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A compact integrated system-on-chip (SoC) architecture solution for robust, real-time, and on-site genetic analysis has been
proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR
prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for
effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLS artificial neural network (ANN)
processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic
circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA) function was designed,
fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised
backpropagation (BP) algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained
new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function.
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1. INTRODUCTION

The development of low-cost portable instruments for
rapidly analyzing genetic assays would significantly advance
the level of medical services globally. The polymerase
chain reaction (PCR) amplification and the capillary elec-
trophoretic (CE) techniques are often adopted for genetic
analysis. A complex system that can process full PCR
amplification and data analysis tasks usually involves inte-
gration of control, optical, thermal, fluid channel, and
data acquisition systems. For example, a portable system
providing full PCR-CE functions was developed earlier
for genetic analysis [1]. The system demonstrated the
feasibility of on-site genetic analysis. However, the expense
to build such a system is considered relatively high. The
entire integrated system consists of multiple PCR chambers,
heaters, sensors, solid-state laser excitation light source,
fluorescence detection optics, electronics, CE separation
microchannels, and power supplies. The data was collected
and processed in a portable computer. Recently, a real low-
cost (~10US$) pocket-sized PCR thermocycling device has
been developed based on a smart technique of simultane-

ously pseudoisothermally heating multiple zones of a loop
channel for PCR amplification [2]. This thermocycler does
not contain the CE separation, the fluorescence detection,
and the data analysis functions. Theoretically, multiple PCR
amplification results can be rapidly generated in parallel and
displayed simultaneously by using multiple of these low-
cost devices. Therefore, patterns of an array of the PCR
resulted samples can potentially be generated similar to
the genetic assay patterns on a microchip. Moreover, the
integration of PCR and electrochemical (EC) transduction
functionality on microfabricated silicon/glass-based devices
for DNA amplification and detection was shown successfully
[3]. Their microfabricated device needs to operate with
external control and data-acquisition systems.

Most of the research efforts for PCR analysis tools were
focusing on the development of the PCR microdevices, the
associated thermal systems, the optical systems, and the data
analysis software tools. However, to our best knowledge,
the data acquisition and analysis system for examining PCR
samples or assays is usually a computer equipped with
specific PCR analysis software but not a compact hardware
solution.
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Regarding the goal of building a real compact PCR
analysis system that can rapidly find and analyze the
desired genetic patterns, the existing data acquisition and
analysis systems (e.g., portable computers and interfaces)
are considered relatively large in size and heavy in weight.
In addition, human inspectors cannot recognize the genetic
assay patterns as easily as written characters with explicit
meanings. Manual massive PCR data analysis can be very
time consuming. Therefore, people involved in “the human
genome project” have used perceptron-like neural networks
for helping to recognize the DNA fragments with specific
functions [4]. For gene-recognition purpose, a perceptron
was first trained by using the datasets consisting of nucleotide
sequences of known functional sites (e.g., transcription
initiation sites (promoters), transcription termination sites
(terminators), or splice-junction sites). Patterns of frag-
ments of the entire DNA sequence were then fed to the
perceptron nucleotide by nucleotide to check if any site of
interest appears at a particular position in the fragment.
In the protein coding region recognition task by Guan
et al. [5], their multisensor /neural network successfully
identified 96% of the 17,576 sequence positions as coming
from coding or noncoding regions. In the splice junction
recognition experiment, the resulting recognition rate was
99% for acceptor junctions and 96% for donor junc-
tions.

Nonetheless, if the genetic analysis task needs to be con-
ducted on a hazardous or dangerous field (e.g., potentially
disease-contagious environment), a compact, autonomous,
and even disposable PCR data analysis system would be
preferred. Therefore, by taking advantages of the VLSI
microfabrication technologies and artificial neural network
theories, we proposed a microsystem consisting of a unique
optical configuration setup, a differential logarithm sensor-
processor array chip, and an ANN SoC processor chip for
fast recognizing and analyzing the PCR prepared genetic
patterns.

