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Abstract: When a brittle thin rod, such as a dry spaghetti stick, is bent beyond its flexural limit, it
often breaks into more than two pieces, typically three or more. This phenomenon and puzzle has
aroused widespread interest and discussion since its first proposal by Feynman. Previous work
has partly explained the inevitability of the secondary fracture, but without any adjustable time
parameter. In order to further understand this problem, especially the secondary fracture, in this
paper we propose and study the dynamics of a half-infinite model to mimic the physics that a
spaghetti stick is half-infinite under uniform bending. When the breaking process starts, a gradual
release of initial moment of a linearly declining time at the free end, instead of a sudden release, is
adopted, resulting in the introduction of a characteristic time parameter to the model and agrees
better with the real situation. A specific analytical solution in terms of the excited bending moment
using Euler–Bernoulli beam theory is derived, and that the gradual release of initial moment induces
a burst of flexural waves, and these flexural waves locally increase the moment in the stick and
progressively get to the maximum value, and then lead to the secondary fracture are concluded.
The excited moment increases with time and distance, and has an asymptotic extremum value of
1.43 times initial moment. The gradual release in our model requires and gives certain distance and
time when the excited bending moment reaches its extremum value, which provides a possibility to
predict the detailed fracture parameters such as fragmentation length and time and thus to further
understand the secondary fracture during spaghetti bent break.

Keywords: flexural fracture; flexural stress wave; spaghetti; secondary fracture; bent break

1. Introduction

Multiple fracture of a brittle thin rod, such as a dry spaghetti stick, is a simple and
intriguing puzzle in the field of fracture and failure mechanics that is originated from
Miklowitz’s recognition and discussion in tensile fracture [1], followed by Phillips [2],
Kolsky [3], and Kinra [4] in tension and Bodner [5], Kinra [6], and Schindler [7] in bending,
and arouses widespread interest from Richard Feynman’s observation and discussion with
Danny Hillis [8]. Feynman found that if a spaghetti stick is bent to break, it turns out
that it will almost always break into three or more pieces instead of into halves. Feynman
contemplated this process, allegedly ending up with a kitchen full of broken pasta, and left
behind this famous Feynman puzzle.

To solve the puzzle, assume a full model problem to mimic the bent break process that
a spaghetti stick is held at both ends and bent slowly. The stick breaks at time t = 0 when
the value of a certain physical parameter reaches its critical value, and the location of this
first crack is that of the strongest defect. As Feynman mentioned and we observed from
experiments, the breaking process will not stop at the first fracture event but continue to
behave as a secondary fracture.
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Nickalls [9,10] claimed to answer this puzzle in 1995 using tensor analysis, but the
complexity was deconstructed in a letter published in 2005 by Audoly and Neukirch [11],
for which they were later awarded an Ig Nobel prize.

Audoly and Neukirch introduced a half-finite model problem of a stick of finite length
L in which the release of the stick mimics the secondary fracture with the initial conditions
that the stick is initially uniformly bent and at rest with the right end clamped and the left
end free and applied a bending moment M0, where M0 plays a role of the internal moment
transmitted across the section that is about to fail. Their boundary condition is that at time
t = 0, the left end is suddenly released as M0 is removed instantaneously, and then yielded
a self-similar solution in terms of curvature κ.

κ(s, t) = 2κ0S
(

1√
2π

s√
γt

)
(1)

where κ0 represents the initial curvature, s length, t time, γ a material coefficient, and
S(y) =

∫ y
0 sin

(
πz2

2

)
dz the Fresnel sine integral function. The key property of this self-

similar solution is that the excited curvature κ(s, t) will be significantly larger than the
initial curvature κ0, the extremum value of which is twice the maximum of the Fresnel sine
integral (being 1.43). The sudden release of initial moment induces the flexural stress waves,
increases the curvature locally and leads to a secondary fracture, as shown in Figure 1.

Figure 1. Self-similar solution in terms of curvature given by Audoly and Neukirch [11].

