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The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspec-
tives regarding physiological function regulation. The capacity of one GPCR to modify its
binding and coupling properties by interacting with a second one can be at the origin of reg-
ulations unsuspected two decades ago. Although the concept is interesting, its validation
at a physiological level is challenging and probably explains why receptor oligomerization
is still controversial. Demonstrating direct interactions between two proteins is not triv-
ial since few techniques present a spatial resolution allowing this precision. Resonance
energy transfer (RET) strategies are actually the most convenient ones. During the last
two decades, bioluminescent resonance energy transfer and time-resolved fluorescence
resonance energy transfer (TR-FRET) have been widely used since they exhibit high signal-
to-noise ratio. Most of the experiments based on GPCR labeling have been performed in
cell lines and it has been shown that all GPCRs have the propensity to form homo- or hetero-
oligomers. However, whether these data can be extrapolated to GPCRs expressed in native
tissues and explain receptor functioning in real life, remains an open question. Native tis-
sues impose different constraints since GPCR sequences cannot be modified. Recently,
a fluorescent ligand-based GPCR labeling strategy combined to a TR-FRET approach has
been successfully used to prove the existence of GPCR oligomerization in native tissues.
Although the RET-based strategies are generally quite simple to implement, precautions
have to be taken before concluding to the absence or the existence of specific interac-
tions between receptors. For example, one should exclude the possibility of collision
of receptors diffusing throughout the membrane leading to a specific FRET signal. The
advantages and the limits of different approaches will be reviewed and the consequent
perspectives discussed.
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INTRODUCTION
The analysis of the molecular mechanisms underlying cellular
processes reveals the existence of very complicated molecular
networks. Each of them is likely to constitute a platform to inte-
grate information. Membrane proteins such as G protein-coupled
receptors (GPCRs) are probably one of the first molecular inte-
grators upon cell stimulation. They lead to the activation of one
or various signaling pathways depending on the binding of full or
biased agonists. Indeed, GPCRs interact with G proteins and/or
proteins such as β-arrestins. Their integrating capacities are even
larger than expected since, during the last two decades, GPCRs
like other membrane proteins such as tyrosine kinase receptors
or ionic channels, have been shown to have the propensity to

Abbreviations: BRET,bioluminescent resonance energy transfer; FRET,fluorescence
resonance energy transfer; GFP, green fluorescent protein; RET, resonance energy
transfer; SLP, self-labeling protein; TR-FRET, time-resolved fluorescence resonance
energy transfer; YFP, yellow fluorescent protein.

oligomerize (Salahpour et al., 2000; Terrillon and Bouvier, 2004;
Milligan, 2010; Lohse et al., 2012).

The emergence of the GPCR oligomerization concept is chal-
lenging at different levels and consequently remains a controversial
issue. The first difficulty regards molecular and mechanistic
aspects. The ability of one GPCR to interact with identical or dif-
ferent GPCRs to form respectively homomers or heteromers opens
fascinating perspectives in terms of receptor functioning. How-
ever, as experiments have been performed on numerous receptors
models, no unifying mechanism regarding size of the oligomers,
their stability for example, seems to exist.

The second level regards physiology: the concept has essentially
been studied on receptors expressed in heterologous expression
systems and various parameters (level of expression, expression
of chimeric receptors, and localization of receptors) can deeply
impact receptor oligomerization. Whether the data can be extrap-
olated to physiological context is crucial. Moreover the exact role
of GPCR oligomers is far from being well understood and the
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impact of GPCR oligomerization remains to be established in
(patho-)physiology.

Various experimental strategies have been used to study GPCR
oligomers: binding experiment, biochemical, or biophysical
approaches. Among them, those based on resonance energy trans-
fer (RET) are probably the ones which exhibit the best resolution to
conclude to direct receptor interactions. Variants of energy trans-
fer strategies have been developed to explore specific aspects of
GPCR oligomerization. In a first part, major findings regarding
GPCR oligomerization are briefly reviewed and in the following
sections, characteristics, advantages and drawbacks of the various
RET approaches have been examined.

GPCRs FORM OLIGOMERS
As mentioned above, the concept of GPCR oligomerization
emerged two decades ago. The demonstration of the direct spe-
cific interaction between two proteins is far from being trivial.
Various pharmacological- and biochemical-based data have been
brought to support the concept of GPCR oligomerization. First,
complex curve profiles illustrating ligand binding on GPCRs have
been reported for various receptors and have been interpreted
as evidence for the existence of GPCR complexes (Mattera et al.,
1985; Wreggett and Wells, 1995; Armstrong and Strange, 2001;
Rios et al., 2001; Albizu et al., 2006; Springael et al., 2006; Bird-
sall, 2010), although other hypotheses can also be considered
(Chabre et al., 2009). Second, functional trans-complementations
upon chimeric or mutated receptor co-expression have been
reported for adrenergic α2 and muscarinic M3 (Maggio et al.,
1993), angiotensin 2 AT1 (Monnot et al., 1996), and histamine
H1 (Bakker et al., 2004) receptors. Third, co-immunoprecipitation
experiments illustrating the existence of GPCR complexes have
been reported for many receptors, for example for β2 adrener-
gic (Hebert et al., 1996), δ opioid (Cvejic and Devi, 1997), and
metabotropic glutamate mGlur5 (Romano et al., 1996) receptors.
Regarding co-immunoprecipitation data, it has been mentioned
that they are dependent on the experimental conditions used,
and notably on the nature of the detergent and that the func-
tional unit is the monomer (Chabre and le Maire, 2005). Finally,
disruptions of GPCR complexes by sequences corresponding to
VI and/or VII transmembrane domains (Hebert et al., 1996; Ng
et al., 1996) have been reported. All these data, although not
definitive, support the idea that GPCRs can form complexes.
However, they cannot prove the existence of direct interac-
tion between receptors. Moreover they raise questions regarding
the size, the stability, the regulation, and of course the role
of such complexes. Biophysical strategies and more specifi-
cally RET approaches have been developed to investigate these
questions.