In typical PCR amplification procedure, a dual-labeled
(i.e., for sample and reference channels) assay design is
commonly used for identifying differentially expressed genes.
This method also reduces the sources of variability/noise
due to aspects of individual spot that affects both specimens
similarly [6]. In order to accurately calculate the density
of the sample DNA material in a particular dot/well after
the PCR amplification, the integral of the total fluorescence
intensity (presumably representing the density of the DNA
materials inside the dot/well) from the topological profile of
the dot/well is usually computed. The logarithmic value of
the ratio of the two intensities of the fluorescent-dye-labeled
specimens (one for the sample specimen, the other for the
reference specimen) measured from the same dot/well is
calculated based on the fluorescence assay image. The ratio of
the two intensities would provide the normalized population
of the genetic material in the dot/well disregarding the
initial population density before PCR amplification. The
logarithmic operation would amplify the small signals. In
most of the commercial available solutions, the fluorescence
assay image is usually scanned by a color scanner with high
resolution and then transferred to a computer for image

analysis. The profile analysis software usually computes the
normalized intensity of dot/well after dot/well sequentially.

The intensity of fluorescence light is usually relatively
low. Using higher excitation light intensity can lead to
brighter fluorescence patterns. Increasing the integral of
detection time can enhance the received fluorescence pat-
terns. However, lower power consumption and faster detec-
tion are preferred. Furthermore, some fixed-pattern noises in
the input pattern may exist (e.g., fixed pattern noises created
by scattered lights, nonuniformity of the responsivity of the
detector array). These noises may introduce errors to the
measurement of the density of the DNA materials.

In order to fast parallel-process the data and resolve the
ambiguity induced by the noises in the data analysis task,
a trained artificial neural network is considered a solution.
The parallel processing capability comes from the nature
of the ANN’s multiple input architecture [7-9]. In contrast
with the conventional sequential data analysis methods, the
data analysis throughput would be increased linearly as the
number of dot/well increases. Regarding potential noises, the
ANN will automatically take the noises into calculation in
the latter recognition phase because the ANN can learn from
the training patterns that contain the fixed pattern noises
in the learning phase. In addition, because of the natural
capability of associating noisy input patterns with output
index of a trained ANN, noises introduced by other factors
will not significantly affect the ANN’s recognition capability.
In conjunction with the natural capabilities of an ANN listed
above, a signal amplification stage that can augment the low-
fluorescence input before the ANN stage would help the
ANN to acquire data more reliably, and thus result in a more
robust data analysis capability of the entire system.

2. BIOCHIP MODULE ARCHITECTURE

We proposed a hardware microsystem that is suitable for
real-time, on-site, robust genetic fluorescence data analysis
(Figure 1). This envisioned biochip module architecture
consists of an on-chip assay with an array of clusters of dual-
labeled genetic dots/wells, a dual-color beams module, an
imaging lens, a bioimaging optoelectronic microchip with
coated color filters (Figure 2), a parallel analog data-transfer
bus (optional depending on the implementation method),
and an artificial neural network (ANN) module for image
analysis.

The operational function of each module is explained
below along the optical and electrical signal pathways. The
dual-labeled genetic dots/wells are simultaneously excited by
two monocromatic excitation beams (e.g., 532 nm with a
bandwidth of 10 nm from a green diode laser pointer source
for the cyanine Cy3 dye, and 635nm with a bandwidth
of 10nm from a red solid-state diode laser source for the
cyanine Cy5 dye) according to the receiving bandwidths
of the sample and the reference channels. The assay can
be either front-side or backside illuminated as long as a
clear fluorescence image of the dot/well array is generated.
Two fluorescence patterns with different peak wavelengths
are produced (e.g., peak value at 570nm from the Cy3
dye and peak value at 670 nm from the Cy5 dye, the two
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FiGure 1: (a) Hierarchical diagram of the proposed biochip microsystem for genetic assay recognition. (b) Schematics of a three-layered
ANN and the preceding differential logarithm stage. The system of dual-labeled gene assay, dual-color beam module, and imaging lens is
not shown in this schematic diagram. The thin-film color filters coated on top of the sample and reference channels are represented by the

red and green boxes.