Audoly and Neukirch preliminarily explained Feynman’s puzzle and supported the
inevitability of the multiple fracture when a spaghetti stick is bent to break. However,
there still remains certain inaccuracies that require a deeper and further inspection and
understanding to the secondary fracture event.

First, they assumed a model problem of a finite length L and misleading clamping
conditions at s = L [11]: κ,s2(L, t) = 0 and κ,s3(L, t) = 0, where a comma in the indices
denotes a partial derivative, but actually the clamping conditions should be w,s2(L, t) = 0
and w,s3(L, t) = 0, where w denotes displacement perpendicular to the neutral axis, and
κ = w,s2 under the framework of Euler–Bernoulli (EB) beam theory. Next, they actually
imposed infinite rather than finite boundary conditions to get to the self-similar solution
of Equation (1), indicating that the schematic of their model shown in Figure 1 of [11]
is misleading. Moreover, on the other hand, a self-similar solution implies an infinite
boundary condition rather than a clamped boundary condition, which also implies that
the length of the stick cannot be L. However, the self-similar solution given by Audoly is
proper and reasonable, which is a special case in our model problem that will be discussed
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later in this paper, and is admissible enough to explain the inevitability of the secondary
fracture.

Second, due to the limitation of the self-similar solution, Equation (1) lacks adjustable
time parameter and accordingly the intrinsic fragmentation time and fragmentation length
of the secondary fracture, two of which are of vital importance during the bent break
process. Moreover, they assumed a boundary condition of sudden release of an initial
moment to mimic the dynamics of the first fracture of the spaghetti bent break, which does
not match the real situation that the transmission and completion of the crack of the first
fracture process will not be completed instantaneously but require a certain time duration,
and the certain time duration will controllingly influence the excitation and propagation of
the flexural stress waves which will be discussed later.

In this paper, we assume a half-infinite model in which the release of a half-infinite
spaghetti stick mimics the secondary fracture process and the initial condition is that the
stick is initially uniformly bent and curved, and an initial bending moment M0 is applied at
the left end and the right end is infinite. The half-infinite model is schematized in Figure 2,
where the thick gray line describes a half-infinite stick with a stick thickness of h. The
ordinate always represents time, while the right direction of the abscissa axis represents
distance x, from x = 0 to infinity, and the left direction of the abscissa axis represents
bending moment M at x = 0, from its original value M0 linearly declined to 0 within a
release declining time t0 in orange color.

Figure 2. Schematic of the half-infinite gradual release model that mimics the secondary fracture.

We propose a model problem that a spaghetti stick is half-infinite and governed by
EB beam theory, and adopt a gradual release boundary condition at the free end instead
of a sudden release, which indicates the initial bending moment M0 drops gradually to
zero after a time duration t0, as shown in Figure 2, thus bringing a characteristic time
parameter t0 related to adjustable fragmentation time and length to a non-self-similar
solution, which improves the previous model, fixes the defect, is consistent with the real
situation, and provides a positive assistance and guidance to the recently emerging micro-
and nano-spaghetti mechanics [12].

2. Methodology
2.1. Control Equation

In this paper, we employ EB beam theory (Figure 3) as the governing control of our
model, although we note that the EB theory does not account for certain shear effect
described by complex beam theories such as Timoshenko beam theory. Indeed, the Timo-
shenko theory does provide a more accurate description of flexural stress waves with large
wavenumber k compared with stick thickness h. However, Graff [13] remarks that in the
regime of kh/4π < 0.1, the distinction between the EB and Timoshenko beam theories can
be negligible. In our model, the spaghetti stick is long thin with small thickness, and brittle
with small wavenumber, so the EB beam theory is admissible.
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Figure 3. Schematic of basic equations using Euler–Bernoulli beam theory.

Kinetic, kinematic, and material constitutive equations of EB beam theory shown in
Figure 3 are as follows,

∂Q
∂x

= ρA
∂v
∂t

(2)

∂M
∂x

= Q (3)

v =
∂w
∂t

(4)

ω =
∂2w
∂x∂t

(5)

κ = −∂2w
∂x2 (6)

M = EIκ (7)

where M represents bending moment, x axial displacement, t time, Q shear force on beam
deformation, ρ mass density of beam, A cross-sectional area, w displacement perpendicular
to neutral axis, v,ω linear speed and rotary speed, κ curvature, E elastic modulus, and I
moment of inertia of the cross section.

