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Structural variations in the genome are closely related to human health and the occurrence
and development of various diseases. To understand the mechanisms of diseases, find
pathogenic targets, and carry out personalized precision medicine, it is critical to detect
such variations. The rapid development of high-throughput sequencing technologies has
accelerated the accumulation of large amounts of genomic mutation data, including
synonymous mutations. Identifying pathogenic synonymous mutations that play
important roles in the occurrence and development of diseases from all the available
mutation data is of great importance. In this paper, machine learning theories andmethods
are reviewed, efficient and accurate pathogenic synonymousmutation prediction methods
are developed, and a standardized three-level variant analysis framework is constructed. In
addition, multiple variation tolerance prediction models are studied and integrated, and
new ideas for structural variation detection based on deep informationmining are explored.
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INTRODUCTION

The decreasing cost of genome sequencing has resulted in a large amount of sequence information
and variation data becoming available. According to the number of mutated bases, genomic
variations have been classified as: 1) single-nucleotide variations (formerly single-nucleotide
polymorphisms); 2) very short insertions and deletions, usually less than 50 bp; and 3)
structural variations, usually longer than 50 bp (Genome structural variati, 2011). Gene
mutations are known to be closely related to the occurrence and development of diseases (Hunt
et al., 2014; Alkan et al., 2011; Yin et al., 2020; Fang et al., 2019; Li et al., 2020a; He et al., 2020; Zhang
et al., 2020a; Zhang et al., 2016; Hu et al., 2021; Hu et al., 1990; Hu et al., 2020). High-throughput
sequencing technologies have allowed the mutations in the genomes of patients with particular
diseases to be determined systematically, quickly and accurately, including common but less studied
synonymous mutations in the coding regions of genomes (Meyerson et al., 2010; Li et al., 2017;
Cheng et al., 2018; Zhou et al., 2019). Synonymous mutations are single-nucleotide mutations that
occur in the coding regions of genes but do not change the amino acid sequence of the protein due to
the degeneracy of the genetic code. Because they do not change the coded amino acids, synonymous
mutations were once mistakenly thought to have no biological function (Hong et al., 2020; Tang
et al., 2020; Cheng et al., 2021a). However, later systematic studies have shown that synonymous
mutations are involved in a variety of biological processes and play important roles in the occurrence
and development of diseases (Li et al., 2020b; Yang et al., 2021a). Whole genome sequencing using
reversible terminator chemistry can generate accurate nucleotide sequences of billions of bases at low
cost (Bentley et al., 2008), which greatly improves the data obtained in sequencing projects.
Structural variations in genomes are closely related to the occurrence and development of many
diseases that affect human health. Therefore, the detection of structural mutations is essential to
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understand the mechanisms of diseases, find pathogenic targets,
and carry out personalized precision medicine (Guo et al., 2011;
Liu et al., 2021a; Yu et al., 2021a; Yu et al., 2021b). However,
detecting structural variations can be difficult, and therefore
methods that can accurately and quickly predict genomic
variations are urgently required.

In this paper, an efficient and accurate method for predicting
disease-causing synonymous mutations based on existing
research and using machine learning theories and methods is
reviewed. This method not only incorporates the current
understanding of the pathogenic mechanism of synonymous
mutations, but also provides a theoretical basis for the
diagnosis and treatment of diseases, drug development, and
the development of memory precision medicine. There are
three steps to this method: 1) defining a standardized variation
analysis framework based entirely on genome sequencing data; 2)
using computational methods to construct a variation tolerance
prediction model as the classification basis, and two high-
performance variation mechanisms (influence of protein
solubility and metabolic stability) prediction models; and 3)
developing software tools and combining multiple models to
provide general variation analysis services, as well as medical
research and precision medical services. For structural variation
detection based on deep mining of information, the following key
technologies and methods are established: 1) extract sequence
features related to structural variations from different sides and
establish a comprehensive representation of variation; 2) use the
sequence to comparison text information and the corresponding
variation feature map to generate images and amplify imbalanced
images of small samples; and 3) using the powerful feature
representation capabilities of deep learning, automatically
extract global features, hidden features, and associated features

to complete variation detection. This approach will be an effective
way to improve the accuracy of genome structural variation
detection, and will also help to promote the development of
new structural variation detection technologies. The outline of
this study is shown in Figure 1.

GENOMIC VARIATION PREDICTION
METHODS

Variations in the human genome are related to human evolution
and disease risk (Jiang and Liu, 2016; Jiang et al., 2017; Liu et al.,
2017; Liu et al., 2018a; Liu et al., 2018b; Liu et al., 2018c; Liu et al.,
2019;Wu et al., 2019; Xu et al., 2019; Deng et al., 2021). Moreover,
with the systematic in-depth studies of single-nucleotide
mutations, especially those that have special genetic variation
patterns such as synonymousmutations, the understanding of the
composition of the human genome, genetic differences between
individuals, and the pathogenic mechanisms of diseases has
greatly improved. The genetic variation prediction method
reviewed in this paper will help to make such studies more
convenient and economical by identifying variations of interest
that can be targeted (Table 1).

