed (Figure 1b,c). We further assessed cilia alterations
in α5SNP COPD bronchial airway epithelial cells (AEC) isolated from bronchial brushes.
There was no difference in the numbers of basal, MCC, and Muc5ac secretory cells between
α5SNP and α5WT AEC (Supplementary Materials: Figure S2). Since PCCs are rapidly
disassembled in the fresh AEC isolation, we cultured AEC in air-liquid interface (ALI)
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conditions. We confirmed the alteration of primary ciliogenesis during differentiation with
a 67% increase of PCC (75.25 ± 3.23% vs. 50.56 ± 2.61%, p < 0.05) in α5SNP COPD patients
compared to α5WT (Supplementary Materials: Figure S3).

Given that COPD is also considered a small airway disease, we assessed bronchiolar
remodeling [28]. The epithelial height and proliferation index did not differ between the
two groups (Figure 2a,c).
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Figure 1. Bronchial epithelial remodeling in rs16969968 (α5SNP) COPD patients. (A): Hematoxylin
and eosin staining showing the epithelial height of α5SNP and α5WT COPD patients. (B): Examples
of the microscopic acquisition of immunofluorescent stainings for basal cells (P63, red), ciliated cells
(Arl13b, red), proliferative cells (Ki67, green), mucins secretory cells (Muc5ac, green; Muc5b, red), and
intermediate cells (Uteroglobin, red). Nuclei are stained in blue (DAPI). Magnification corresponding
to the selected area is represented. (C): Dot plots (means with SEM) representing measurements of
the epithelial height, the number of basal, proliferative, and primary ciliated cells per mm, motile
cilia recovery (%), and the mean grey values of mucins (Muc5ac, Muc5b) and uteroglobin-associated
fluorescence of α5SNP and α5WT COPD patients. **, p <0.01 α5WT vs. α5SNP; ns, non-significant.
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Figure 2. Bronchiolar epithelial remodeling in rs16969968 (α5SNP) COPD patients. (A): Hematoxylin
and eosin staining showing the epithelial height of α5SNP and α5WT COPD patients. (B): Examples
of the microscopic acquisition of immunofluorescent stainings for basal cells (P63, red), ciliated cells
(Arl13b, red), proliferative cells (Ki67, green), mucins secretory cells (Muc5ac, green; Muc5b, red), and
intermediate cells (Uteroglobin, red). Nuclei are stained in blue (DAPI). Magnification corresponding
to the selected area is represented. (C): Dot plots (means with SEM) representing measurements of
the epithelial height, the number of basal, proliferative, and primary ciliated cells per mm, motile
cilia recovery (%), and the mean grey values of mucins (Muc5ac, Muc5b) and uteroglobin-associated
fluorescence of α5SNP and α5WT COPD patients. *, p < 0.05 α5WT vs. α5SNP; ns, non-significant.

In contrast, when compared with α5WT, α5SNP bronchiolar epithelium was char-
acterized by a 57% decrease in the number of PCC (3.21 ± 0.46 PCC/mm of epithelium
vs. 5.59 ± 1.21, p < 0.05) and a 44% increase in Muc5ac secretory cells (7236 mean grey
value ± 1717 vs. 3171 ± 583.3, p < 0.05) (Figure 2b,c). The basal, MCC, and intermediate
cells were not affected (Figure 2b,c).

We next analyzed the airway microbiota using an extended culture approach and
mass spectrometry identification [29]. There was no difference between the α5SNP and
α5WT COPD patients’ airway microbiota regarding bacterial distribution and microbiota
diversity (Supplementary Materials: Figure S4).
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Finally, we analyzed peribronchial recruitment of inflammatory populations (ba-
sophils, eosinophils, neutrophils, and lymphocytes), and inflammatory mediators’ (pro-
and anti-inflammatory) secretions in BALF obtained from α5SNP and α5WT COPD pa-
tients in the proximal compartment (Supplementary Materials: Figure S5). There was no
difference in the immune cell distribution (Figure 3a,b).
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Figure 3. Lung inflammatory response in rs16969968 (α5SNP) COPD patients. (A): Microscopic
acquisitions showing peribronchial recruitment of immune populations in α5SNP and α5WT COPD
patients. (B): Dot plot showing the number of eosinophils, basophils, neutrophils, and lymphocytes
per mm of epithelium in α5SNP vs. α5WT COPD patients. (C): Heatmap presenting the ratios of
inflammatory mediators’ expression in broncho-alveolar lavage fluids of α5SNP vs. α5WT COPD
patients. Downregulated inflammatory mediators are presented in blue, and upregulated ones are in
red. The inflammatory mediators whose expression is lower than the detection cut-off value (5% of
positive control) are identified in white. The inflammatory mediators are categorized according to
their detected abundance in the broncho-alveolar lavage fluids of COPD patients (from very high,
>50% of the detection of the positive control; to very low, <5% of the detection of the positive control).
ns, non-significant.