Substituting kinematic Equations (4)–(6) and constitutive Equation (7) into kinetic
Equations (2) and (3) gives the control equation:

∂2M
∂t2 +

EI
ρA

∂4M
∂x4 = 0 (8)

Let c0 =
√

E/ρ represent the elastic longitudinal stress wave velocity and R =
√

I/A
represent the radius of gyration of the cross section. For a rod with circular cross section of
radius r, R = r/2, while for a rod with square cross section of side length l, R = l/(2

√
3).

Thus, we can rewrite control equation Equation (8) to

∂2M
∂t2 + c2

0R2 ∂4M
∂x4 = 0 (9)

2.2. Initial and Boundary Conditions

In our model, we assume a half-infinite spaghetti stick from one end (x = 0) and
extended to another infinite end (x = ∞) under uniformly bending at fixed curving rate.
At the initial time t = 0, the bending moment throughout the whole stick reaches to the
critical value M0, and then the breaking process starts and the bending moment at x = 0
is about to drop linearly to zero with a release declining time duration t0, as shown in
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Figure 2. Thus, we can give the initial and boundary conditions of the model. At t = 0, the
initial conditions are summarized as

M(x, 0) = M0 (10)

ω(x, 0) = βx (11)

where β is coefficient of rotary speed or curving rate, and Equation (11) means that the
speed of rotation is proportional to the stick distance. The introduction of the curving rate
β is one of the advantages and differences from previous assumption that the stick was
initially uniformly bent and at rest, while we assume continuous curving at the curving
rate β before the applied moment reaches M0, while at t = 0, the curving terminates and
the initial moment unloads linearly as we will describe subsequently. β = 0 reveals that
the loading of the initial bending is quasi-static, while β > 0 reveals that the loading of
initial bending is dynamic or quenching which will be discussed in next paper.

Rewrite Equation (11) to the form of bending moment M:

∂M(x, 0)
∂t

= −EI
∂ω(x, 0)

∂x
= −EIβ (12)

The boundary conditions are summarized as

M(0, t) =

{
M0(1− t/t0), 0 ≤ t ≤ t0

0, t > t0
(13)

∂M(0, t)
∂x

= 0 (14)

M(∞, t) = finite value (15)

∂M(∞, t)
∂x

= 0 (16)

where Equation (13) reveals gradually linearly declined release of initial moment M0 with
a time duration of t0 at x = 0, Equation (14) reveals no external applied shear force, and
Equations (15) and (16) reveal the infinite boundary conditions that no external shear and a
limited value of bending moment at the infinite end.

2.3. Nondimensionalization

In order to make our model and solution universal, and to simplify mathematical
derivation, it is necessary to nondimensionalize our model problem, including the control
equation and the initial and boundary conditions.

Define the characteristic parameters as follows, characteristic length R, characteristic
time R/c0, characteristic velocity c0, characteristic stress E, characteristic moment ER3, and
characteristic rotary speed c0/R. Then, the nondimensional parameters are obtained as
original parameter divided by characteristic parameter:

x̄ =
x
R

, t̄ =
tc0

R
, M =

M
ER3 , ω̄ =

ωR
c0

, Ā =
A
R2 , Ī =

I
R4 , M0 =

M0

ER3 , β̄ =
βR2

c0
(17)

where a bar over a parameter means the nondimensionalized form of the corresponding
parameter.

