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Background: Cystic lesions are frequently observed in knee joint diseases

and are usually associated with joint pain, degenerative disorders, or acute

injury. Magnetic resonance imaging-based, artificial intelligence-assisted cyst

detection is an effective method to improve the whole knee joint analysis.

However, few studies have investigated this method. This study is the first

attempt at auto-detection of knee cysts based on deep learning methods.

Methods: This retrospective study collected data from 282 subjects with knee

cysts confirmed at our institution from January to October 2021. A Squeeze-

and-Excitation (SE) inception attention-based You only look once version 5

(SE-YOLOv5) model was developed based on a self-attention mechanism

for knee cyst-like lesion detection and differentiation from knee effusions,

both characterized by high T2-weighted signals in magnetic resonance

imaging (MRI) scans. Model performance was evaluated via metrics including

accuracy, precision, recall, mean average precision (mAP), F1 score, and

frames per second (fps).

Results: The deep learning model could accurately identify knee MRI scans

and auto-detect both obvious cyst lesions and small ones with inconspicuous

contrasts. The SE-YOLO V5 model constructed in this study yielded superior

performance (F1 = 0.879, precision = 0.887, recall = 0.872, all class

mAP0.5 = 0.944, effusion mAP = 0.945, cyst mAP = 0.942) and improved

detection speed compared to a traditional YOLO model.

Conclusion: This proof-of-concept study examined whether deep learning

models could detect knee cysts and distinguish them from knee effusions.

The results demonstrated that the classical Yolo V5 and proposed SE-Yolo V5

models could accurately identify cysts.
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Introduction

Benign cysts are frequently encountered during body
examinations or advanced knee imaging. Cysts can be
categorized into various types, including Baker’s cysts, proximal
tibiofibular joint cysts, meniscal cysts, and intraosseous cysts
at the insertion of the cruciate ligaments (1). Intra- and
periarticular cyst-like lesions are secondary phenomena likely
to be observed in painful or osteoarthritis (OA) affected
knees (2). They are strongly associated with intra-articular
pathologies or complications of various disorders, such as
trauma, meniscus injury, infection, inflammatory arthritis, and
malignant lesions (3). Cysts and joint effusion are also key
features in two semi-quantitative assessments of knee OA, the
Whole-Organ Magnetic Resonance Imaging Score (WORMS)
and the MRI Osteoarthritis Knee Score (MOAKS) (4, 5).
Such fluid accumulation may range from benign to minimally
symptomatic and poses a diagnostic dilemma if one is unaware
of the potential diagnoses and pitfalls (3). Therefore, it is crucial
to develop an appropriate differential diagnosis of knee cystic
lesions to guide further evaluation and treatment of OA.

Magnetic resonance imaging is commonly used to confirm
whether lesions are cystic due to its superior soft-tissue
contrast and multi-planar imaging capabilities compared to
other imaging modalities (1). MRI can help delineate the
location of lesions concerning anatomic structures and, with the
application of contrast, determine if lesions are cystic or solid
(6). Typically, cysts located around the knee are encapsulated
fluid collections with low T1-weighted signals and high T2-
weighted signals on MR scans, similar to benign intra-articular
fluid collections, effusions, or certain types of soft-tissue tumors
(7–10). Radiologists and clinicians must familiarize themselves
with the MRI features of the cyst and cyst-like lesions to
accurately diagnose the disease, develop treatment plans, and
manage patients more effectively.

Artificial intelligence and deep learning are increasingly
utilized in the medical field both in medical imaging and
biomedical analysis (11, 12). The role of AI in medical
imaging of knee joints has been described in many
primary publications (13), with an emphasis on OA-related
research, such as auto-segmentation of knee joint tissue
(14, 15), and auto-detection of cartilage lesions, meniscus
injuries, and anterior cruciate ligament tears (16–19). The
deep learning models for such detection demonstrated
relatively superb accuracy, ranging between 70 and 100%
across various studies, suggesting that such methods
exhibit the potential to rival human-level performance in
decision-making tasks related to the MRI-based diagnosis
of knee injuries. These methods promote the growth
of medical enterprises and help create more intelligent
medical services.