TFF3, angiogenin, MMP-9, IL-8, RBP-4, VDBP, Apo-A1, and LCN2 were the most
abundant inflammatory mediators detected in COPD patients (Figure 3c). Sixty-two were
upregulated in α5SNP COPD BALF (Figure 3c), while total cell counts were similar and
below 300,000 cells/mL (data not shown). Six inflammatory mediators (MMP-9, RETN,
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Acrp30, CHI3L1, MIP-3a, and CRP) were more than 2.5 times upregulated in α5SNP COPD
BALF (Figure 3c, and Supplementary Materials: Figure S6).

4. Discussion

Taken together, our findings highlight an impairment of PCC and Muc5ac secretory
cells in α5SNP COPD patients’ epithelia and dysregulation of inflammatory mediators’
production. We could not evaluate PCC in our previous studies because of the sparsity of
basal cells in mice airways. Nonetheless, the epithelial remodeling and the alteration of the
inflammatory response were consistent [23]. Further clinical investigations will focus on
the quantification of human lung inflammatory populations in α5SNP COPD patients.

Primary cilia are sensor organelles playing a crucial role in cellular development
(proliferation and differentiation) and the reparation process. Anomalies in the structure
and/or functions of cilia are responsible for ciliopathies [30]. The number of primary
cilia is increased in the bronchial epithelium and decreased in the bronchiolar epithelium
of α5SNP COPD patients, suggesting an alteration of the progenitor cell fate toward an
arrest of the cell cycle or a loss of stemness. The apparent discrepancy in PCC pointed
towards the dual functions of non-differentiated cells in various airway compartments:
the alteration of primary cilia may inhibit epithelial repair in bronchi, while it may induce
bronchiolar remodeling. These findings are consistent with our previous work regarding
the role of primary cilia in COPD pathogenesis and support the implication of α5SNP in
airway plasticity in COPD [31,32].

Mucins play an important role as innate immune mediators. They are involved in
the clearance of microorganisms and pollutants. The increase of Muc5ac secretion in
bronchiolar epithelium without changes in motile cilia recovery suggests an accumulation
of mucus in the airway, leading to the airway obstruction described in COPD [33–35].

Despite no difference in peribronchial recruitment of inflammatory populations be-
tween α5SNP and α5WT COPD BALF, six inflammatory mediators were highly upregu-
lated in α5SNP COPD BALF, including MMP-9 and CHI3L1, which are associated with
lung remodeling; Acrp30 and CRP, both markers of systemic inflammation; and MIP-3a,
which is indirectly related to the activation of NF-kB and STAT3 signaling pathways [36].
Moreover, the large upregulation of detected inflammatory mediators highlights a global
dysregulation of the immune response [22,37].

Our analyses were limited by the small sample size for each parameter, although
we included a total of 44 patients. There were only two homozygous α5SNP patients
(one fiberoptic bronchoscopy and one lung resection), therefore we could not evaluate the
additive effect of the polymorphism. We focused on bronchial and bronchiolar remodeling,
but it would also be important to investigate alveolar remodeling to complete the analysis.
Despite these limitations, we report the first cellular and molecular clues deciphering the
genetic impact of α5SNP in COPD patients.

These findings support the involvement of the rs16969968 polymorphism in airway
epithelial remodeling and related inflammatory response in COPD patients. The charac-
terization of rs16969968 may contribute to the development of innovative personalized
diagnostic and therapeutic strategies in COPD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11192937/s1, Figure S1: Identification of primary ciliated
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