The nondimensional form of controlling equation is then

∂2M
∂t̄2 +

∂4M
∂x̄4 = 0 (18)

The nondimensional form of initial conditions are
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M(x̄, 0) = M0 (19)

∂M(x̄, 0)
∂t̄

= −Āβ̄ (20)

The nondimensional form of boundary conditions are

M(0, t̄) =

{
M0(1− t̄/t0), 0 ≤ t̄ ≤ t0

0, t̄ > t0
(21)

∂M(0, t̄)
∂x̄

= 0 (22)

M(∞, t̄) = finite value (23)

∂M(∞, t̄)
∂x̄

= 0 (24)

Note that the boundary condition Equation (21) at x = 0 is a linear piecewise function
of time, suggesting that we can use the linear superposition principle to make our derivation
simple and convenient. Define M1(x̄, t̄) as part of the excited bending moment M(x̄, t̄)
with an infinite declining boundary condition on the entire time axis even when t̄ > t0,

M1(0, t̄) = M0(1− t̄/t0) (25)

Thus, the excited bending moment in our model with a linear piecewise boundary
condition can be written as

M(x̄, t̄) = M1(x̄, t̄)− H
(
t̄− t0

)[
M1(x̄, t̄− t0)−M0

]
(26)

where H(t) is unit step function, H(t) =
{

1, t ≥ 0
0, t < 0

.

2.4. Solution to Our Model

Laplacian transform method is adopted to solve the nondimensionalized model
problem. We first derive image function of excited bending moment using Laplacian
transform in the frequency domain, and then derive primitive function using inverse
Laplacian transform back in the time domain.

M̂(x̄, s) = L(M(x̄, t̄)) =
∫ +∞

0
M(x̄, t̄) exp(−st̄)dt̄ (27)

M(x̄, t̄) = L−1(M̂(x̄, s)) =
1

2iπ

∫ α+i∞

α−i∞
M̂(x̄, s) exp(st̄)ds (28)

where M̂(x̄, s) denotes the image function in the frequency domain with frequency variable
of s, and L,L−1 are symbols of Laplacian transform and inverse Laplacian transform,
respectively.

Laplacian transform of controlling equation Equation (18) is

d4M̂(x̄, s)
dx̄4 + s2M̂(x̄, s)− sM(x̄, 0)− dM(x̄, 0)

dt̄
= 0 (29)

Using initial conditions Equations (19) and (20), we can get

d4M̂(x̄, s)
dx̄4 + s2M̂(x̄, s)− sM0 − Āβ̄ = 0 (30)

General solution of Equation (30) usually contains four undetermined coefficients, but
considering the infinite boundary condition Equations (23) and (24) that bending moment
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is finite-valued and no external shear force is applied, the four undetermined coefficients
are simplified to two, and the simplified general solution of Equation (30) is then

M̂(x̄, s) =
Āβ̄

s2 +
M0

s
+ exp

(
−
√

s
2

x̄
)[

c1 sin
(√

s
2

x̄
)
+ c2 cos

(√
s
2

x̄
)]

(31)

where c1 and c2 are undetermined coefficients, and they can be derived from the remaining
boundary conditions Equations (22) and (25) of M1.

c1 = c2 = −M0 + Āβ̄t0

s2t0
(32)

The final form of image function of M̂1 is

M̂1(x̄, s) =
Āβ̄

s2 +
M0

s
− M0 + Āβ̄t0

s2t0
exp

(
−
√

s
2

x̄
)[

sin
(√

s
2

x̄
)
+ cos

(√
s
2

x̄
)]

(33)

Now, we get the image function M̂1(x̄, s) in the frequency domain, and then we are
going to start Laplacian transform inversion to get the primitive function M1(x̄, t̄) back
in the time domain. Note that the first two terms of Equation (33) can be easily inverse
Laplacian transformed:

L−1
(

Āβ̄

s2 +
M0

s

)
= Āβ̄t̄ + M0 (34)

Meanwhile, the last term of the image function Equation (33) is the product of two
parts, suggesting that we can employ the method of the convolution law of Laplacian
transform to get the primitive function. Given the known convolution law,

L−1[F(s)G(s)] = f (t) ∗ g(t) =
∫ t

0
f (t− τ)g(τ)dτ (35)

where ∗ is the symbol of the convolution operation and F(s),G(s) represent two image
functions in the frequency domain, while f (t),g(t) represent the corresponding primitive
functions in the time domain.