spectral profiles are highly distinguishable), and imaged onto
the bioimaging chip through an imaging lens. Each unit
on the bioimaging chip contains two sensor channels. One
sensor is coated with a thin-film microfilter for wavelength
A (e.g., 580 nm with a narrow transmission bandwidth of
approximately 40 nm of a deposited thin-film filter [10]).
The other sensor is coated with a thin-film micro-filter for
wavelength B (e.g., 675 nm with a transmission bandwidth of
40 nm). The two optical signals are received simultaneously
and processed separately through the posterior electrical
circuits. A bioimaging chip made of an array of differential
logarithm circuitry was designed (Figure 2 (bottom left)).
Two analog photoelectric voltage signals produced by the
separated logarithmic amplifier circuit channels are fed
continuously into the differential pair circuit. The difference
of the two input voltages is then represented by the output
voltage from the differential pair circuit. The calculation of
the logarithm of the ratio of the sample to the reference
fluorescence intensities is effectively accomplished in this
chip. The analog output from each unit in the bioimaging
chip is then sent to the posterior artificial neural network
module through the parallel data bus.

The ANN stage is responsible for filtering and rec-
ognizing the desired assay cluster patterns. Fixed pattern
noises and noises caused by the nonlinear circuitry are
expected to be accommodated after the ANN is trained.
Either unsupervised or supervised learning algorithm can
be adopted to train the ANN. The ANN in the biochip
module architecture can be implemented by either hard-
ware or software. In this work, we provide a hardware
implementation (i.e., a weight-reconfigurable winner-take-
all ANN chip suitable for the Kohonen self-organized
filter algorithm [7]) for the unsupervised version, and a
computer-simulated ANN (i.e., a feedforward ANN using

the back-propagation (BP) learning algorithm [8, 9]) for
the supervised version. In the hardware implementation,
the weight values are reconfigurable and stored in memory
devices. By adopting a massively paralleled neural computing
paradigm and a mixed-signal deep submicro fabrication
technology, the ANN can be implemented on a single VLSI
chip. A row/column parallel data flow architecture is used to
connect all on-chip systems, and to reduce data bandwidth
limitations due to conventional data bus architectures.
Because the weak fluorescence signals are enhanced by
the imaging chip and automatically analyzed by the noise-
tolerable neural network module, the entire architecture
system is expected to robustly conduct the recognition task.

3. HARDWARE MODULE IMPLEMENTATION
3.1. Bioimaging chip and its nonlinear circuitry

The proposed bioimaging chip consists of an array of dif-
ferential logarithm processor unit and row/column readout
circuit. A prototype layout of an array of 15 x 15 differential
logarithm unit is shown in Figure 2. Each unit contains two
size-matched logarithmic amplifier circuits and a differential
pair circuit. As described in the previous section, each unit
produces an analog voltage output to represent the difference
between the logarithms of the sample (experimental) input
and the reference (control) input.

The key logarithmic amplifier circuit is designed after
the works of Chamberlain and Lee [11] and Mead [12],
but with an additional n-well/p-sub junction layer for
effectively isolating cross-talk noises among the logarithmic
amplifier processor unit array.Chamberlain and Lee first
adopted the intrinsic vertical #-p junction (n*-diffusion/p-
sub) under the source terminal of an NPN transistor to
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FiGure 2: (right) Proposed layout of a 15-by-15 unit cell array of the differential logarithm circuitry (2.2 mm by 2.2 mm), (top left) an
enlarged view of the layout of a single cell with pseudo thin-film monochromatic filter layers, and (bottom left) the schematic diagram of a

single unit cell.

function as a reverse-biased photodiode. A wide dynamic
range silicon photodetector can be implemented [11]. Mead
has a similar design by using a vertical parasitic bipolar
transistor for photosensing part [12]. This vertical bipolar
is a natural byproduct structure in the CMOS process.
The p*-diffusion/n-well/ p-sub structure is the PNP bipolar
transistor existing in any PMOS transistor in an isolated
section of n-well region. This design is the fundamental
building block of his silicon retina.

The optoelectronic logarithmic amplifier circuit for
each channel in this work was fabricated by using the
MOSIS AMI 1.5-um 5-V ABN BiCMOS n-well process
as shown in Figure 3 [13]. The photodetector is made of
a vertical n-well/p-base/n*-emission bipolar detector. Two
diode-connected NMOS transistors are connected in series
with the bipolar detector. The detecting area collects the
fluorescence inputs. Mainly due to the diode configured
NMOS transistors, the V-I characteristic of this normally
“OFF” and low-power circuit behaves logarithmically while
operating in the subthreshold region, and similar to a square
root curve (~+/Ips) while operating in the saturation region.
This logarithmic amplifier circuit can detect light intensity
as low as approximately 10 nW and consumes energy from
100nW to 2uW (Vpp: 5 Volts) depending on the incident
intensity and wavelength.