Most of the current deep learning research on the knee
joint focuses on knee OA and acute knee injuries, but few

studies have examined knee joint cysts, cyst-like lesions,
or joint effusion. In 2018, a deep convolutional neural
network (CNN) was applied to the segmentation of knee
joint anatomy, achieving dice coefficients between 0.7 and 0.8
for both joint effusion and Baker’s cyst for each joint (20).
A more recent study constructed a dense neural network
(CNN) for detecting effusions, defined as nonzero MOAKS-
ES scores, from limited MRI scans (21). It was demonstrated
that NNs could classify knee effusions from low-resolution
images with similar accuracy to human radiologists, suggesting
that automated evaluation of scans from low-cost, low-field
scanners could help assess knee effusions. Other than these
two publications, there is no other literature on applying
deep learning to cyst detection. It remains unclear whether
deep learning techniques can detect cysts and distinguish
them from effusions.

Most of the current deep learning research about knee joints
focuses on knee osteoarthritis and acute knee injuries, and very
few studies examine knee joint cysts, cyst-like lesions, or joint
effusion. In 2018, a deep convolutional neural network was
applied to the segmentation of knee joint anatomy in a study
published by Liu et al. (20). Using the deep learning model,
20 subjects in sagittal frequencies selected fat-suppressed 3D
fast spin echo sequences were segmented using 12 different
joint structures, and a Dice coefficient between 0.7 and 0.8
was achieved for both joint effusion and Baker’s cyst for
each joint. This is the first attempt at deep learning used on
joint effusions and cysts. In 2022, Harvard University Bragi
Sveinsson carried out a study that created a dense NN (CNN) for
detecting effusions, defined as nonzero MOAKS-ES scores, from
limited MRI scans (21). Additionally, it was proved that neural
networks can classify knee effusions with similar accuracy to that
offered by human radiologists utilizing low-resolution images,
suggesting that automated assessment of images from low-cost,
low-field scanners may be useful for assessing knee effusions.
Other than the two publications mentioned above, there are no
other literature reports on the application of deep learning to
cyst detection. It is not clear whether deep learning technology
can be used to detect cysts and the performance of identifying
them from effusions.

The present study introduced a deep learning model for the
auto-detection of knee cystic lesions to address this knowledge
gap. It evaluated the model’s performance in differentiating
knee cysts from knee effusions, which could facilitate the
early diagnosis and prevention of knee cysts in mass detection
by clinicians. To our knowledge, this is the first attempt at
automatically detecting knee cysts and distinguishing them from
knee effusions using deep learning methods. Because of the
limited amount of data, Mosaic augmentation was used in
data preprocessing to increase the volume of training data. To
enhance the ability to detect cysts of various sizes, Yolo-V5
was used as a backbone network alongside a featured pyramid
architecture for detection. An attention mechanism, the SE
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TABLE 1 Patient demographics (mean ± s.d.).

Basic information Total subjects (n = 282) Female (n = 192) Male (n = 90) P-value

Age(years) 52.87± 13.22 52.95± 13.18 52.95± 13.24 –

Height(cm) 164.60± 7.63 164.19± 7.63 164.61± 7.64 0.085

Weight(kg) 68.75± 11.87 68.75± 11.90 68.81± 11.90 0.239

BMI(kg/m2) 25.30± 3.55 25.30± 3.55 25.36± 3.73 0.720

Left/Right 143/139 101/91 42/48 –

module, was added to the model to enhance the contribution
of information-rich features in the feature extraction process.

Materials and methods

The Institutional Review Board of the Second Hospital of
Jilin University approved this retrospective study (No. SB2021-
012).

Patient data selection

All knee MRIs were acquired at the Second Hospital of
Jilin University between January 2021 and October 2021. An in-
house RIS/PACS search engine was used to identify candidates
who met the following inclusion and exclusion criteria. The
inclusion criteria were: (I) MRI scan of the knee for space-
occupying lesions or swelling, or pain in a knee joint; (II)
patient is over 18 years old; and (III) a formal description of a
cystic lesion or uncertain space-occupying lesion in the written
radiology report. The exclusion criteria were: (I) patient not
consenting to usage of their data; (II) patient is under 18 years
old; (III) patient with fracture of a knee joint; (IV) images with
excessive movement or beam hardening artifacts as described
in the report; and (V) images with knee surgery implants. For
patients with more than one MRI examination, only the most
recent MR scan was selected.