Pathogenic Synonymous Mutations
In recent years, the interest and attention of researchers in the
analysis and prediction of pathogenic synonymous mutations
have increased. Published methods include SilVA (Buske et al.,
2013), DDIG-SN (Livingstone et al., 2017), regSNPs-splicing
(Zhang et al., 2017a), Syntool (Zhang et al., 2017b) and TraP
(Gelfman et al., 2017). sHowever, the available prediction
methods still have certain defects that need improvement.

FIGURE 1 | Idea map of the paper.
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Among them, the use of machine learning methods to predict
pathogenic synonymous mutations is still in the preliminary
stage. The main problems that remain to be solved include: 1)
positive sample data is scarce and standard negative sample data
is lacking (Zhang et al., 2020b); 2) feature representation ability is
weak and not easy to promote (Buske et al., 2013; Wei et al., 2018;
Xiong et al., 2018; Jin et al., 2019; Shen et al., 2019; Su et al., 2019;
Wei et al., 2019; Yang et al., 2020a; Zhang et al., 2020c; Peng et al.,
2020; Su et al., 2020; Teng et al., 2020; Chu et al., 2021a; Cheng
et al., 2021b; Chu et al., 2021b; Jin et al., 2021; Su et al., 2021); and
3) the prediction performances of existing methods need to be
improved, and the results of different methods have a low degree
of coincidence (Cheng et al., 2019). The methods reviewed in this
article aim to solve these problems.

The aim of this project is to develop an efficient and accurate
method for predicting disease-causing synonymous mutations.
The main steps are as follows: 1) establish a data set using a
variety of different methods and data sources; 2) analyze in detail
the biological characteristic attributes related to pathogenic
synonymous mutations; 3) design machine learning methods
to predict mutations; and 4) develop a public service platform
and corresponding software system to predict disease-related
mutations. The following aspects were included in the method.
1) A pathogenic synonymous mutation database and benchmark
data set are constructed. Then, pathogenic synonymous mutation
data reported in the literature are collected to supplement the
database, and the two types of data are integrated to improve the
database. 2) A feature representation method of the pathogenic
mechanism of the synonymous mutation is established.
Synonymous mutations can occur in various processes of gene
expression. In this paper, the pathogenic principle of synonymous
mutations was fully utilized, and the method of numerical
expression of pathogenic synonymous mutations was studied
at the DNA, RNA, and protein levels. In addition, the same data
set and the same machine learning model are combined for
testing, and then the feature selection method is used to
remove irrelevant features from the extracted features to select
a relatively good feature representation method. 3) A prediction
method for pathogenic synonymous mutations with
convolutional neural network was used as the basic model.

The aim was to learn the representation method of pathogenic
synonymous mutation data based on deep learning, especially the
efficient implicit feature representation ability. The deep feature
representation method of the biological characteristics of
pathogenic synonymous mutations is also used to make up for
the lack of feature representation ability of shallow learning.
Then, deep network structure design and deep model training
optimization strategies are studied to improve the robustness and
generalization performance of the model. 4) The prediction
method of pathogenic synonymous mutation based on
ensemble learning is evaluated. To reduce the correlation of
individual classifier results, a method suitable for training and
learning is selected from the existing prediction methods to
obtain the individual classifier. Then, randomization is
introduced in the learning and training processes to obtain
diverse individual classifiers. Finally, a learning algorithm for
the integrated decision-making classifier is designed to construct
a suitable secondary classifier to more effectively solve the
problem of pathogenic synonymous mutation prediction. How
to perform ensemble pruning after the generation of cascading
ensemble classifiers should also be studied to further improve the
predictive performance of the cascading ensemble learning
classifier and obtain better pathogenic synonymous mutation
predictions. 5) Result verification and algorithm software
development are performed. The predictive analysis data
obtained in 3 and 4 above are analyzed and the results with
high reliability and potential clinical application value are selected
to carry out molecular and biochemical experiments to determine
the biological functions of synonymous mutations at the cellular
level and to verify the accuracy of the prediction results.

Genome Sequencing
Methods to rapidly and comprehensively interpret the various
new variations identified in genome sequencing are lacking.
Therefore, it is not yet possible to associate variations with
possible diseases or health issues, which greatly reduces the
value of genome sequencing. A primary task of sequencing
research is how to analyze the sequence data, especially the
variation information that it contains. Prediction methods can
effectively solve this problem (Castrense et al., 2019; Gang et al.,

TABLE 1 | Summary of genomic variation prediction methods.

Type Methods Algorithm

Pathogenic synonymous mutations SilVA (Buske et al., 2013) Random forest
DDIG-SN(Livingstone et al., 2017) Support vector machine
regSNPs-splicing (Zhang et al., 2017a) Random forest
Syntool (Zhang et al., 2017b) —

TraP (Gelfman et al., 2017) Random forest
Genome sequencing CADD (Kircher et al., 2014) Support vector machine

MutationTaster2 (Cooper, 2014) Naive Bayes
Mut-Pred (Li et al., 2009) Random forest
PolyPhen-2 (Adzhubei et al., 2010) Naive Bayes
PON-P2 (Niroula et al., 2015) Random forest
VEST (Carter et al., 2013) Random forest