SIZE OF GPCR COMPLEXES
Size of complexes is variable depending on the GPCR model.
Metabotropic glutamate receptors (mGluRs) form dimers, cova-
lent disulfide bridges connecting the extracellular domains of two
receptors (Pin et al., 2003) and no higher order oligomers were
found (Doumazane et al., 2011). By contrast, GABAB receptors
have the propensity to form heterotetramers (Maurel et al., 2008;
Comps-Agrar et al., 2011a). Regarding receptors of class A, large

complexes are been considered for rhodopsin (Fotiadis et al., 2003;
Fotiadis et al., 2006), and α1b receptor (Lopez-Gimenez et al.,
2007); receptors tetramers have been reported for dopamine recep-
tors (Guo et al., 2008) and monomers for neurokinin 1 receptor
(Meyer et al., 2006). It is noteworthy that experimental condi-
tions and more specifically receptor density, have been suspected
to impact receptor oligomerization (Chabre et al., 2009).

STABILITY OF OLIGOMERS
First only considered as monomer and then as stable oligomers,
GPCR monomers and higher order oligomers have now been
reported to co-exist. For example, co-existence of monomers
and dimers and equilibrium between these two forms has been
described for M1 muscarinic (Hern et al., 2010) and N-formyl
peptide (Kasai et al., 2011) receptors. Transient interactions
between β1 receptors have also been described, while stable inter-
actions were observed between β2 receptors (Dorsch et al., 2009).
Whether this equilibrium is regulated by ligand binding remains
an open question since, depending on the receptor considered,
contradictory results were reported: for example, muscarinic M1
receptors dimerize upon antagonist binding (Ilien et al., 2009) or
is insensitive to antagonists (Goin and Nathanson, 2006); somato-
statin receptor 2 dimer dissociates upon agonists binding (Grant
et al., 2004) and absence of ligand effect has been reported on
numerous GPCR models (for example, Albizu et al., 2010).

ROLE OF OLIGOMERS
The role of receptor oligomerization is probably the most crucial
question but is nonetheless quite poorly characterized. For few
receptors, GPCRs oligomerization has been described as essen-
tial for receptor trafficking. It has been well illustrated for the
GABAB receptor for which the targeting of GABAB1 subunit is
possible only if it interacts with GABAB2 subunit (Pagano et al.,
2001). Homodimerization of β2 adrenergic receptor has also been
reported to play a major role in exporting receptor from endoplas-
mic reticulum to the cell surface (Salahpour et al., 2004). Moreover
the selective activation of V1a or V2 receptors when engaged in an
heterodimer determines the internalization pattern of the receptor
(Terrillon et al., 2004).

Oligomerization also plays key roles in receptor activation.
Once again this has been well illustrated by the GABAB oblig-
atory heterodimer model. The GABAB1 subunit is responsible
for orthosteric ligand binding whereas the GABAB2 subunit acti-
vates G proteins (Kaupmann et al., 1998; Galvez et al., 1999, 2000;
Duthey et al., 2002). The generalization of such a crosstalk to
other heteromer models (oligomers of different kinds of receptors)
remains to be established. It is noteworthy that heterodimerization
can impact the pharmacological profile of both receptor. This has
been reported for example for opioid receptors (Jordan and Devi,
1999). In the case of homomers (oligomers of identical recep-
tors), their role is not as clear. A few hypothesis and models have
shown the possibilities offered by such complexes (Durroux, 2005;
Han et al., 2009; Rovira et al., 2010). However, their relevance in
vivo still remains to be established as homomer formation could
impair GPCR function (White et al., 2007; Arcemisbéhère et al.,
2010; Comps-Agrar et al., 2011a), although the opposite has also
been established (Pellissier et al., 2011). Identifying oligomeric
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complexes and understanding how oligomerization can modify
receptor signaling is crucial in pharmacology and drug discov-
ery as it can provide unique targets and new ways to specifically
address pathologies (Fribourg et al., 2011).

EXISTENCE OF OLIGOMERS IN NATIVE TISSUES
Most of the experiments regarding receptor oligomerization have
been performed on receptor expressed in cell line and whether the
results can be extrapolated to receptors in vivo remains to be estab-
lished. Oligomerization of mGluRs and GABAB receptor has been
widely accepted. Regarding class A receptors, oxytocin receptor
oligomer has been reported in mammary gland in lactating rate
(Albizu et al., 2010). Functional trans-complementation of mutant
receptors in the absence of functional wild-type receptors in mice
(Rivero-Müller et al., 2010; Vassart, 2010) strongly suggests LH
receptor oligomerization in vivo. Hetero-oligomerization in vivo
has also been suspected for various GPCR pairs although direct
interactions between receptors were not formally demonstrated
(González-Maeso et al., 2008; Albizu et al., 2011).

PRINCIPLE OF RESONANCE ENERGY TRANSFER
In the 1990s, the most popular experimental approaches to
demonstrate receptor oligomerization were Western blot and co-
immunoprecipitation assays, although false positive interactions
can sometimes be observed. These techniques have proved the par-
ticipation of both proteins to the same complex but not a direct
interaction between two receptors.

Only a very few experimental approaches offer a spatial reso-
lution high enough to conclude to a real interaction. Experiments
based on RET principle are probably the most adapted to demon-
strate a proximity between two proteins. Indeed, RET, formalized
by Theodor Förster in the middle of the 20th century, consists
in a non-radiative energy transfer occurring between two part-
ners, one being considered as the donor the other as the acceptor
(Förster, 1948), which have to fulfill three conditions. First, donor
and acceptor should present energy compatibility, i.e., donor emis-
sion spectrum and acceptor excitation spectrum should overlap.
Second, the donor and the acceptor should present compatible
orientation; the transfer is maximal when the donor and accep-
tor transition dipole moments are parallel and minimum (equal
to 0) when they are perpendicular. Finally, energy transfer can
take place only if the two partners are in proximity. The efficiency
of the transfer is inversely proportional to the sixth power of the
distance.

E = R0
6

R0
6 + r6

where R0 is the distance corresponding to 50% energy transfer
efficiency. Although R0 depends on the spectral compatibility of
the two species and their alignment, it is generally in the range of
30–60 Å. Therefore, because of the spatial resolution offered by
RET strategies, RET signals are often interpreted as resulting from
direct interactions between partners. Of note, other techniques
such as classic microscopy approach and even high-resolution
microscopy do not exhibit such high resolutions; they are usu-
ally greater than 250 and 30 nm, respectively, and therefore can
only provide evidence of receptor co-localization.