Data were retrieved for subjects diagnosed with knee cysts
or effusions on the imaging report. If there was uncertainty
about including a case, a decision was made after reviewing the
original image. A total of 282 cases were included in the final
analysis. Patient demographics are listed in Table 1. A detailed
data selection flowchart is outlined in Figure 1.

Data process

Magnetic resonance imaging was performed on a GE
Discovery MR750 3.0T scanner using a sagittal proton density-
weighted fat suppression sequence (PD-FS) [Field of view
(FOV) = 160 mm × 160 mm; matrix = 512 × 512; number
of slices = 20; voxel resolution = 0.35 × 0.35 × 4.5 mm; slice

thickness = 3.5 mm; interslice gap = 4.5 mm; repetition time
(TR) = 2,600 ms; echo time (TE) = 34.0 ms; flip angle = 90◦].
A total of 5,640 sagittal PD-FS images from all subjects were
included in this dataset.

Digital Imaging and Communications in Medicine
(DICOM) images were converted to one-channel grayscale
PNG images to standardize the format of the image files before
training. Images were then rescaled to 256 × 256 pixels, and
pixel values were normalized between 0 and 1. Two physicians
verified that no information related to knee cyst enlargement
and effusion was lost in the PNG format images.

Subsequently, regions of interest (ROIs) of cyst lesions
and effusions were annotated using the LabelImg image data
annotation software by two resident physicians under the
supervision of the chief physician. If the annotation was
questionable, the final determination was decided by negotiation
with the review panel. Background information surrounding the
ROIs was removed whenever possible. Annotation files were
stored in Pascal-VOC format during the process. Subsequently,
the images and their associated annotation files were divided
into a training set, a validation set, and a test set in a ratio of
6:2:2 in the enhanced data set through a Python script. The data

FIGURE 1

Flowchart of subject inclusion/exclusion and data selection.
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FIGURE 2

(A) Distribution of cyst category. (B) Distribution of centroids of cysts and effusions. (C) Size distribution of cysts and effusions.

FIGURE 3

SE-YOLOv5 model architecture for cyst detection.

distribution of each lesion category and characteristic is shown
in Figure 2.

Deep learning model structure

A Squeeze-and-Excitation (SE) inception attention-based
YOLO v5 algorithm (Yolo V5-SE) was adopted to detect
knee cyst targets. Similar to the general Yolo v5 algorithm,
the architecture of our model was composed of four parts,
input, backbone, neck, and prediction, with adjustments in
the input and neck parts. In the input preprocessing stage,
the images were resized to 640 × 640 × 3, and mosaic data
augmentation was applied to increase the number of training

samples. Through operations such as flipping, zooming, and
color gamut modification, this strategy allowed smaller cyst
elements to be detected in a smaller field of sensation, thus
enhancing the likelihood of detecting small targets. A couple of
SE-inception modules were added after the Concat module in
the neck structure (22). The architecture of the model is shown
in Figure 3.

Model training and evaluation

During model training, the learning rate was set to 0.0001
to accelerate model convergence. Stochastic gradient descent
(SGD) was used for hyperparameter tuning, and the learning
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rate momentum was set to 0.90, considering the small number
of samples in the cystic lesion dataset. A cosine annealing decay
strategy was used for a learning rate change. Cross-entropy was
used as the loss function for the model, with batch size set
to 8 and training epochs set to 300. The training process was
controlled by the early stop method. The training was stopped to
prevent over-fitting when the loss value of the validation set did
not decrease within 15 epochs. The environment configuration
used in the experiment is shown in Table 2.

Validation metrics, including accuracy, precision, recall,
mean average precision (mAP), and F1 score, were calculated
and visualized in Python to evaluate model performance in cyst
and effusion detection (Figure 4). The formulas for the metrics
are described below.