Deep mining of structural variation information DeepBind(Alipanahi et al., 2015) deep learning
DeepVariant (Angermueller et al., 2017) deep neural networks
DeepCpG (Poplin et al., 2018) deep neural networks

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7958833

Lin Genomic Variation Prediction

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


2019; Liu et al., 2020a; Jin et al., 2021; Yin et al., 2021). The
published methods include CADD (Kircher et al., 2014),
MutationTaster2 (Cooper, 2014),Mut-Pred (Li et al.,
2009),PolyPhen-2 (Adzhubei et al., 2010),PON-P2 (Niroula
et al., 2015) and VEST (Carter et al., 2013). The aim of the
project was to design a standard variation analysis framework
for genomic variation prediction. Specifically, a variation
tolerance prediction model is constructed based on the
genome sequencing data and calculation method, and a
relatively high-performance variation mechanism is also
constructed based on the influence of protein solubility and
metabolic stability. The following aspects are included. 1) A
general prediction model of variation tolerance classification is
constructed based on the existing variation data for all kinds of
variations (e.g., replacement, insertion, and deletion) using only
the sequence information as the basic and important step of the
analysis services. A highly accurate predictive model ProtSol is
constructed. New data will be collected and sorted out, the
training data set will be integrated, and input features will be
selected. Then, the classification algorithm will be optimized
and a protein solubility impact prediction model with higher
accuracy and greater generalization will be established for
variation analysis. 3) A model ProtMS to predict the effect of
variation on protein metabolism stability is constructed.
Classification and regression models based on sequence
information will be established to predict the impact of
variations on metabolic stability. These models will serve as
important parts of the mechanism analysis. In addition,
browser/server architecture variant analysis software tools
will be developed and released to provide online services for
researchers and clinical medical staff.

Deep Mining of Structural Variation
Information
Structural variations in the human genome can cause diseases
(Feuk, et al., 2006). Structural variations include translocation,
inversion, deletion, and duplication of genes, and accurate
detection of genetic variations or genetic testing can contribute
to the exploration and analysis of diseases and life processes. The
obtained structural variant information can be applied, for
example, to target drugs to tumors and to provide a reliable
reference for clinical applications (Xu et al., 2018; Xue et al., 2018;
Tang et al., 2019; Liu et al., 2020b; Zhang et al., 2020d; An and Yu,
2021; Liu et al., 2021b; Wang et al., 2021; Wu and Yu, 2021).
Therefore, we need to mine structural variation information
accurately. Published methods include DeepBind (Alipanahi
et al., 2015), DeepVariant (Angermueller et al., 2017), and
DeepCpG (Poplin et al., 2018). Deep mining of the human
genomic structural variation information includes the
following aspects. 1) Comprehensive characterization of
features using three basic detection methods: sequence features
related to structural variation from different aspects, definition of
representation modes of different types of variation, and
construction of classification and combined expression of
feature descriptions. Then, the comprehensive characteristics
are obtained by combining three types of detection methods

(i.e., double-terminal mapping-based, split-comparison-based,
and mapping depth-based methods) to form a complete
comprehensive characterization of variation features. 2)
Feature image generation whereby images are generated to
discover comprehensive variation information from two main
aspects, pixel composition and color expression. Pixel
composition includes base stacking and fragment tiled, and
color expression includes stacked base color expression and
tiled fragment color expression. 3) Data amplification to
ensure that the generated images can be used for deep
learning training and recognition. The main purpose of data
amplification is to avoid the problem of network overfitting or a
decline in the recognition of minority samples. This step includes
mainly studying the method of amplification of mutated images
different from natural images; studying sufficiently clear and
high-resolution amplified images, and studying the speed of
image generation to ensure the network is better able to learn
the mapping of complex functions. A schematic diagram of this
method of deep mining of structural information is given in
Figure 2.

LITERATURE CONTRIBUTION

Early studies of the human genome focused mainly on collecting
data and understanding structural variation at the genome level.
In this paper, the literature closely related to diseases and current
medical fields was reviewed, including genome prediction
methods and many aspects of genome variation. The genomic
variants associated with the diseases are summarized in Table 2.
Bioinformatics analysis studies of pathogenic synonymous
mutations aim to integrate different data sources and
numerical types and detect reliable characteristics for feature
representation methods, and also to accurately characterize
feature coding methods that are intrinsically linked to
pathogenic synonymous mutations. For ensemble learning
methods, it is necessary to propose a pruning mechanism for
the primary classifier learning algorithm with adaptive learning
ability. Genome sequencing studies aim to establish a set of
standardized solutions and integrate existing databases and
multiple prediction models. The goal is to solve the versatility
and generalization of variation analysis models, to solve the data
imbalance problem that is common in variation data, and to find
sequence-based biological characteristics in different variation
prediction models. The contribution of the deep mining of
structural variation information is to develop a new way of
generating variation feature images from sequence comparison
text information, a method of data amplification for small
samples of variation images to achieve a balance, and an
accurate detection technology framework by digging deep into
the genomic structural variation information. The proposed
points can take genomic variation prediction research one step
further, and provide medication recommendations for the
treatment of specific diseases, thereby reducing the adverse
effects on patients due to improper medication strategies. This
is one of the reasons why genomic variation is an important area
of study.
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CONCLUSION