We can find and get the following relations of Laplacian transform inversion from
textbooks or manuals, such as [14]

L−1
[

M0 + Āβ̄t0

s2t0

]
=

t̄
t0
(M0 + Āβ̄t0) (36)

L−1
[

exp
(
−
√

s
2

x̄
){

sin
(√

s
2

x̄
)
+ cos

(√
s
2

x̄
)}]

=
x̄√
2π

t̄−
3
2 sin

(
x̄2

4t̄

)
(37)

According to convolution law of Laplacian transform, we have
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L−1
[(

M0 + Āβ̄t0

s2t0

)
exp

(
−
√

s
2

x̄
){

sin(
√

s
2

x̄) + cos(
√

s
2

x̄)
}]

=L−1
[

M0 + Āβ̄t0

s2t0

]
∗ L−1

[
exp

(
−
√

s
2

x̄
){

sin
(√

s
2

x̄
)
+ cos

(√
s
2

x̄
)}]

=

[
t̄
t0
(M0 + Āβ̄t0)

]
∗
[

x̄√
2π

t̄−
3
2 sin

(
x̄2

4t̄

)]
=
∫ t̄

0

t̄− τ

t0
(M0 + Āβ̄t0)

x̄√
2π

τ−
3
2 sin

(
x̄2

4τ

)
dτ

=

(
Āβ̄ +

M0

t0

)[
t̄− 2t̄S

(
x̄√
2πt̄

)
− x̄2

2
+ x̄2C

(
x̄√
2π t̄

)
− x̄

√
2t̄
π

sin
(

x̄2

4t̄

)]
(38)

where S(y) =
∫ y

0 sin
(

πz2

2

)
dz and C(y) =

∫ y
0 cos

(
πz2

2

)
dz are the Fresnel sine integral

function and Fresnel cosine integral function, respectively. Then, we get the primitive
function solution of M1,

M1(x̄, t̄) = M0 + Āβ̄t̄

−
(

Āβ̄ +
M0

t0

)[
t̄− 2t̄S

(
x̄√
2π t̄

)
− x̄2

2
+ x̄2C

(
x̄√
2πt̄

)
− x̄

√
2t̄
π

sin
(

x̄2

4t̄

)]
(39)

We can finally get the primitive function solution with the linear piecewise boundary
condition to our model using linear superposition principle as shown in Equation (26), and
we write it again for reading convenience.

M(x̄, t̄) = M1(x̄, t̄)− H
(
t̄− t0

)
[M1(x̄, t̄− t0)−M0] (40)

Note that, β̄ represents curving rate indicating the intensity of the initial bending
or the initial bending speed, and greater value of β̄ reveals intensely dynamic bending,
but in our model the bent of the half-infinite spaghetti stick is assumed to be quasi-static,
implying β̄ = 0. Therefore, we can rewrite M1 to a simpler form hereafter, and related
issues of dynamic bending will be discussed in next paper.

M1(x̄, t̄) = M0 −
M0

t0

[
t̄− 2t̄S

(
x̄√
2π t̄

)
− x̄2

2
+ x̄2C

(
x̄√
2π t̄

)
− x̄

√
2t̄
π

sin(
x̄2

4t̄
)

]
(41)

3. Results and Discussions
3.1. Quantitative Analysis

Now, we are going to investigate the influence of the introduction of the gradual
release declining time t0 on the induced flexural stress waves and excited bending moment
and thus the influence on the process of the secondary fracture during spaghetti bent break.

The physical meaning of t0 is the time duration of the gradually declined release of
initial bending moment at the free end dropping from original value M0 to zero. The
greater value of t0 reveals a longer time duration in the boundary condition at the free end,
and vice versa.