Precision = (TP)/(TP+ FP) (1)

Recall = (TP)/(TP+ FN) (2)

IoU =
area of overlap
area of union

(3)

TABLE 2 The environment configuration used in the experiment.

Environment Detail

Central Processing Unit(CPU) Intel i7-8700k

Opertating system Window 10

Graphic Processing Unit(GPU) NVIDIA Geforce GTX1080i 11G

Pytorch version Pytorch1.8.1 Opencv 4.5.0

AP =
∫ 1

0
P(R)dR (4)

mAP =
1
C

C∑
i

= 1AP(i) (5)

F score = 2 ∗ (}precision ∗ recall)/(}precision+ recall) (6)

True positives (TP) denote correctly identified cysts, false
positives (FP) denote incorrectly identified cysts, and false
negatives (FN) denote missed cysts. AP describes average
precision; P(R), which denotes the precision P of different recall
rates R, corresponds to the P–R curve’s area under the curve.
The constant C in Eq. 5 has a value of 2, representing cysts
and effusions as two separate lesions. The number of average
precisions (AP) in each category, which is the number of APs
in each category when intersection over union (IoU) is 0.5, is
denoted as the mean average precision (mAP). Among these
metrics, mAP is the most comprehensive index for evaluating
model performance, with higher mAP values corresponding to
better model performance.

Furthermore, we compared the performance of our Yolo
V5-SE model with that of a general Yolo V5 model by
comparing the validation metrics. All statistical tests were
performed with SPSS Statistics 26.0 (IBM Corp, Armonk,
NY, United States).

Results

Figure 2A shows that the proportion of effusions and cysts
was relatively balanced, suggesting that model performance was

FIGURE 4

Validation metrics for SE-YOLO V5. The horizontal axis denotes the number of iterations.
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unlikely to be biased by an imbalanced class distribution. Few
lesion centroids were concentrated near the image center, and
the distribution of lesion targets was fairly uniform (Figure 2B).
Small target lesions accounted for many lesions (Figure 2C).

Validation metrics demonstrated that the model’s
performance gradually steadied with the training process,
indicating that the model converged quickly and yielded
good performance. To assess model performance, our
proposed SE model was compared against a classical model,
YOLOv5, on a series of performance metrics (Table 3).
The SE-YOLO V5 model we presented was superior in
all performance metrics (F1 = 0.879, precision = 0.887,
recall = 0.872, all class mAP0.5 = 0.944, effusion mAP = 0.945,
cyst mAP = 0.942). The fps for SE-Yolo v5 was 90.9,
suggesting that it could handle more images per unit
time. The P–R curves and confusion matrices for these
two models are shown in Figures 5, 6. Figure 7 shows

TABLE 3 Performance metrics of the SE model and the
traditional model.

Metrics SE-Yolo V5s Yolo V5s P-value

All class F1 score 0.879± 0.002 0.832± 0.010 0.002**

All class Precision 0.887± 0.011 0.843± 0.012 0.011*

All class Recall 0.872± 0.014 0.821± 0.018 0.018*

All class mAP 0.5 0.944± 0.002 0.898± 0.011 0.002**

Cyst F1 score 0.875± 0.004 0.819± 0.016 0.005**

Cyst Precision 0.873± 0.012 0.822± 0.017 0.014*

Cyst Recall 0.878± 0.006 0.818± 0.027 0.021*

Cyst mAP 0.5 0.942± 0.005 0.893± 0.019 0.011*

Effusion F1 score 0.883± 0.006 0.843± 0.005 0.001**

Effusion Precision 0.902± 0.011 0.864± 0.008 0.014*

Effusion Recall 0.865± 0.022 0.822± 0.009 0.037*

Effusion mAP 0.5 0.945± 0.001 0.901± 0.004 <0.001***

*P < 0.05; **P < 0.01; ***P < 0.001.

example model prediction results compared to the ground
truth, indicating that cyst lesions were correctly detected and
distinguished from effusions.

Discussion

This proof-of-concept study aimed to demonstrate the
feasibility of a deep learning system for the auto-detection and
classification of knee cysts. The SE-YoloV5 attention model
was constructed, trained, and evaluated on clinical MR images.
Analysis of model performance indicated that this approach
promises to improving diagnostic accuracy.