Developing an efficient RET-based assays requires to focus on
various aspects. First, obtaining a high signal-to-noise ratio is cru-
cial. Different factors can impact this ratio: (i) the overlap of the
excitation and emission spectra of the donor and the acceptor.
This results in the need to resort to indirect measures of the actual
RET, for example, by correcting the measured signal of possible
bleed-through and fluorescence contamination. It requires vari-
ous mathematical operations (Zheng et al., 2002), resulting in a
significant decrease of the signal-to-noise ratio; (ii) autofluores-
cence of the medium and/or the biological preparation and light
scattering by cells or membrane preparation often deeply impact
the signal-to-noise ratio.

The second aspect regards the labeling of the protein of interest.
Initially, experiments were often performed on purified proteins
and labeling was achieved via chemical approaches. Performing
similar experiments in a cellular context required novel labeling
strategies. This has often been carried out by molecular engineer-
ing strategies, i.e., by fusing fluorescent proteins to the protein
of interest. Various mutants of the natural green fluorescent pro-
tein (GFP) or other fluorescent proteins have been engineered and
exhibit fluorescence at various wavelengths.

As a solution to these issues, two major strategies have been
developed in the last decade: bioluminescent resonance energy
transfer (BRET; Figure 1A) and time-resolved fluorescence res-
onance energy transfer (TR-FRET; Figure 1B). Interestingly, the
use of these two techniques goes beyond the strict GPCR dimer-
ization framework and many aspects of the GPCR life cycle can be
analyzed with these approaches.

BRET STRATEGY
Briefly, BRET is based on the use of a bioluminescent protein,
commonly luciferase from Renilla reniformis (Rluc), as donor.
Therefore, RET occurs without light excitation of the sample
leading to a very low background signal, the excitation being chem-
ically triggered (Figure 1A). BRET has been optimized along the
last two decades and its different implementations (Figure 1A)
have been recently reviewed (Ayoub and Pfleger, 2010). Indeed,
Coelenterazine h was first used as substrate of Rluc and yellow flu-
orescent protein (YFP) as acceptor. Because of the overlap of the
donor and acceptor spectra, a second version of BRET (BRET2)
has been developed with Coelenterazine 400a (also known as
DeepblueC) as substrate for Rluc and GFP as acceptor and dis-
plays a better spectral resolution. However, it also exhibits rapid
decay kinetics of the substrate and a weak sensitivity because of a
low quantum yield when using Rluc (Hamdan et al., 2005; Pfleger
et al., 2006). More recently, eight mutations were introduced in
the native Rluc to give Rluc8 which shows a fourfold increase in
light output (Loening et al., 2006). It can be used in combina-
tion either with GFP2 (with Coelenterazine 400a as substrate) or
with YFP or a mutant red fluorescent protein (mOrange; Bacart
et al., 2008; De et al., 2009; with Coelenterazine as substrate),
offering various possibilities to perform BRET with the same
donor.

The development of BRET strategy, widely used to characterize
receptor interactions, has played a major role in the evolution of
the GPCR oligomerization concept (Achour et al., 2011). Interest-
ingly, BRET has also been convenient to show that some receptors
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FIGURE 1 | Comparison of BRET and time-resolved FRET approaches.

BRET (A) and TR-FRET (B) techniques are actually the most widely used RET
techniques since they offer high signal-to-noise ratio. However, they present
different characteristics: labeling strategies are often simpler with BRET than
with TR-FRET. (A) Three variants of BRET depending on the substrate/enzyme
complex donor (green circle) and on the acceptor (orange square) have been
developed. BRET gives the opportunity to label intracellular or cell-surface

targeted receptors. Variants of TR-FRET depending on the fluorescent carrier
have been developed. (B) TR-FRET opens the possibility to discriminate
receptor targeted to the cell surface from those trapped in intracellular
compartments. TR-FRET is also more adaptable to different cellular contexts
and is the only one to be compatible with receptors expressed in a native
context. [Rluc(8), Rluc or Rluc8; Coel. h, Coelenterazine h; Coel. 400a,
Coelenterazine 400a (also known as DeepblueC)].

such as vasopressin and oxytocin receptors (Terrillon et al., 2003)
assemble in oligomers early during their synthesis in the endoplas-
mic reticulum. Additionally, a combination of bioluminescence
and fluorescence complementation and RET strategies have been
used to demonstrate that at least four dopamine D2 receptors are
located in close molecular proximity in living mammalian cells,
consistent with D2 receptor tetramerization (Guo et al., 2008).

On a different note, BRET assays have also been developed
to detect various signaling pathway activations. These assays are
based on the occurrence of protein interactions consecutive to
receptor activation such as G protein or β-arrestin recruitment.
Moreover, as mentioned above, the different mutants of Rluc
can be associated to various acceptors allowing multiplexing of
multicolor BRET. This opens the path for concomitant moni-
toring of various independent biological processes in living cells
(Breton et al., 2010). Lastly, BRET methods present the advantage
of being compatible with kinetics measurements since signals can
be recorded for up 30 min.

Despite good signal-to-noise ratio and the simplicity to label
receptors (Rluc or fluorescent proteins are generally fused to recep-
tor C-terminus), BRET strategies suffer of at least two main
drawbacks. First, BRET signals do not discriminate between
receptors targeted to the cell surface from those retained inside the
cell (Figure 1A). Therefore, the BRET signal reflects the behavior
of all mature (targeted to the cell surface or internalized) and non-
mature receptors. Second, all BRET experiments are based on
chimeric receptors expressed in heterologous expression systems.
Receptor over-expression and mis-targeting can potentially impact
the relevance of the results, especially when BRET is used to prove
receptor heterodimerization. Therefore, BRET is not adapted to
study receptors expressed in their native context except by using
knock-in strategies.

TIME-RESOLVED FRET STRATEGY
Time-resolved FRET is another relevant RET method to study
GPCR oligomerization. It is based on receptors labeled with
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lanthanides and more specifically with terbium and europium.
Lanthanides exhibit long-lasting light emission because of elec-
tronic dipole transitions that are formally forbidden. Therefore
this photoluminescence is strictly speaking not fluorescence nor
phosphorescence since it does not involve singlet-to-singlet or
triplet-to-singlet transition (Selvin, 2002). For this reason it
should be called lanthanide resonance energy transfer. How-
ever, the variations of RET signal in function of the distance
between donor and acceptor with lanthanides is similar to those
with classic fluorophores, the reason why it has been assimilated
to FRET.