3.2. Weight-reconfigurable artificial neural
processor chip

The SoC architecture design of the weight-reconfigurable
ANN processor consists of an input neurons array, a
programmable synapse weight matrix, an array of output
neurons, a winner-take-all module, and a membership

Output voltage (volt)

1 10 100 1000 10000 100000 1000000

Input optical power (nW)
—e— Output voltage (2 NMOS)

FiGure 3: Output voltage of a single channel of saturated log-
arithmic circuit as function of the input optical power (input
wavelength: 830 nm). An optical micrograph of the single-channel
logarithmic amplifier circuit and its correspondent schematic
circuit diagram are shown.

encoder [14, 15]. The input neurons array has M input
neurons that are used to buffer the input vector. Each
input vector has M analog components (generating from
the preceding bioimaging chip). The programmable synapse
weight matrix is composed of M X N synapse cells for the
NM-dimensional codevectors. The output neuron array is
composed of N summing neurons with selectable sigmoid
or sigmoid-logarithmic transfer functions. The winner-take-
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F1GUrE 4: The optical micrograph of the prototype ANN chip that
is wire-bonded to a ceramic package. The silicon chip die size is
4.6 mm X 6.8 mm.

all module consists of N competitive circuit cells, which
perform parallel comparison among N inverted distortion
values and choose a single winner. The membership encoder
circuit is an N-to-n decoder that uses binary codes to encode
N classes.

The ANN processor works as a learning accelerator in
the learning phase at a time complexity O(1) for processing
each learning iteration. Its programmable weight matrix can
be either generated by using the on-chip self-organization
learning procedure or be uploaded by the BP training
subsystem [15]. The ANN processor also realizes a full-search
vector quantization process for each input vector at a time
complexity O(1) in the recognition phase.

This ANN processor can also support the multiple
winner-take-all scenario (e.g., more than one classes that
the input assay pattern may belong to, or multiple desired
patterns that the input assay pattern are similar to). After a
winning pattern (the most likelihood) was picked out from
the N prestored classes/codevectors in the recognition task
according to a particular analog input vector, the associated
circuitry of this winning pattern will be disabled in the next
recognition iteration. Therefore, a second-winner pattern
(the second likelihood) can be chosen later according to the
same input vector. By repeating the procedure stated above,
multiple-winner patterns could be chosen for the current
input pattern eventually.

The ANN chip can learn unsupervised if the selforgani-
zation learning procedure is adopted. In this case, the ANN
chip can perform on-chip learning in the learning phase.
For the supervised learning version (e.g., back-propagation
algorithm or its variations), the weight update procedure
usually involves complex computations that require further
signal processing circuits in order to achieve the on-chip
learning purpose. Further real estates on chip are then
required to accommodate the circuits.

A prototype ANN SoC chip using a scalable 2-ym 5-
V CMOS technology was designed, fabricated, and tested.
Its chip layout and design features are shown in Figures 4
and 5, respectively. This prototype chip includes 25 input
neurons, 25 X 64 weight cells, 64 output summing neurons,
64 winner-take-all cells, and a 64-to-8 membership encoder.
The estimated power dissipation is 50 mW at 10 MHz. Its

equivalent computation power is about 16 giga-operations
per second.

An engineering version of the ANN SoC SiP (silicon
intellectual property) has been under development to enable
the proposed miniaturized PCR system-on-chip design
using the TSMC 130-nm 1.2-V CMOS technology. The
scalable ANN prototype chip can be converted into a
design containing 100 input neurons, 100 X 256 weight
cells, 256 output summing neurons, 256 WTA cells, and
a 256-to-8 membership decoder. The envisioned chip size
is approximately 1.2mm X 2mm. Its estimated power
dissipation is about 120 mW at a 100D vector throughput
rate of 100 MHz. Its equivalent computation power is about
2.5 tera-operations per second. Because of this ANN SoC SiP
design, the feasibility of the proposed low-power, real-time,
and on-site PCR assay analysis on an integrated microsystem
becomes promising. The proposed microsystem would be
useful especially in a scenario of finding desired or suspicious
biopatterns in a massive amount of data.