First, let us consider one of the special cases. We can see from Equations (40) and (41)
that when the value of t0 approaches to zero, or to say, when the gradually declined
release boundary condition of our model is simplified to a special case—the sudden release
boundary condition case, the solution is accordingly simplified to
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M(x̄, t̄) = 2M0S
(

x̄√
2π t̄

)
(42)

Equation (42) is the so-called self-similar solution in terms of excited bending mo-
ment with variables of distance and time, the form of which is the same as Equation (1).
It can be easily figured out that the extremum value of the excited bending moment from
Equation (42) is twice the maximum of the Fresnel sine integral although lacking of any
adjustable time parameter, that is, the excited bending moment will always get to 1.43 times
initial moment somewhere in the half-infinite stick regardless of how short the propagate
time will be, and then lead to a secondary fracture. Thus, the self-similar solution can only
demonstrate the inevitability of a secondary fracture, but intrinsically indicates an infinite
stress wave speed, which is not in line with the real situation.

Second, let us assume some typical non-zero values of t0 to investigate the difference
and improvement of the introduction of t0 and whether varying values of t0 affect the
excited bending stress waves and their propagation and how.

Assuming t0 = 1, we can get excited bending moment versus distance curves in
progressive time coordinates as shown in Figure 4. The gradually declined release of
initial bending moment excites a series of flexural stress waves from the free end of the
stick, and these flexural stress waves locally increase the excited bending moment to
beyond a critical limit and eventually lead to a secondary fracture. The excited stress wave
propagates through the stick, but will not affect the physical state far away from the wave
front. The excited bending moment at the free end of the stick gradually declines with the
propagation time from initial value down to zero when 0 ≤ t̄ ≤ t0, which is consistent with
the boundary condition Equation (14), and propagates through the whole stick without
any external value at the free end when t̄ > t0. Under any time coordinate, the bending
moment excited from the gradual release of the initial moment always monotonously
grows to a maximum value, and this maximum value increases with time, but will not
increase indefinitely. It can be seen from Figure 4, and also can be proved mathematically
from the analytical solution, that the maximum excited bending moment Mmax has an
asymptotic limit value of twice the maximum of the Fresnel sine integral, being 1.43.
The difference between non-zero valued t0 case and approaching zero valued t0 case lies on
the necessity of a certain propagate time when the excited moment grows to some certain
value. Therefore, the introduction of gradually release boundary condition of our model
brings an adjustable characteristic time parameter, and accordingly provides a possibility
to predict the intrinsic fragmentation time and fragmentation length.

Figure 4. Schematic of excited bending moment versus distance when t0 = 1.
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Then, we extend the value of t0 from 1 to greater numbers, and cases of two typical
values of release declining time t0 = 10 and t0 = 20 are illustrated in Figure 5 and Figure 6,
respectively.

Figure 5. Schematic of excited bending moment versus distance when t0 = 10.

Figure 6. Schematic of excited bending moment versus distance when t0 = 20.

As can be seen from Figures 5 and 6, the linearly gradually declined release with
greater-valued time duration likewise excites a series of flexural stress waves propagating
from the free end of the stick to the infinite end and these flexural stress waves locally
increase the excited bending moment to beyond a critical limit and eventually lead to
a secondary fracture. Under any time coordinate, the excited bending moment always
monotonously grows to a maximum value, and the maximum value increases with propa-
gation time to an asymptotic extremum value of Mmax.

Figures 4–6 show the excited flexural waveform curves at progressive time coordinates,
and we can figure out that at the very beginning of both distance and time the excited
bending moment will rise to beyond its initial value, that is, at the very beginning as long
as the flexural stress wave is excited, the secondary fracture is about to happen, provided
that once the bending moment exceeds it initial value M0 a secondary fracture will start
up. However, experience and experiments from us and other scholars [11,15] suggest that
the secondary fracture will take place at a point with some certain distance from the first
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fracture point, which reminds that the crack criterion of the secondary fracture should be
not the same as the quasi-static first fracture.

Therefore, we adopt the weakest chain principle as the crack criterion of the secondary
fracture. The key to the criterion is that the secondary fracture will take place at the point of
the maximum value of the excited bending moment Mmax. However, in our model Mmax
is an asymptotic extremum which is actually unreachable through the whole bent process.
Therefore, we propose three typical value of 97%, 98%, 99%Mmax, the contour curves of
which are illustrated in Figures 7–9, respectively, when t0 = 1, 10, 20 with variables of
distance and time.