The study of structural variations in genomes can promote
research on genome evolution, significant biological
phenotypic changes (Yang et al., 2020b; Yang et al., 2020c; Yin
et al., 2020), the treatment of many diseases (Li et al., 2018; Yang
et al., 2021b; Long et al., 2021), and recommendations for
therapeutic drugs (Wei et al., 2014; Ding et al., 2020a; Ding
et al., 2020b; Wang et al., 2020; Wei et al., 2020). The accurate
prediction of genomic variation is of great importance to studies
of many diseases, which indicates the significance of this
literature review through which existing variation data were
integrated and collected, and a tolerance classification model
of various variations was constructed based on sequence
information. Furthermore, all the literature is experimenting
around key scientific issues. It is essential to accurately predict
individual genomic variation events that are conducive to
systematically inferring the process of variation formation, so

that the results can be confidently used for the clinical application
of precision medicine. Finally, accurate predictions also help in
analyzing the functions of synonymous mutations and can guide
relevant experiments. Therefore, genomic variation prediction is
of great significance to drug design and precision medicine.
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FIGURE 2 | Diagram of deep mining of structural variation information.

TABLE 2 | Summary of genomic variations associated with disease.

Disease Causes Result

Type 2 diabetes (Freemantle et al.,
2005)

There were 139 common gene variants and 4
rare gene variants

Availability of Inhaled Insulin Promotes greater perceived acceptance of insulin
therapy in Patients with type 2 diabetes

Neonatal epilepsy (Thuresson et al.,
2016)

Whole gene repeats of SCN2A and SCN3A Extra copy of SCN2A has an effect on epilepsy pathogenesis

Bladder cancer (Bonberg et al., 2013) Copy number variation in GSTM1 gene A loss of 9p21 was less predictive for detecting bladder cancer
Lung cancer (Yang et al., 2013) Cnv-67048 variation on WWOX be related with altered WWOX gene expression and exons absence in them
A wide variety of tumor (Abdel-Rahman
et al., 2011)

BAP1 mutation BAP1 is the candidate gene in only a small subset of hereditary UM, suggesting the
contribution of other candidate genes.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7958835

Lin Genomic Variation Prediction

http://www.liwenbianji.cn/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


REFERENCES

Abdel-Rahman, M. H., Pilarski, R., Cebulla, C. M., Massengill, J. B., Christopher, B.
N., Boru, G., et al. (2011). Germline BAP1 Mutation Predisposes to Uveal
Melanoma, Lung Adenocarcinoma, Meningioma, and Other Cancers. J. Med.
Genet. 48 (12), 856–859. doi:10.1136/jmedgenet-2011-100156

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P.,
et al. (2010). A Method and Server for Predicting Damaging Missense
Mutations. Nat Methods. 7(4), 248–9. doi:10.1038/nmeth0410-248

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the
Sequence Specificities of DNA- and RNA-Binding Proteins by Deep Learning.
Nat. Biotechnol. doi:10.1038/nbt.3300

An, Q., and Yu, L. (2021). A Heterogeneous Network Embedding Framework for
Predicting Similarity-Based Drug-Target Interactions. Brief. Bioinformatics. 22,
bbab275. doi:10.1093/bib/bbab275

Angermueller, C., Lee, H. J., Reik, W., and Stegle, O. (2017). Erratum to: DeepCpG:
Accurate Prediction of Single-Cell DNA Methylation States Using Deep
Learning. Genome Biol. 18 (1), 90. doi:10.1186/s13059-017-1233-z

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J.,
Brown, C. G., et al. (2008). Accurate Whole Human Genome Sequencing Using
Reversible Terminator Chemistry. Nature 456 (7218), 53–59. doi:10.1038/
nature07517

Bonberg, N., Taeger, D., Gawrych, K., Johnen, G., Banek, S., Schwentner, C., et al.
(2013). Chromosomal Instability and Bladder Cancer: the UroVysionTMtest in
the UroScreen Study. BJU Int. 112 (4), E372–E382. doi:10.1111/j.1464-
410x.2012.11666.x

Buske, O. J., Manickaraj, A., Mital, S., Ray, P. N., and Brudno, M. (2013).
Identification of Deleterious Synonymous Variants in Human Genomes.
Bioinformatics 29, 1843–1850. doi:10.1093/bioinformatics/btt308

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., and Karchin, R. (2013).
Identifying Mendelian Disease Genes with the Variant Effect Scoring Tool.
BMC Genomics 14 (3), S3–S16. doi:10.1186/1471-2164-14-S3-S3

Castrense, S., Giulia, B., Samuele, B., Emidio, C., Pier, L. M., and Rita, C. (2019).
Are Machine Learning Based Methods Suited to Address Complex Biological
Problems? Lessons from CAGI-5 Challenges. Hum. Mutat. 40, 1455–1462.
doi:10.1002/humu.23784

Cheng, L., Qi, C., Yang, H., Lu, M., Cai, Y., Fu, T., et al. (2021). gutMGene: a
Comprehensive Database for Target Genes of Gut Microbes and Microbial
Metabolites. Nucleic Acids Res. 9, gkab786. doi:10.1093/nar/gkab786