Two types of cages have been developed to complex lanthanides
and enable the labeling of the receptor of interest: (i) chelates
display high affinity for europium and terbium ions but the com-
plexation is reversible and can be impacted by the presence of other
ions such as Mn2+, Mg2+, or Ca2+; (ii) cryptates, by contrast,

offer a greater stability since terbium and europium cannot be
released after complexation. An example of structure of cryptate,
Terbium cryptate (Lumi4-Tb), is illustrated in Figure 2A. Impor-
tantly, chelates and cryptates are not just lanthanide carriers but
play two other roles. First, they influence the lanthanide fluores-
cence properties. Indeed they play the role of an antenna since
they absorb light and transfer the energy to the lanthanide. This
is essential since lanthanides exhibit very weak absorbance (104-
fold lower than a classic fluorophore; Selvin, 2002). Moreover the
nature of this cage can also impact the emission spectra of the
complex. Second, the cage protects lanthanides from quenching
by water molecules (Selvin, 2002).

TIME-RESOLVED FRET EXHIBIT HIGH SIGNAL-TO-NOISE RATIO
The high signal-to-noise ratio provided by TR-FRET strategy is
due to various parameters (Mathis, 1995; Bazin et al., 2002).

FIGURE 2 | Fluorescent properties of cryptate of terbium, Lumi4-Tb.

(A) Structure of the terbium cryptate (lumi4-Tb). (B) Temporal selectivity.
The introduction of a time delay (usually about 50 μs) between a flash
excitation (blue flag) and the measurement of the fluorescence (orange
zone) at the acceptor emission wavelength allows to discriminate
long lived from short-lived fluorescence and to increase signal-to-noise

ratio. (C) Spectral compatibility. Absorption (dark blue line) and
fluorescence emission (light blue line) of Lumi4-Tb. The lanthanide
cryptate exhibits four emission peaks: 490, 548, 587, and 621 nm.
Lumi4-Tb as donor is therefore compatible with fluorescein-like (green
zone) and Cy5- or dy647-like (red zone) acceptor to perform TR-FRET
experiments.
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Temporal selectivity
Upon excitation, lanthanide fluorescence half time is in the range
of 1 ms while it is in the range of few nanoseconds for clas-
sic fluorophores. TR-FRET takes advantage of this property: the
introduction of a time delay (typically around 50 μs) between
the excitation and the fluorescence signal detection allows dis-
criminating between short-lived and longer-lasting fluorescence.
Therefore all short-lived fluorescence provided by the medium,
the biological preparation or the direct excitation of the acceptor
will be eliminated by the time delay. Only the long-lived fluores-
cence resulting from the donor or the acceptor engaged in a FRET
process will be measured after the time delay (Figure 2B).

Spectral compatibility
Both europium and terbium cryptates are excited at 300–350 nm.
They both exhibit an important Stoke shift and complex emission
spectra with multiple fluorescent peaks. For example, europium
cryptate trisbipyridine [TBP(Eu)] exhibits four major fluorescent
peaks at 585, 605, 620, and 700 nm, while the europium pyri-
dine bisbipyridine (Eu-PBP) has two major peaks at 595 and
615 nm, and two minor peaks at 680 and 705 nm. Terbium
cryptate (Lumi4-Tb; Xu et al., 2011) also displays four emission
peaks around 490, 550, 585, and 620 nm (Figure 2C). This makes
europium and terbium cryptates compatible with deep red Cy5-
or dy647-like fluorophores to perform FRET. Moreover because of
the emission peak around 490 nm, terbium-cryptate is also com-
patible with fluorescein-like fluorophore as acceptor. By contrast
to FRET or BRET strategies based on CFP/YFP or Luciferase/YFP
pairs, respectively, europium and terbium cryptate fluorescence
are particularly low at the acceptor emission wavelength leading
to a reduced bleed through and thus a high signal-to-noise ratio.

Orientation dependence
By contrast to BRET or FRET performed with classic fluorophores,
the dependence of TR-FRET to the relative orientation of the
fluorophore is very weak because the lanthanide emission is not
polarized. The relative orientation of the acceptor cannot impact
the R0 more than 12% due to the random orientation of the
lanthanide cryptate donor (Selvin, 2002).

LABELING OF PROTEIN OF THE INTEREST
A second aspect to consider is the method used to label receptors
of interest. Depending on the method, labeling can be complete
or not, covalent or not, compatible with homogeneous condition
or not, bulky or not. All these parameters can have a direct impact
on the efficiency of RET and on the detected signal-to-noise ratio
(Figure 1B).

Non-covalent labeling of chimeric receptor with fluorescent
antibodies
Early TR-FRET-based strategies consisted in incubating cells
expressing receptors of interest with primary fluorescent anti-
bodies conjugated either to lanthanide cryptates or to classic
fluorophores (as donors and acceptors, respectively). Specific
antibodies for GPCRs with high affinity are difficult to obtain,
so antibodies against epitotes such as hemagglutinine, FLAG, 6-
Histine, or cMyc, fused to the N-terminus of the receptor have
generally been used.

This method has been successfully used to monitor δ-opioid
homomers using cMyc- and FLAG-tagged receptors (McVey et al.,
2001) indicating the presence of the complex at the cell surface. By
contrast, no cMyc-δ-opioid receptor/FLAG-β2-adrenoreceptor-
GFP heteromer can be detected using the same approach, despite
the presence of the receptors at the cell surface. However,
co-expression of δ-opioid receptor-eYFP and β2-adrenoreceptor-
Renilla luciferase construct resulted in a small BRET signal upon
addition of Coelenterazine. This result has been interpreted as the
existence of intracellular heteromer complex which are not target-
ing to the cell surface, illustrating the importance of discriminating
cell surface targeted complexes from those retained inside cells.

Since this study, similar results have showed dimerization for
numerous receptors targeted at the cell surface: α1A and α1B-
adrenergic (Carrillo et al., 2004; Ramsay et al., 2004), CXCR1 and
CXCR2 (Wilson et al., 2005), histamine H1 and H4 (Bakker et al.,
2004; van Rijn et al., 2006), vasopressin V1a and V1b (Albizu et al.,
2006; Orcel et al., 2009), and various types of mGluRs (Kniazeff
et al., 2004; Goudet et al., 2005; Hlavackova et al., 2005; Rondard
et al., 2006; Brock et al., 2007).

It is noteworthy that two protocols can be used to analyze recep-
tor homodimerization. On the one hand, identical receptors may
be fused to two different tags to label each with a specific antibody
conjugated either with the donor or the acceptor. The relative
expression of one receptor to the other has to be optimized. On
the other hand, the receptors may be fused to a single tag and then
labeled statistically with a mix of antibodies conjugated either
to the donor or the acceptor. In this last condition one should
determine the labeling kinetics and concentration to use for each
antibody to get a balanced labeling.