Figure 7. Contour curves when M = 97%, 98%, 99%Mmax at t0 = 1.

Figure 8. Contour curves when M = 97%, 98%, 99%Mmax at t0 = 10.
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Figure 9. Contour curves when M = 97%, 98%, 99%Mmax at t0 = 20.

Any point in a contour curve reaches the set value with the corresponding spacial
coordinate and time coordinate, and the point in the contour curve who owns the minimum
value of time is believed to be the case when and where a secondary fracture is about to
happen, and is marked. It can be seen from Figure 7 that when t0 = 1, the fracture distances
are 5.6, 6.3, and 7.8 times nondimensional length or radii of gyration respectively with
progressive set critical moment from 97%Mmax to 99%Mmax, which indicates that greater
set critical value of bending moment leads to greater value of fracture distance, and vice
versa, and Figures 8 and 9 share the same fact with greater values of t0. Meanwhile, the
fracture time are 3.1, 3.7, and 5.3 times nondimensional time, respectively, when t0 = 1,
which indicates that greater set critical value of bending moment as well leads to greater
value of fracture time, and vice versa, and cases with greater values of t0 share the same
fact.

It also can be seen from the three contour curves that when the set value is the
same, for instance 99%Mmax, the fracture distance are 8, 25, and 35 times nondimensional
length or radii of gyration and the fracture time are 553, 107 times nondimensional time
at t0 = 1, 10, 20, respectively, indicating that greater value of t0 leads to greater value of
fracture distance and fracture time, and vice versa.

As discussed above, we investigate the effect and influence of release declining time on
the secondary fracture process from one perspective of the contour curves with variables of
distance and time, and subsequently we are going to continue to investigate from another
perspective of the envelope curves of the maximum excited bending moment from the
excited flexural waveform curves such as Figures 4–6. In fact, we provide Figure 10 of
envelope curves extended to seven different values of t0 along spatial distance. We can
see from the curves that whatever value t0 takes, as long as it is non-zero, the maximum
bending moment will always progressively increase and then to the asymptotic extremum
value of 1.43 times initial value. However, greater value of t0, or longer release declining
time duration, leads to farther distance when the excited moments reach to some certain
set value marked in our schematic, and vice versa.
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Figure 10. Envelope schematic of maximum excited bending moment with different t0.

Meanwhile, Figure 10 reveals improvement and advantage between solutions to our
gradual release model and the sudden release model, that by introducing a non-zero valued
release declining time t0, the excited maximum bending moment will not directly increase
to its asymptotic extremum, but will undergo a certain time duration and distance before
get to some set critical value. Therefore, a characteristic time parameter is brought into
solution when the release declining time t0 is brought to the boundary condition, which
is an adjustable time parameter to indicate further understanding towards secondary
fracture during spaghetti bent break. As a result, as long as we give a crack criterion of the
secondary fracture in terms of bending moment, we are able to get the fracture distance
and fracture time from our solution, which are also the characteristic fragmentation length
and the characteristic fragmentation time of the secondary fracture.

3.2. Estimated Value of t0

Subsequently, let us discuss what value of t0 should be taken physically and theoreti-
cally.

According to the linear elastic theory, the ultimate crack speed is Rayleigh wave speed
(cR). However, Schardin and Struth [16] found that the maximum velocity reached by the
fast impact crack is material characteristic speed and less than the Rayleigh wave speed.
This result was confirmed in other materials using different measurement methods, such
as for noncrystalline materials with crack speed range of 0.4 to 0.7cR [17], and for crystal
materials ranging from 0.63 to 0.90cR [18]. These studies showed that the ultimate crack
speed is constant for each material and occupies a specific proportion in the elastic wave
speed.

For linear elastic material of positive Poisson’s ratio, the Rayleigh wave speed equals
0.862–0.955 times of the shear wave speed (cs). Moreover, the shear wave speed is about
0.577–0.707 times the elastic wave speed (c0). Therefore, the Rayleigh wave speed cR equals
to 0.497–0.675 times the elastic wave speed c0.