4. SIMULATIONS AND EMPIRICAL RESULTS

4.1. Numerical simulations of biosignature and
optical character recognition

In this section, two pattern-recognition tasks were computer
simulated to demonstrate the feasibility of using an ANN for
our proposed biochip module architecture. A novel sigmoid-
logarithmic function is also integrated within the learning
algorithm (i.e., back-propagation algorithm) to demonstrate
the capability of recognizing relatively dim patterns. The
study in this section will assist our future circuit design and
may contribute to the new techniques for medical image
processing.

In most of the fluorescence spectroscopy applications,
the fluorescence patterns usually have relatively low intensi-
ties and are difficult to analyze. We know that high-excitation
intensities and long exposure time can lead to stronger
fluorescence signals. However, low-energy consumption and
fast detection are the design goals for our biochip module
architecture. Therefore, if the posterior ANN of our biochip
architecture can analyze dim fluorescence patterns better, we
can potentially use relatively lower energy and shorter time
to conduct the analysis task.

Regarding the neural network learning algorithm, the
simplest transfer function that we can use in the algorithm
is a linear ramp function (e.g., linear slope between 1 and
—1, flat and continuous outside [1, —1]). However, higher
recognition capability can be achieved by using nonlinear
transfer function in the neural network learning algorithm.

The nonlinear sigmoid (logistic) transfer function is usu-
ally adopted in artificial neural network models because its
derivative can be easily obtained algebraically. For example,
we define A(h) as a sigmoid function:

1

A0 ety

(1
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FIGURE 5: A system-on-chip architecture design for the winner-take-all selforganization artificial neural network chip.

TABLE 1: Biosignature and OCR recognition results (Unit: counts of patterns correctly recognized in one test dataset. OCR: each test dataset
contains 100 characters. BIO: biosignature recognition task, each test dataset contains 20 patterns.)

Transfer function (learning rate)

Gray level to original data Hybrid sigmoid-logarithmic

1/(1 + exp (—h)) 1/(1 + exp(—5h))

(7 = 0.03) (n = 0.03) (7 = 0.0018)
BIO OCR BIO OCR BIO OCR
1 (original) 20 64 20 79 20 63
1/3.16 20 58 6 48 13 65
1/10 20 58 25 1 37
1/31.6 20 47 1 25 1 25
1/100 19 32 — — — 25
1/316 17 26 — — — —
1/1000 17 25 — — — —
1/10000 17 25 — — — —

The first derivative of A(h) can easily be calculated by
using the identity A" (h) = A(A — 1). Therefore, computation
complexity and cost of hardware or software can be reduced.

In addition, a single-layer feedforward network (SLEN)
with any bounded continuous nonconstant activation
(transfer) function or arbitrarily bounded activation (trans-
fer) function with unequal limits at the infinities can form
decision regions with arbitrary shapes [16-18]. A multilayer
perceptron architecture naturally consists an SLEN in its
structure. As long as a function has unequal upper bond,
lower bond, and monotonic behavior, it can be used as a
transfer function.

For the above computational advantage and theoretical
reasons, we proposed a novel piecewise sigmoid-logarithmic
function that also yields similar mathematical identities and
computational benefits:

' 1
Trexpchy <7
—aln(B—h), -2<h<0,
A(h) = 4 (2)
aln(B(h+98)), 0<h<2,
1
Tvepcn)  25h
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In this piecewise function, « = 0.050095635, 8 =
1000, & = 0.01, and h is the net weighted input to the transfer
function A(h). The central part (net input ranging from —2
to 2) of the original sigmoid function was replaced by two
asymmetric pieces of logarithmic curves.

To demonstrate the capability of recognizing dim pat-
terns by using a feedforward ANN with sigmoid-logarithmic
transfer function, a simple pseudo genetic assay analysis
task and an optical character pattern-recognition task were
simulated. MATLAB programs were created to train an ANN
and examine its performance.