Using this antibody-based approach on differentially tagged
receptors, several studies have validated the existence of het-
eromeric complexes, including the GABAB1–GABAB2 (Maurel
et al., 2004), alpha2A–adenosine A1 (Ciruela et al., 2006), and
CXCR1–CXCR2 (Wilson et al., 2005) heteromers.

Advantages and drawbacks. The antibody strategy to label
receptors presents strong and weak points. First, tags fused to the
receptors are generally small (6–12 or 15 residues), therefore their
impact on the overall conformation of the receptor is generally
low, especially if placed at the N-terminus of the receptor. More-
over antibodies available for classic tags such as 6Histidine, FLAG,
hemagglutinine, cMyc usually keep good affinities for the tags
when fused to the N-terminus. Antibodies when exhibiting high
affinities can be used at concentrations lower than 10 nM. This
allows carrying out experiments in homogeneous conditions, i.e.,
without separating the antibody free fraction (not bound onto the
tagged receptor) from the bound fraction. Experiments are thus
simpler to perform.

Second, antibodies are large and not permeant molecules.
Therefore their binding is only possible on cell surface receptors
allowing discrimination of cell surface targeted receptor. However,
it has recently been shown that similar TR-FRET experiments
can also be performed on mildly permeabilized cells express-
ing C-terminus tagged receptors (Ayoub et al., 2010). The size
of the antibodies can also be considered as a weak point since
they generate important steric hindrance in the vicinity of the
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receptors. This can potentially be prejudicial for the binding of at
least two antibodies, especially on class A receptors which usually
display shorter N-terminus than class B and C GPCRs. More-
over, because antibodies are approximately three times larger than
GPCRs, FRET signal between antibodies have to be cautiously
interpreted as receptor oligomerization.

Finally antibodies can carry several fluorophores. This has often
been considered as an advantage since it increases the fluores-
cence intensity of GPCR labeling either with donor or acceptor
antibodies. However, it does not necessarily increase the signal-to-
noise ratio. Moreover, since labeling of antibodies with donor or
acceptor fluorophores are usually random, no optimization of the
position of fluorophores on antibodies is possible.

Finally, remarks must be made concerning the binding of anti-
bodies to tagged receptor. First, labeling of receptors by antibodies
is reversible and time to reach the binding equilibrium can be
long depending on receptors. For example, it can exceed 4 h at
4◦C for HA tagged GABAB receptor (Maurel et al., 2004). Second,
saturation of receptor labeling with antibodies can require high
concentration, not compatible with homogeneous conditions.
Third, ligand binding onto their cognate receptor can modify
receptor conformation and therefore impact the access of antibod-
ies to their epitope. Therefore variations of FRET could not reflect
variation in the dimerization process but rather a modification
of the affinity of antibodies for their epitope. Finally, antibodies
are bivalent proteins, and although it has not been reported yet,
one cannot exclude that they may artificially drive dimerization of
non-interacting receptors (Maurel et al., 2008).

To conclude, TR-FRET strategies with fluorescent antibodies
are interesting approaches exhibiting good signal-to-noise ratio.
They allow the specific study of receptors targeted to the cell
surface. However, their size and their non-covalent binding to
receptors undoubtedly constitute a limitation to their use.

Covalent labeling of chimeric receptors
Various strategies developed during the past 10 years are based on
the fusion of receptors to various peptides, either a self-labeling
protein (SLP; also improperly called suicide enzyme) or a sequence
recognized by enzymes (Figure 1B). TR-FRET experiments have
also been performed on purified mutated receptors in which a
reactive cysteinyl residue has been introduced.

Fusion of receptor to a self-labeling protein. Several approaches
consist in fusing a SLP to the N-terminus of the receptor and
providing fluorescent substrates. SLPs can catalyze the transfer of
a fluorescent group from the substrate onto itself. For example,
the SNAP-tag protein (23 kDa, i.e., two-thirds of GFP), derived
from the DNA repairing enzyme O6-alkylguanine-DNA alkyl-
transferase (or AGT) transfers the fluorescent benzyl group from a
fluorescent benzyl guanine substrate to label itself (Juillerat et al.,
2003, 2005; Keppler et al., 2003, 2004; Gronemeyer et al., 2006;
Figure 3A). Mutations have been introduced in the native pro-
tein to reduce its size, increase its reactivity, and decrease its
ability to bind DNA. Nevertheless, in permeabilized conditions,
labeling of the native protein cannot be excluded and that might
slightly increase background emission (Gronemeyer et al., 2005;
Juillerat et al., 2005).

FIGURE 3 | Strategies to covalently label GPCRs. (A) SLP generally
fused to the N-terminus of GPCRs catalyze the transfer of one fluorescent
group (green triangle) from the substrate to itself. Various self-labeling
proteins such as SNAP-tag, CLIP-tag, or HaloTag have been used to analyze
receptor oligomerization. (B) Enzyme-based labeling: cells expressing
tagged receptors are incubated in the presence of an enzyme such as AcpS
and fluorescent substrate. The enzyme (Enz) catalyzes the transfer of one
fluorescent group (green triangle) from the substrate to a specific tag
incorporated into the receptor sequence (red line). (C) FlASH and ReASH
strategies consists in introducing into the GPCR sequence a tetracysteine
sequence (-C-C-X-X-C-C-) which reacts with fluorescent arsenical
derivatives.

The efficiency of these strategies has been validated since 100%
of the receptor is labeled with the fluorophore (Maurel et al., 2008;
Comps-Agrar et al., 2011b). It is noteworthy that until now lan-
thanide derived fluorescent substrates are not permeant, therefore
only receptors targeted to the cell surface, presenting an extra-
cellular SNAP-tag will be labeled. By contrast other substrates
such as tetramethyl rhodamine derivatives are permeant, allowing
intracellular protein labeling (Gautier et al., 2009). Other SLP-tags
have been developed [e.g., CLIP-tag with benzyl cytosine (Gautier
et al., 2008), HaloTag (33 kDa) with HaloTag ligands (Zhang et al.,
2006)] allowing the labeling of different receptors with reduced
cross-reactivity. As mentioned above, these tags are generally fused
to the N-terminus of the receptors since their fusion in the recep-
tor extracellular loops generally induces greater conformational
modifications.