This means that the crack speed is about 0.199–0.473 of the elastic wave speed for
noncrystalline material such as spaghetti sticks. As a result, the time duration of the first
fracture during spaghetti bent break is the stick thickness h divided by crack speed,

h/(0.199− 0.473)c0 = 4R/(0.199− 0.473)c0 = (8.5− 20.1)t̄ (43)
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The result in Equation (43) is just the release declining time in our model, or the
estimated value of t0. Therefore, under linear elastic theory, the value of t0 should be taken
as 8–20 times nondimensional time.

Moreover, in fact, the research of the dynamic fracture process of a long rod subjected
to pure bending, mainly the first fracture, was originated from Freund and Herrmann’s
work [19]. They reported that the crack tip rapidly accelerates to near the characteristic
terminal speed, maintains this speed to travel through most of the stick thickness h, and
then decelerates quickly. They also presented that the bending moment on the fracture
section decreases monotonically down to zero with a time duration of 5c0t/h, which is
20c0t/R or 20 times the nondimensional time in our model. Later works by Adeli [20] and
Levy [21] further investigated the dynamics of this process and shared the same results
of the crack tip transmission time and the moment declining time. In addition, numerical
simulation results by the authors suggests the time duration of the first fracture of brittle
elastic material subjected to four points bending is 17 times nondimensional time.

As a result, that the value of t0 is estimated as 8–20 is reasonable, and we can figure
out from Figure 10 that the fracture length between the first and second crack is 22–34 times
nondimensional length or 6–9 times stick thickness accordingly, when 99%Mmax is chosen
as the set critical value.

3.3. Experiments

Experimental bent break processes of spaghetti stick are illustrated in Figure 11. In our
experiments, the spaghetti sticks were from the traditional spaghetti pasta of Barilla No.5,
with length 240± 5 mm and diameter 1.72± 0.02 mm. Image recordings were performed
using high-speed camera FASTCAM SA1.1 (Photron, Tokyo, Japan) with resolution of
768× 640 and shooting speed of 12,000 fps. Experiments showed that the first fracture
usually took place at a point near the middle of the stick, and continued to behave secondary
fractures after a certain time and distance from the point of first fracture, suggesting an
approximation of 6–13 times stick thickness between the first and the second crack, which
is in general accordance with data in Figure 10 when 99%Mmax is chosen as the set value
for the secondary fracture, and are also in good agreement with data reported in [15].

Figure 11. Experimental process of spaghetti break bent.

Therefore, we adopt 99%Mmax as the set value of the secondary fracture during
spaghetti bent break. Subsequently, we can figure out the fragmentation length between the
first and the second crack is 22–34 times nondimensional length or 6–9 times stick thickness
from Figure 10 when we adopt 8–20 as the estimated value of release declining time.

4. Conclusions

In this paper, we attempted to further understand the secondary fracture during
spaghetti bent break.
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We propose a half-infinite model that mimics the physics, introduces a gradual release
boundary condition—a linearly release declining time t0, and thus brings an adjustable
time parameter related to fragmentation length and fragmentation time to our model,
which improves previous sudden release model, fixes the defects, and agrees better with
the real situation.

We derive a specific analytical solution in terms of excited bending moment using
Euler–Bernoulli beam theory, and point out that the gradually declined release of the initial
moment leads to a burst of flexural stress waves, and these waves locally increase the
excited bending moment in the stick and progressively to get to the maximum value, and
eventually leads to the secondary fracture.

The excited moments increase with time and distance, and have an asymptotic ex-
tremum value of 1.43 times initial moment. Unlike the sudden release case, the gradual
release in our model requires and gives certain distance and time when the excited bending
moment reaches its extremum value, which results in a possibility to predict the detailed
fracture parameters such as fragmentation length and time of the secondary fracture.

We suggest 8–20 as reasonable values of gradual declining release time t0 and 99%Mmax
as the critical value of the secondary fracture, and as a result, the fragmentation length
between the first and secondary fracture is 6–9 times greater than the stick thickness, which
is in general accordance with experimental data.
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