A 100-100-2 (100 inputs, 100 hidden neurons, and
2 output neurons) artificial feedforward neural network
was chosen to perform both recognition tasks. For the
biosignature recognition, 20 patterns/clusters on a microchip
genetic assay were prepared (Figure 6). For simplicity, we
used the pixellated image of a fluorescence image of the
sample material to represent a normalized (i.e., after taking
logarithmic value of the ratio of the sample to reference
signals) but noisy image for the analog input to the ANN.
Additional seven datasets by rescaling the gray level of the
original dataset with different rescaling factors were also
prepared (factors: 1/3.16, 1/10, 1/31.6, 1/100, 1/316, 1/1000,
1/10000 of the original gray level). Noticing that, both
brightness and contrast levels of these new biopatterns were
reduced by the rescaling factor. The three desired biopatterns
(solid framed in Figure 6 that were randomly picked) are
what we were searching in a scenario of finding the designed
PCR assay cluster pattern of the subject with certain disease.

Similarly, in the optical character-recognition task, a
dataset containing 100 different alphanumeric letters 1, 2,
3, and 4 was prepared first (as shown in Figure 7). By
using the same rescaling factors (as listed in the biopattern
recognition), we generated the other seven datasets that
contain dimmer hand script patterns.

In both experiments, the digitized biopattern and char-
acter datasets were used for both training and testing the
artificial neural network. In contrast to the traditional
method of preparing independent training and test datasets,
the test datasets were assigned to be identical to the training
datasets in order to examine the feasibility of the proposed
ANN model with the sigmoid-logarithmic function.

For simplicity, the intensities of the high-resolution
pixels of each original fluorescence dot in Figure 6(a) were
averaged and replaced by a single super pixel in the pixellated
image in Figure 6(a). If the patterns with the lowest resolu-
tion (one pixel for one dot/well) can be correctly recognized
by the ANN, the patterns with higher resolution should be
recognized by the ANN with higher recognition accuracy. To
economically implement the bioimaging chip, one neuron
unit would be sufficient for receiving all the lights emitting
from the fluorescence profile of the imaging dot/well. The
results of this simulated ANN model would assist the future
design of the proposed architecture. The average of the
intensities of the pixels of the original fluorescence patterns
is considered simple yet physically reasonable.

The back-propagation training using sigmoid-loga-
rithmic transfer function and gradient descent method was
conducted to find a convergent weight configuration (with

fixed learning rate # = 0.03). A criterion is employed to
count the percentage of training data that has been learned
with an error less than 20%. In order to guide the weight
configuration closer to a convergence condition, the BP
training using regular sigmoid function was conducted first.
The BP training using sigmoid-logarithmic function was
conducted afterwards.

The entire procedure of the BP training algorithm
using sigmoid-logarithmic transfer function is described as
follows.

(i) Prepare the input patterns for the feedforward multi-
layer perceptron (MLP) neural network.

(ii) Assign the target values for the associated input
patterns.

(iii) Use the input patterns to train the multilayer per-
ceptron with sigmoid transfer function until the
criterion value becomes close to one. Now the weight
configuration is closer to a convergence condition for
latter training.

(iv) Use the weight values obtained in the previous
step as the initial weight condition for training the
multilayer perceptron with the logarithmic-sigmoid
transfer function. The regular BP algorithm using the
gradient descent method is again adopted. After the
criterion becomes one, the training is finished.

(v) Use this trained MLP with logarithmic-sigmoid
transfer function to recognize the test data set.
Examine the recognition accuracy.

The detailed conditions and pseudocodes of the BP
algorithm with sigmoid and logarithmic-sigmoid transfer
function are provided as the following.

The initial weight values for the first weight matrix W
and second weight matrix V were given randomly. The
range of these random weight values was set between —1
and 1. However, the range of the trained weight values was
unlimited. The input vector X was the vectorized pixellated
pattern. The associated target values D were given. The
learning rate (coefficient in front of the gradient partial
derivative) is parameter #. The number of iterations is
parameter ifer. The training data set was used for testing as
well to verify the feasibility of this proposed algorithm.

The pseudocode for the regular back-propagation
algorithm using sigmoid transfer function is listed in
Algorithm 1.

The pseudocode for the back-propagation algorithm
using the piecewise sigmoid-logarithmic transfer function is
listed in Algorithm 2.