Cheng, L., Han, X., Zhu, Z., Qi, C., Wang, P., and Zhang, X. (2021). Functional
Alterations Caused by Mutations Reflect Evolutionary Trends of SARS-CoV-2.
Brief. Bioinformatics 22 (2), 1442–1450. doi:10.1093/bib/bbab042

Cheng, L., Hu, Y., Sun, J., Zhou, M., and Jiang, Q. (2018). DincRNA: a
Comprehensive Web-Based Bioinformatics Toolkit for Exploring Disease
Associations and ncRNA Function. Bioinformatics 34 (11), 1953–1956.
doi:10.1093/bioinformatics/bty002

Cheng, N., Li, M., Zhao, L., Zhang, B., Yang, Y., Zheng, C. H., et al. (2019).
Comparison and Integration of Computational Methods for Deleterious
Synonymous Mutation Prediction. Brief. Bioinformatics. 21, 970–981.
doi:10.1093/bib/bbz047

Chu, Y., Wang, X., Dai, Q., Wang, Y., Wang, Q., Peng, S., et al. (2021). MDA-
GCNFTG: Identifying miRNA-Disease Associations Based on Graph
Convolutional Networks via Graph Sampling through the Feature and
Topology Graph. Brief Bioinform.

Chu, Y., Kaushik, A. C., Wang, X., Wang, W., Zhang, Y., Shan, X., et al. (2021).
DTI-CDF: a cascade Deep forest Model towards the Prediction of Drug-Target
Interactions Based on Hybrid Features. Brief Bioinform 22 (1), 451–462.
doi:10.1093/bib/bbz152

Cooper, N. D. (2014). MutationTaster2: Mutation Prediction for the Deep-
Sequencing Age [Letter].

Deng, L., Li, W., and Zhang, J. (2021). LDAH2V: Exploring Meta-Paths across
Multiple Networks for lncRNA-Disease Association Prediction. Ieee/acm
Trans. Comput. Biol. Bioinf. 18 (4), 1572–1581. doi:10.1109/
tcbb.2019.2946257

Ding, Y., Tang, J., and Guo, F. (2020). Identification of Drug-Target Interactions
via Dual Laplacian Regularized Least Squares with Multiple Kernel Fusion.
Knowledge-Based Syst. 204, 106254. doi:10.1016/j.knosys.2020.106254

Ding, Y., Tang, J., and Guo, F. (2020). Identification of Drug-Target Interactions
via Fuzzy Bipartite Local Model. Neural Comput. Applic 32, 10303–10319.
doi:10.1007/s00521-019-04569-z

Fang, S., Pan, J., Zhou, C., Tian, H., He, J., Shen, W., et al. (2019). Circular RNAs
Serve as Novel Biomarkers and Therapeutic Targets in Cancers. Cgt 19 (2),
125–133. doi:10.2174/1566523218666181109142756

Feuk, L., Carson, A. R., and Scherer, S. W. (2006). Structural Variation in the
Human Genome. Nat. Rev. Genet. 7, 85–97. doi:10.1038/nrg1767

Freemantle, N., Blonde, L., Duhot, D., Hompesch, M., Eggertsen, R., Hobbs, F. D.
R., et al. (2005). Availability of Inhaled Insulin Promotes Greater Perceived
Acceptance of Insulin Therapy in Patients with Type 2 Diabetes. Diabetes care
28, 427–428. doi:10.2337/diacare.28.2.427

Gang, H., Liu, G., Zhang, M., Zhao, Y., Jiang, J., and Chen, S. (2019).
Comprehensive Characterization of T-DNA Integration Induced
Chromosomal Rearrangement in a Birch T-DNA Mutant. BMC Genomics
20 (1), 311. doi:10.1186/s12864-019-5636-y

Gelfman, S., Wang, Q., Mcsweeney, K. M., Ren, Z., La Carpia, F., Halvorsen, M.,
et al. (2017). Annotating Pathogenic Non-coding Variants in Genic Regions.
Nat. Commun. 8 (1), 236. doi:10.1038/s41467-017-00141-2

Alkan, C., Coe, B., and Eichler, E. E. (2011). Genome Structural Variation
Discovery and Genotyping. Nat Rev Genet. 12, 363–76. doi:10.1038/nrg2958

Guo, F., and Wang, L. (2011). “Computing the Protein Binding Sites,”.
Bioinformatics Research and Applications. Editors J. Chen and J. X. Wang
(Changsha, China: Zelikovsky A), 6674, 25–36. doi:10.1007/978-3-642-
21260-4_7

He, B., Lang, J., Wang, B., Liu, X., Lu, Q., He, J., et al. (2020). TOOme: A Novel
Computational Framework to Infer Cancer Tissue-Of-Origin by Integrating
Both Gene Mutation and Expression. Front. Bioeng. Biotechnol. 8, 394.
doi:10.3389/fbioe.2020.00394

Hong, J., Luo, Y., Zhang, Y., Ying, J., Xue, W., Xie, T., et al. (2020). Protein
Functional Annotation of Simultaneously Improved Stability, Accuracy and
False Discovery Rate Achieved by a Sequence-Based Deep Learning. Brief
Bioinform 21 (4), 1437–1447. doi:10.1093/bib/bbz081

Hu, Y., Qiu, S., and Cheng, L. (2021). Integration of Multiple-Omics Data to
Analyze the Population-specific Differences for Coronary Artery Disease.
Comput. Math. Methods Med. 2021, 7036592. doi:10.1155/2021/7036592

Hu, Y., Sun, J. Y., Zhang, Y., Zhang, H., Gao, S., Wang, T., et al. (1990). Variant
Associates with Alzheimer’s Disease and Regulates TMEM106B Expression in
Human Brain Tissues. BMC Med. 19 (1), 11.