These strategies have all been used to investigate GPCR
oligomerization in various contexts. Several studies have included
in their analysis SNAP- or CLIP-tag labeling on different GPCR
models to point out their oligomerization (Maurel et al., 2008;
Albizu et al., 2010; Ward et al., 2011). Incubation of cells expressing
tagged-receptors in the presence of donor- and acceptor-derived
substrates leads to the labeling of receptors with one donor or one
acceptor fluorophore. The existence of a TR-FRET signal indicates
proximity between receptors and has been interpreted as receptor
dimerization.

Moreover, the absence of impact of agonist and/or antagonist
binding on receptor oligomerization as reported for vasopressin,
oxytocin and dopamine receptors (Albizu et al., 2010), suggest
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the stability of the interaction between receptors, or at least, that
the equilibrium between monomers and oligomers, if any, is not
affected by ligand binding. Whether this result could be gener-
alized to other receptors remains to be established but it seems
consistent with previous data (Terrillon et al., 2003).

This method has also been used to go one step further
and demonstrate that GABAB receptor forms higher order
oligomers (Maurel et al., 2008). Significant TR-FRET signals
have been recorded between GABAB1 and GABAB2 subunits
and also between two GABAB1 subunits if co-expressed with
GABAB2 subunit. By contrast a weak TR-FRET signal between
two GABAB2 subunits when expressed with GABAB1 subunits
has been reported. These results indicate the formation of
GABAB1/B2 tetramers, GABAB1 subunit constituting the inter-
face between the two GABAB1/GABAB2 dimers (Maurel et al.,
2008; Comps-Agrar et al., 2011a). This result is in accordance
with previous microscopy studies suggesting oligomeric complex
of rhodopsin in native disk membrane (Fotiadis et al., 2003) or
with combined bioluminescence/fluorescence complementation
and energy transfer (Lopez-Gimenez et al., 2007; Carriba et al.,
2008; Guo et al., 2008), suggesting that GPCRs can form larger
oligomers.

SNAP- and CLIP-tag labeling have also been associated to
study receptor heterodimerization. This strategy has been well
exemplified by the analysis performed on mGluRs. Doumazane
et al. (2011) have reported the existence of heterodimers between
mGluR 1 and 5 on the one hand or between mGluR 2, 4,
7, and 8 on the other hand. No significant TR-FRET signal
was observed between receptors of these two groups. Regarding
receptors of class A, using the SNAP-tag and CLIP-tag strat-
egy, orexin OX1 and cannabinoid CB1 receptors have been
shown to oligomerize and the hetero-complex appears to be
more sensitive than orexin homo-oligomers to orexin A regulation
(Ward et al., 2011).

Fusion of receptor to sequence recognized by enzyme. A sec-
ond approach consists in introducing a sequence recognized by
an enzyme into the receptor of interest. The enzyme will catalyze
the transfer of a fluorescent group from a fluorescent substrate to
the sequence introduced onto the receptor (Figure 3B). For exam-
ple phosphopantetheinyl transferase (PPTase) called acyl-carrier
protein synthase (AcpS) will transfer the phosphopantetheinyl
group of coenzyme-A to the acyl-carrier protein (ACP), a 8.7-kDa
sequence added to the receptor. Once again, the sequence should
be accessible to the enzyme and thus located on the extracellular
side (Monnier et al., 2011). Such a sequence is much smaller than
SNAP-tag or HaloTag and therefore its insertion into the receptor
sequence may be less disturbing.

This strategy has been used in association with the SNAP-
tag method to perform GABAB subunits orthogonal labeling and
study receptor transactivation (Monnier et al., 2011). It has also
been used with classic fluorophores to study class A neurokinin
NK1 receptor oligomerization (Meyer et al., 2006).

Receptor labeling via introduction of reactive cysteinyl residue.
Introduction of fluorophores onto receptors can be achieved by
using cysteinyl residue reactivity. Because cysteinyl group are

often present in protein sequences, such a labeling can only be
performed on purified receptor and not on receptor in their
membrane context to avoid a large non-specific labeling. Labeling
of receptor with Lumi4-Tb can be achieved by incubating puri-
fied receptors with maleimide derivatives (Rahmeh et al., 2012)
and receptors can be labeled at one specific position by intro-
ducing a cysteine at this position and by mutating all other
reactive cysteines. Labeling with acceptor fluorophore can be
achieved by using FlAsH and ReAsH methods. It consists in
introducing a tetracysteine sequence (two cysteine pairs sepa-
rated by two amino acid residues, CCXXCC) which exhibits a
high affinity for green or red fluorescent arsenical derivatives (Ju
et al., 2004; Zürn et al., 2010; Figure 3C). Thanks to the com-
bination of these two labeling methods, Rahmeh et al. (2012)
have demonstrated conformational modification of vasopressin
V2 receptor upon agonist, partial agonist or inverse agonist
binding.

Advantages and drawbacks. The above covalent labeling strate-
gies offer a wide range of advantages. First, covalent labeling
constitutes an interesting alternative to antibodies. It induces a
lesser steric hindrance than antibody labeling. As mentioned above
this is particularly interesting for class A receptors which gen-
erally have N-terminus shorter than class C receptors. Second,
various “colors” can be used on the same fused receptor con-
struction by changing the fluorophore linked to the substrate.
Receptor homomerization can then be simply studied by incu-
bating cells expressing one receptor with two different fluorescent
substrates. Optimization of the labeling requires comparing kinet-
ics of labeling with the different substrates. Third, receptor labeling
is irreversible and faster than antibody labeling since 1 h is suf-
ficient to label 100% of the receptors (Maurel et al., 2008). It
is noteworthy that more reactive SNAP- and CLIP-tag mutants
have recently been developed to get a faster labeling of recep-
tors (Sun et al., 2011). Fourth, TR-FRET methods combined to
efficient labeling strategies are convenient to follow receptor con-
formational modification as shown by Rahmeh et al. (2012) on
purified receptors. Conformational changes can also be moni-
tored by SNAP- and CLIP-tag labeling with classic fluorophores to
develop sensors of different molecules such as sulfonamides (Brun
et al., 2009; Monnier et al., 2011). These techniques have proven to
be compatible with cellular assays (Brun et al., 2011). Therefore,
the development of a sensor to follow ligand induced receptor
conformational modifications or intracellular protein binding is
potentially achievable.