4.2. Simulations results

The result of recognizing all of the normalized genetic
assay datasets by the trained 100-input-100-hidden-neuron-
2-output-neuron network is shown in Table 1 (BIO). The
network using new transfer function can still find one desired
biosignature in the dataset with factor 1/100 of the original
gray level. However, the network using conventional sigmoid
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FIGURE 6: (a) Fluorescence image of a sampled microarray of cDNA, Cy3 dye, and Cy5 dye mix (only Cy5 red fluorescence is shown) [19].
Each cluster consists of a 10 x 10 grid of sample dots. Each dot corresponds to the location of a cDNA probe to which mRNA from the cells
of interest have been bound. (b) Pixellated images of the clusters from the left microarray photo. Each cluster consists of a 10 X 10 pixel
array that mimics a normalized biosignature pattern. The first three randomly picked desired patterns (enclosed in the solid line frame) have
indices (0, 0), (0, 1), and (1, 0), accordingly. The rest unwanted patterns share index (1, 1).
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FiGURE 7: The picture of 100 different patterns of alphanumeric letters 1, 2, 3, and 4 used in the optical character recognition experiment.



J.-C. Lue and W.-C. Fang

Define input vector to the first layer that contains input
patterns X with —1 bias

Fori = 1 to iter
Calculate hidden neuron output using
sigmoid function

Define output vector from the hidden layer
that contains hidden neuron output and —1 bias

Calculate the final output using sigmoid function

Check the criterion of percentage of the input data
that has an error less than 20%

If all input data have errors less than 20%, stop

the training

Compute the first back-propagation error set
Compute the second back-propagation error set

Update the second weight matrix
Update the first weight matrix
End

ALGORITHM 1

Define input vector that contains input patterns X
with —1 bias

For i = 1 to iter

Calculate the hidden neuron output according to where
the net weighted input is falling in the range of the
piecewise sigmoid-logarithmic function

Define output vector from the hidden layer that
contains hidden neuron output and —1 bias

Calculate the final neuron output, the first back-
propagation error set, and the second back-propagation
error set according to where the net weighted input is
falling in the range of the piecewise sigmoid-logarithmic
function

Check the criterion of percentage of the input data

that has an error less than 20%

If all input data have errors less than 20%,

stop the training

Update the second weight matrix
Update the first weight matrix
End

ALGORITHM 2

transfer functions cannot distinguish biopatterns well in
the datasets with factor 1/3.16 of the original gray level or
below. Consistent recognition accuracy was obtained for the
optical character recognition (OCR) tasks (Table 1 (OCR)).
The network using new transfer function can recognize 32
characters in the dataset with factor 1/100 of the original gray
level but not the network with regular sigmoid function. The
recognition accuracies for datasets with a factor below 1/316
become constant because the network tends to recognize

one category perfectly according to the converged weight
configuration in this particular experiment.

5. CONCLUSION

A new optoelectronic multichip microsystem for real-time
field applicable robust dual-label PCR assay analysis was
proposed. This microsystem architecture contains a front-
end bioimage chip for analog signal conversion and augmen-
tation, and an artificial neural network for the autonomous
data analysis purpose. A differential logarithmic bioimage
chip is designed and presented. The typical data analysis
procedure of taking logarithm of the ratio of the normalized
post-PCR sample intensity is conducted effectively in this
differential logarithmic bio-image chip. A single channel
logarithmic circuit of the differential logarithmic bioimage
chip was designed, fabricated, and characterized. The weak
fluorescence signals can be amplified by this logarithmic
amplifier circuit for easier data analysis. Regarding the ANN
subsystem, an unsupervised hardware version: a weight-
reconfigurable winner-take-all ANN SoC chip suitable for
selforganized Kohonen filter algorithm, and a supervised
software version: a computer-simulated ANN using back-
propagation algorithm with a novel sigmoid-logarithmic
transfer function is presented. The back-propagation neural
network learning algorithm using the sigmoid-logarithmic
function was successfully simulated. The simulation results
show that a trained ANN using this new transfer function
can classify low-fluorescence patterns better than using the
conventional sigmoid transfer function. This software model
might be applicable to other medical image processing tasks.
In summary, by integrating the optical setup, the bioimage
chip, and the artificial neural network processor with
excellent performances and advantages listed previously, we
can envision the success of using this compact microsystem
to conduct on-site, real-time, noise-tolerable, and high-
throughput dual-labeled genetic expression analysis effi-
ciently.
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