Hu, Y., Zhang, H., Liu, B., Gao, S., Wang, T., Han, Z., et al. (2020). rs34331204
Regulates TSPAN13 Expression and Contributes to Alzheimer’s Disease with
Sex Differences. Brain 143 (11), e95. doi:10.1093/brain/awaa302

Hunt, R. C., Simhadri, V. L., Iandoli, M., Sauna, Z. E., and Kimchi-Sarfaty, C.
(2014). Exposing Synonymous Mutations. Trends Genet. 30, 308-21.
doi:10.1016/j.tig.2014.04.006

Jiang, Q., and Liu, G. (2016). Lack of Association between MC1R Variants and
Parkinson’s Disease in European Descent. Ann. Neurol. 79, 866–868.
doi:10.1002/ana.24627

Jiang, Q., Jin, S., Jiang, Y., Liao, M., Feng, R., Zhang, L., et al. (2017). Alzheimer’s
Disease Variants with the Genome-wide Significance Are Significantly
Enriched in Immune Pathways and Active in Immune Cells. Mol.
Neurobiol. 54 (1), 594–600. doi:10.1007/s12035-015-9670-8

Jin, Q., Cui, H., Sun, C., Meng, Z., and Su, R. (2021). Free-form Tumor Synthesis in
Computed Tomography Images via Richer Generative Adversarial Network.
Knowledge-Based Syst. 218, 106753. doi:10.1016/j.knosys.2021.106753

Jin, Q., Meng, Z., Pham, T. D., Chen, Q., Wei, L., Su, R., et al. (2019). DUNet: A
Deformable Network for Retinal Vessel Segmentation. Knowledge-Based Syst.
178, 149–162. doi:10.1016/j.knosys.2019.04.025

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., and Shendure, J.
(2014). A General Framework for Estimating the Relative Pathogenicity of
Human Genetic Variants. Nat. Genet. 46 (3), 310–315. doi:10.1038/ng.2892

Li, B., Krishnan, V. G., Mort, M. E., Xin, F., Kamati, K. K., Cooper, D. N., et al.
(2009). Automated Inference of Molecular Mechanisms of Disease fromAmino
Acid Substitutions. Bioinformatics 25, 2744–2750. doi:10.1093/bioinformatics/
btp528

Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., et al. (2017). NOREVA:
Normalization and Evaluation of MS-based Metabolomics Data. Nucleic
Acids Res. 45 (W1), W162–W170. doi:10.1093/nar/gkx449

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7958836

Lin Genomic Variation Prediction

https://doi.org/10.1136/jmedgenet-2011-100156
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1093/bib/bbab275
https://doi.org/10.1186/s13059-017-1233-z
https://doi.org/10.1038/nature07517
https://doi.org/10.1038/nature07517
https://doi.org/10.1111/j.1464-410x.2012.11666.x
https://doi.org/10.1111/j.1464-410x.2012.11666.x
https://doi.org/10.1093/bioinformatics/btt308
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1002/humu.23784
https://doi.org/10.1093/nar/gkab786
https://doi.org/10.1093/bib/bbab042
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.1093/bib/bbz047
https://doi.org/10.1093/bib/bbz152
https://doi.org/10.1109/tcbb.2019.2946257
https://doi.org/10.1109/tcbb.2019.2946257
https://doi.org/10.1016/j.knosys.2020.106254
https://doi.org/10.1007/s00521-019-04569-z
https://doi.org/10.2174/1566523218666181109142756
https://doi.org/10.1038/nrg1767
https://doi.org/10.2337/diacare.28.2.427
https://doi.org/10.1186/s12864-019-5636-y
https://doi.org/10.1038/s41467-017-00141-2
https://doi.org/10.1038/nrg2958
https://doi.org/10.1007/978-3-642-21260-4_7
https://doi.org/10.1007/978-3-642-21260-4_7
https://doi.org/10.3389/fbioe.2020.00394
https://doi.org/10.1093/bib/bbz081
https://doi.org/10.1155/2021/7036592
https://doi.org/10.1093/brain/awaa302
https://doi.org/10.1016/j.tig.2014.04.006
https://doi.org/10.1002/ana.24627
https://doi.org/10.1007/s12035-015-9670-8
https://doi.org/10.1016/j.knosys.2021.106753
https://doi.org/10.1016/j.knosys.2019.04.025
https://doi.org/10.1038/ng.2892
https://doi.org/10.1093/bioinformatics/btp528
https://doi.org/10.1093/bioinformatics/btp528
https://doi.org/10.1093/nar/gkx449
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Li, F., Zhou, Y., Zhang, X., Tang, J., Yang, Q., Zhang, Y., et al. (2020). SSizer:
Determining the Sample Sufficiency for Comparative Biological Study. J. Mol.
Biol. 432 (11), 3411–3421. doi:10.1016/j.jmb.2020.01.027