These strategies to perform orthogonal labeling require some
optimization steps. One essential step is the determination of
substrate concentrations to label receptors. Using higher con-
centrations accelerates the kinetics of receptor labeling but also
increase the cross-reactivity of substrates for SLPs (e.g., benzyl-
cytosine presents a cross-reactivity to SNAP-tag). Finally, high
concentrations of substrates are not compatible with experi-
ments performed in homogeneous conditions. To get around
this problem, one interesting alternative consists in using a sub-
strate conjugated to both a fluorophore and a quencher. The
probe becomes highly fluorescent only upon reacting with the SLP
(Sun et al., 2011).
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Getting positive and negative control to demonstrate recep-
tor oligomerization is an essential point for the validation of this
concept. The negative control is probably the most difficult to
get. First, FRET can be observed if the expression of the partners
is high enough to get random collision of receptor diffusing at
the cell surface. Therefore, variation of the receptor expression
level can be at the origin of inconsistence between published
data. For example, using the same receptor labeling approach,
Doumazane et al. (2011) reported the absence of heterodimeriza-
tion between mGluRs mGluR2 and 5, while a significant signal
has been observed by Delille et al. (2012). One important cri-
terion to conclude to the specificity of the interaction is that
FRET efficiency should be constant and independent of the level
of receptor expression. An alternative control can be to verify
the saturation of the FRET signal when the expression of the
acceptor is increased and the expression of the donor is kept
constant.

Finally, all these strategies, by contrast to BRET, enable the
distinction between tagged receptors targeted to the cell surface
from those trapped inside cells. On the other hand, they are not
applicable to study wild-type receptors expressed in native tissues.

Non-covalent labeling of wild-type receptor
As mentioned above, receptor oligomerization potentially opens
new perspectives regarding GPCR functioning. However, the con-
cept needs to be validated in a native context and not only on
receptors expressed in cell lines. Indeed, various biases could
impair the relevance of FRET data obtained in cell lines. The exact
impact of using chimeric receptors instead of wild type receptors,
of high receptor expression levels, or of different receptor targeting
depending on the cell line used, is difficult to evaluate. Thus, the
validation of results in a native context is important. This is even
more crucial regarding GPCR heteromerization. The demonstra-
tion of the existence of heteromers in a cell line can be potentially
relevant only if in native tissues receptors are at least expressed at
the same time, in the same cell and in the same subcellular com-
partment. However, native contexts impose constraints since the
receptor sequence, the level of expression or the targeting cannot
be modified.

Two strategies can be used to label receptors in native tis-
sues. First, antibodies have been considered to fluorescently label
endogenous receptors. However, they are large molecules gen-
erating steric hindrance and getting specific and high affinity
antibodies again GPCRs has proven difficult. These two reasons
make antibodies not necessarily the best tools for demonstrat-
ing direct receptor interactions. Antibodies produced by Camelids
could be a good alternative to conventional antibodies since they
are much smaller (17 vs. 150 kDa). Moreover they can recognize
different epitopes usually not recognized by conventional antibod-
ies and notably clefts such as ligand binding pockets or enzyme
active sites (De Genst et al., 2006; Harmsen and De Haard, 2007).
Therefore, besides their small size, they open new perspectives in
term of molecular recognition and specificity.

A second strategy based on fluorescent ligands presents several
advantages (Figure 1B). Ligands are usually smaller molecules,
especially regarding GPCRs of class A and C, and can exhibit
high affinities for GPCRs. They are therefore potentially suitable

to study receptor oligomerization insofar as their fluorescent
derivatives maintain high affinities for their cognate recep-
tors. First attempts to demonstrate GPCR oligomerization with
fluorescent ligands have been performed on luteinizing hor-
mone and somatostatin receptors (Roess et al., 2000; Patel et al.,
2002). However, the sensitivity of the approach was insuffi-
cient because of a low signal-to-noise ratio. TR-FRET strategy
based on fluorescent ligands represents an interesting alterna-
tive method. This has been carried out for peptidic ligands;
vasopressin and oxytocin antagonist and agonist derived with
lanthanide cryptate as donor (Albizu et al., 2007, 2010) and d2,
dy647, and fluorescein (Durroux et al., 1999; Terrillon et al., 2003)
as acceptors were synthesized. Surprisingly, this strategy has also
been successfully adapted to smaller bioamine ligands. Indeed
one could have predicted that adding fluorophores bigger in size
than the ligands, such as lanthanide cryptates, should deeply
impact the affinity of the latter. The syntheses of lanthanide
cryptate labeled derivatives of N-(p-aminophenethyl) spiperone
(NAPS) and (±)-4′-amino-2-(N-phenethyl-N-propyl)-amino-5-
hydroxytetralin (PPHT), respectively antagonist and agonist of the
dopamine D2 receptor have recently been reported (Albizu et al.,
2010). Both ligands exhibit affinities in the 5 nM range for the
dopamine D2 receptor. These data are very encouraging since they
strongly suggest that development of lanthanide cryptate derived
ligands is achievable with a large range of ligands.

TR-FRET strategy based on fluorescent ligands has been val-
idated on V1a and V2 vasopressin receptors, on oxytocin and
dopamine receptors with at least five sets of fluorescent ligands
(Albizu et al., 2010). It has been shown that TR-FRET signal is
not observed on mock cells, abolished in the presence of an
excess of unlabeled ligand and that its variation in function of
donor/acceptor ratio follows a bell-shaped cure. Therefore these
data support that TR-FRET is dependent on the receptor expres-
sion and the occupancy of the binding sites with fluorescent
ligands, demonstrating the specificity of the TR-FRET signal. It has
also been observed that TR-FRET signal obtained with fluorescent
agonists is weaker than with fluorescent antagonists. This result
has been related to the negative cooperative binding of agonists, in
contrast to antagonists, and strongly supports that TR-FRET sig-
nal does not result from random collision of receptor diffusing at
the cell surface. Indeed when considering the collision hypothesis
of monomeric receptors, agonists or antagonists should lead to the
same TR-FRET signal for the same level of receptor occupancy.

Similar experiments have been carried out on oxytocin recep-
tors expressed in the mammary gland of lactating rat and
consistent results have been obtained proving the existence of
oxytocin receptor homodimers in this tissue. Moreover, experi-
ments performed on tissues patches clearly indicate the targeting
of receptor dimer to the cell surface. These data validate the flu-
orescent ligand-based TR-FRET strategy to prove the existence of
receptor oligomers in native tissues.