Deep learning offers excellent performance for segmenting
multi-tissue knee joints and detecting ACL, cartilage, or
meniscus injuries (15–17). However, few papers have addressed
cysts and effusions of the knee joint, which are associated
with high morbidity and could also serve as biomarkers for
degenerative disorders or acute injuries, like knee osteoarthritis
and meniscus injuries. Considering the importance and the
potential pitfalls of knee cyst diagnosis, it is beneficial to
develop an auto-diagnostic system for cyst detection, which
may be used as a primary or supplementary tool to speed up
diagnosis and enhance accuracy. Two papers have explored
the application of deep learning in cyst segmentation and
effusion estimation (20, 21); Zhou et al. (20) demonstrated
the application of deep learning in Baker’s cyst and joint
effusion auto-segmentation and achieved a dice coefficient
of 0.736. Raman reported the feasibility of classifying knee
effusion based on neural networks, which could achieve an
average accuracy of 62%, comparable to a radiologist in
a small test dataset (21). Other than the two publications
mentioned above, there are no other literature reports on
the application of deep learning to cyst detection. To our

FIGURE 5

P-R curves of YOLO V5 and YOLO V5-SE.
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FIGURE 6

Confusion matrices of YOLO V5 and YOLO V5-SE.

FIGURE 7

Example prediction outcomes of YOLO V5 and YOLO V5-SE compared with the ground truth.

knowledge, this paper is the first to use deep learning in
knee cyst detection.

Cyst detection is an object detection task in nature. Object
detection is a primary computer vision task that entails
determining where particular objects are in an image and
classifying them. YOLO, a new algorithm deployed in 2015 (23),
redefined object recognition as a regression problem that can be

performed in a single neural network. Yolo has been updated
to version five and is regarded as the state-of-the-art algorithm
for object detection (24). It has been applied in many daily life
aspects, such as the detection of surface knots (25) and real-time
vehicles (26), as well as in various medical fields, including face
mask recognition (27), breast tumor detection and classification
(28), and chest abnormality detection (29). This study showed
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that the basic deep learning model Yolo V5 could handle the
cyst-detection task, attaining F1, precision, and mAP scores
of 0.832, 0.843, and 0.821, respectively. After the attention SE
module was added to the Yolo V5 model, the resulting attention-
based model SE-Yolo V5 achieved better accuracy and higher
speed of 0.879, 0.87, and 0.944 for F1 score, precision, and mAP,
respectively. Small target lesions accounted for a significant
proportion of our dataset, but the proposed model was also
capable of detecting them accurately, as illustrated in Figure 7.

This paper aimed to demonstrate the feasibility of utilizing
deep learning in general knee cyst detection. Despite its promise,
there are several limitations to the presented model. First,
there are many cyst types, such as Baker’s cysts, meniscal
cysts, and intraosseous cysts at the insertion of the cruciate
ligaments, but these different cyst sub-types were not explicitly
classified in this study. Neither did we verify whether deep
learning performed equally well in these sub-groups. We may
enroll more kinds of knee cysts in the future and evaluate
the model’s performance on different cyst types. Second, our
data was relatively limited, and model performance was not
compared with human diagnosis. Nevertheless, the model
prediction proved efficient and reliable, suggesting that the
model may become a valuable tool for radiologists and
clinicians, subject to further study and multi-center validation.
Third, the cysts were easily classified based on the reports
or images, but there was no general standard for diagnosing
inherent effusions, which might be a caveat for the model,
radiologist opinions, and the ground truth labels. Last but
not least, the uncertainties and interpretability of the model
should be mentioned, and we will explore them in further
studies. To explore the model in the external datasets or
public datasets.

Conclusion

This proof-of-concept study examined whether deep
learning models could detect knee cysts and distinguish them
from knee effusions and demonstrated that the classical Yolo V5
and proposed SE-Yolo V5 models could identify cysts with high
accuracy. This study suggested that cutting-edge deep learning
methods constitute a promising avenue of research to develop
AI-assisted auto-detection systems to facilitate radiological and
clinical diagnosis of knee pathologies.
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