Li, Y. H., Li, X. X., Hong, J. J., Wang, Y. X., Fu, J. B., Yang, H., et al. (2020). Clinical
Trials, Progression-Speed Differentiating Features and Swiftness Rule of the
Innovative Targets of First-In-Class Drugs. Brief. Bioinformatics 21 (2),
649–662. doi:10.1093/bib/bby130

Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., et al. (2018). Therapeutic
Target Database Update 2018: Enriched Resource for Facilitating Bench-To-
Clinic Research of Targeted Therapeutics. Nucleic Acids Res. 46 (D1),
D1121–D1127. doi:10.1093/nar/gkx1076

Liu, G., Hu, Y., Han, Z., Jin, S., and Jiang, Q. (2019). Genetic Variant Rs17185536
Regulates SIM1 Gene Expression in Human Brain Hypothalamus. Proc. Natl.
Acad. Sci. USA 116 (9), 3347–3348. doi:10.1073/pnas.1821550116

Liu, G., Hu, Y., Jin, S., and Jiang, Q. (2017). Genetic Variant Rs763361 Regulates
Multiple Sclerosis CD226 Gene Expression. Proc. Natl. Acad. Sci. USA 114 (6),
E906–E907. doi:10.1073/pnas.1618520114

Liu, G., Jin, S., Hu, Y., and Jiang, Q. (2018). Disease Status Affects the Association
between Rs4813620 and the Expression of Alzheimer’s Disease Susceptibility
geneTRIB3. Proc. Natl. Acad. Sci. USA 115 (45), E10519–E10520. doi:10.1073/
pnas.1812975115

Liu, G., Wang, T., Tian, R., Hu, Y., Han, Z., Wang, P., et al. (2018). Alzheimer’s Disease
Risk Variant Rs2373115 Regulates GAB2 and NARS2 Expression in Human Brain
Tissues. J. Mol. Neurosci. 66 (1), 37–43. doi:10.1007/s12031-018-1144-9

Liu, G., Zhang, Y., Wang, L., Xu, J., Chen, X., Bao, Y., et al. (2018). Alzheimer’s
Disease Rs11767557 Variant Regulates EPHA1 Gene Expression Specifically in
Human Whole Blood. Jad 61 (3), 1077–1088. doi:10.3233/jad-170468

Liu, H., Zhang, W., Zou, B., Wang, J., Deng, Y., and Deng, L. (2020).
DrugCombDB: a Comprehensive Database of Drug Combinations toward
the Discovery of Combinatorial Therapy. Nucleic Acids Res. 48 (D1),
D871–D881. doi:10.1093/nar/gkz1007

Liu, J., Liu, S., Liu, C., Zhang, Y., Pan, Y., Wang, Z., et al. (2021). Nabe: an Energetic
Database of Amino AcidMutations in Protein-Nucleic Acid Binding Interfaces.
Database (Oxford) 2021, 2021. doi:10.1093/database/baab050

Liu, J., Su, R., Zhang, J., and Wei, L. (2021). Classification and Gene Selection of
Triple-Negative Breast Cancer Subtype Embedding Gene Connectivity Matrix
in Deep Neural Network. LID - Bbaa395 [pii] LID -. Briefings in Bioinformatics,
2021, 1477–4054. doi:10.1093/bib/bbaa395

Liu, Y., Huang, Y., Wang, G., andWang, Y. (2020). A Deep Learning Approach for
Filtering Structural Variants in Short Read Sequencing Data. Brief Bioinform.

Livingstone, M., Folkman, L., Yang, Y., Zhang, P., Mort, M., Cooper, D. N., et al.
(2017). Investigating DNA-, RNA-, and Protein-Based Features as a Means to
Discriminate Pathogenic Synonymous Variants. Hum. Mutat. 38 (10),
1336–1347. doi:10.1002/humu.23283

Long, J., Yang, H., Yang, Z., Jia, Q., Liu, L., Kong, L., et al. (2021). Integrated
Biomarker Profiling of the Metabolome Associated with Impaired Fasting
Glucose and Type 2 Diabetes Mellitus in Large-Scale Chinese Patients. Clin.
Transl Med. 11 (6), e432. doi:10.1002/ctm2.432

Meyerson, M., Gabriel, S., Getz, G., Meyerson, M., Gabriel, S., and GAdvances,
Getz. (2010). Advances in Understanding Cancer Genomes through Second-
Generation Sequencing.Nat. Rev. Genet. 11 (10), 685–696. doi:10.1038/nrg2841

Niroula, A., Urolagin, S., and Vihinen, M. (2015). PON-P2: Prediction Method for
Fast and Reliable Identification of Harmful Variants. Plos One 10 (2), e0117380.
doi:10.1371/journal.pone.0117380

Peng, L., Zhou, D., Liu, W., Zhou, L., Wang, L., Zhao, B., et al. (2020). Prioritizing
Human Microbe-Disease Associations Utilizing a Node-Information-Based
Link Propagation Method. IEEE Access 8, 31341–31349. doi:10.1109/
access.2020.2972283

Poplin, R., Chang, P-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., et al.
(2018). Creating a Universal SNP and Small Indel Variant Caller with Deep
Neural Networks. bioRxiv, 092890.