Advantage and drawbacks. A large set of fluorescent ligands
has been synthesized for numerous GPCRs. Whether the fluores-
cent derivatives will exhibit high affinity for their cognate receptor
remains to be established but the example of D2 dopamine lig-
ands proves that the development of such ligands is feasible. The

www.frontiersin.org July 2012 | Volume 3 | Article 92 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_and_Structural_Endocrinology/archive


“fendo-03-00092” — 2012/7/21 — 10:49 — page 10 — #10

Cottet et al. GPCR oligomerization studied with BRET and TR-FRET

sensitivity of the technique is dependent on the affinity of the lig-
and for its receptor. Ligands exhibiting affinity in the nanomolar
range are suitable for such experiments since experiments can
be carried out in a 96-well plate format and in homogeneous
conditions. The absence of washing steps makes the experiments
very simple to perform (Cottet et al., 2011) and more reproducible.
Moreover, the TR-FRET kinetics can simply be performed and the
time to reach equilibrium is easily determined. In the case of low
affinity fluorescent ligands or strong negative cooperative binding
of one ligand between two binding sites, one could have expected
to perform FRET measurements after washing steps. However,
dissociation kinetics of ligands can be rapid and therefore incom-
patible with such a protocol. Finally, because several examples of
negative cooperative binding of agonist have been reported (Urizar
et al., 2005; Albizu et al., 2006; Springael et al., 2006; Han et al.,
2009), it seems more relevant to use fluorescent antagonists to get
a double labeling of binding sites within a dimer. It underlines
that FRET signal is strongly dependent on cooperative binding
mechanisms between ligands.

The approach has been validated on one receptor expressed in a
native context, the oxytocin receptor expressed in mammary gland
of lactating rat. Indeed this receptor model is interesting since it is
highly expressed in this tissue. Whether the method is applicable
to tissues expressing receptors at a lower density remains to be
established.

Data must be interpreted with caution. Indeed the absence of
FRET signal is not necessarily a proof of oligomer absence. It can
also be explained by the binding of only one ligand because of a
high negative cooperative binding or because of the existence of
hetero-oligomers.

CONCLUSION AND PERSPECTIVES
RET techniques have provided very interesting experimental solu-
tions to study receptor complexes. Indeed, the resolution of
RET approaches is <10 nm, far below all conventional optical
microscopy techniques. A significant RET signal has thus been
interpreted as direct interactions between receptors while conven-
tional microscopy can only conclude to receptor co-localization.
Are all RET approaches equivalent to study receptor oligomeriza-
tion? Certainly not as BRET and TR-FRET are significantly more
sensitive with a higher signal-to-noise ratio, and both techniques
provide the possibility to perform multiplexing. BRET offers
the simplicity of receptor labeling performed by bioengineering
techniques. This is a strong advantage but also a disadvantage
since it is impossible to distinguish the receptors targeted to the
surface or trapped inside the cell. Moreover, although various
pairs of donor/acceptor have been developed, all the donors are
derived from Rluc. Whether the development of a different and
smaller luminescent donor is conceivable remains an open ques-
tion. TR-FRET displays a larger panel of tools for receptor labeling.
Regarding the labeling step, TR-FRET is a little bit more compli-
cated. Antibodies are large molecules inducing a steric hindrance
which can be, on some receptor models, prejudicial for observing
signals of large amplitude. Covalent labeling techniques offer some
advantages with much smaller tags but they generally need addi-
tional labeling and washing steps. TR-FRET based on fluorescent
ligands is an interesting alternative since, to our knowledge, it is the

only technique that can be applied to wild-type receptors expressed
in a native context. This constitutes a breakthrough because the
validation of the concept of GPCR oligomerization in physiology
is crucial.

During the last 20 years, RET techniques became very popu-
lar for GPCR oligomerization studies. What are the perspectives
for BRET and TR-FRET in the next decade? One major aspect
is probably their use in microscopy. Both techniques have been
adapted to microscopy constraints (Coulon et al., 2008; Rajapakse
et al., 2010). Of note, many assays based on BRET or TR-FRET
approaches have been developed in the last decades to measure
ligand binding (Ilien et al., 2003; Tahtaoui et al., 2005; Albizu et al.,
2007; Zwier et al., 2010), second messenger production (Trinquet
et al., 2006), receptor internalization (Zwier et al., 2011), or protein
recruitment such as β-arrestins (Angers et al., 2000; Figure 4). A
number are compatible with high throughput screening (Figure 4;
Boute et al., 2002). The adaptation of BRET and TR-FRET to
microscopy opens new perspectives since both techniques will be
compatible with high content screening. Because TR-FRET based
on fluorescent ligands is convenient to study receptor oligomer-
ization in native tissues, one can expect that further development
of the techniques will allow the study of the role of receptor
homomers and heteromers in real life.

Others strategies have recently emerged to investigate GPCR
oligomerization. Time-resolved fluorescence anisotropy approach
is based on the energy transfer between two identical fluorescent
proteins, for example two YFPs. The transfer of energy results
in a decrease in the polarization of the fluorescence emission.
This approach has recently been used to study 5HT-1A receptor
oligomerization (Paila et al., 2011). Other studies have combined
high-resolution microscopy and single particle tracking (Hern
et al., 2010; Kasai et al., 2011). As such, they open new perspectives

FIGURE 4 | BRET and time-resolved FRET assays application. Various
BRET and TR-FRET assays have been developed to measure ligand binding,
receptor activation through protein recruitment or second messenger
production, receptor dimerization or receptor trafficking. Most of them are
compatible with high-throughput screening. Recent developments have
shown that these techniques are also potentially compatible with
high-content screening, opening new perspectives in the use of RET
approaches (*means that TR-FRET experiments were performed on mildly
permeabilized cells expressing C-terminus tagged receptors).
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since kinetics of GPCR complex dissociation can be monitored.
However, high-resolution microscopy techniques on live cells do
not yet display a resolution compatible with a definitive identifi-
cation of GPCR complexes as oligomers. Fast, three-dimensional
super-resolution imaging of live cells has recently been described
when labeling light chain of clathrin fused to SNAP-tag and a
resolution of 30 nm has been reported (Jones et al., 2011). This
resolution is thus at least threefold greater than FRET resolution
while FRET technique resolution is better than 10 nm. Therefore

these techniques offer a complementary point of view to study
GPCR oligomerization.
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