Shen, Y., Tang, J., and Guo, F. (2019). Identification of Protein Subcellular
Localization via Integrating Evolutionary and Physicochemical Information
into Chou’s General PseAAC. J. Theor. Biol. 462, 230–239. doi:10.1016/
j.jtbi.2018.11.012

Su, R., Hu, J., Zou, Q., Manavalan, B., and Wei, L. (2020). Empirical Comparison
and Analysis of Web-Based Cell-Penetrating Peptide Prediction Tools. Brief.
Bioinformatics 21 (2), 408–420. doi:10.1093/bib/bby124

Su, R., Liu, X., Jin, Q., Liu, X., and Wei, L. (2021). Identification of Glioblastoma
Molecular Subtype and Prognosis Based on Deep MRI Features. Knowledge-
Based Syst. 232, 107490. doi:10.1016/j.knosys.2021.107490

Su, R., Liu, X., Wei, L., and Zou, Q. (2019). Deep-Resp-Forest: A Deep forest Model
to Predict Anti-cancer Drug Response. Methods 166, 91–102. doi:10.1016/
j.ymeth.2019.02.009

Tang, J., Fu, J., Wang, Y., Li, B., Li, Y., Yang, Q., et al. (2020). ANPELA: Analysis
and Performance Assessment of the Label-free Quantification Workflow for
Metaproteomic Studies. Brief. Bioinformatics 21 (2), 621–636. doi:10.1093/bib/
bby127

Tang, J., Fu, J., Wang, Y., Luo, Y., Yang, Q., Li, B., et al. (2019). Simultaneous
Improvement in the Precision, Accuracy, and Robustness of Label-free
Proteome Quantification by Optimizing Data Manipulation Chains*. Mol.
Cell Proteomics 18 (8), 1683–1699. doi:10.1074/mcp.ra118.001169

Teng, H., Wei, W., Li, Q., Xue, M., Shi, X., Li, X., et al. (2020). Prevalence and
Architecture of Posttranscriptionally Impaired Synonymous Mutations in
8,320 Genomes across 22 Cancer Types. Nucleic Acids Res. 48 (3),
1192–1205. doi:10.1093/nar/gkaa019

Thuresson, A. C., Van Buggenhout, G., Sheth, F., Kamate, M., Andrieux, J., Clayton
Smith, J., et al. (2016). Whole Gene Duplication of SCN2A and SCN3A Is
Associated with Neonatal Seizures and a normal Intellectual Development.
Clin. Genet. 91 (1), 106–110. doi:10.1111/cge.12797

Wang, J., Liu, X., Shen, S., Deng, L., and Liu, H. (2021). DeepDDS: Deep Graph
Neural Network with Attention Mechanism to Predict Synergistic Drug
Combinations. Brief. Bioinformatics. doi:10.1093/bib/bbab390

Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic
Target Database 2020: Enriched Resource for Facilitating Research and Early
Development of Targeted Therapeutics. Nucleic Acids Res. 48 (D1),
D1031–D1041. doi:10.1093/nar/gkz981

Wei, L., Hu, J., Li, F., Song, J., Su, R., and Zou, Q. (2020). Comparative Analysis and
Prediction of Quorum-sensing Peptides Using Feature Representation Learning
and Machine Learning Algorithms. Brief. Bioinformatics 21 (1), 106–119.

Wei, L., Zhou, C., Chen, H., Song, J., and Su, R. (2018). ACPred-FL: a Sequence-
Based Predictor Using Effective Feature Representation to Improve the
Prediction of Anti-cancer Peptides. Bioinformatics 34 (23), 4007–4016.
doi:10.1093/bioinformatics/bty451

Wei, L., Liao, M., Gao, Y., Ji, R., He, Z., and Zou, Q. (2014). Improved and
Promising Identification of Human MicroRNAs by Incorporating a High-
Quality Negative Set. Ieee/acm Trans. Comput. Biol. Bioinf. 11 (1), 192–201.
doi:10.1109/tcbb.2013.146

Wei, L., Xing, P., Shi, G., Ji, Z., and Zou, Q. (2019). Fast Prediction of Protein
Methylation Sites Using a Sequence-Based Feature Selection Technique. Ieee/
acm Trans. Comput. Biol. Bioinf. 16 (4), 1264–1273. doi:10.1109/
tcbb.2017.2670558

Wu, X., and Yu, L. (2021). EPSOL: Sequence-Based Protein Solubility Prediction
Using Multidimensional Embedding. Oxford, England: Bioinformatics.

Wu, Y., Lu, X., Shen, B., and Zeng, Y. (2019). The Therapeutic Potential and Role of
miRNA, lncRNA, and circRNA in Osteoarthritis. Cgt 19 (4), 255–263.
doi:10.2174/1566523219666190716092203

Xiong, Y., Wang, Q., Yang, J., Zhu, X., and Wei, D.-Q. (2018). PredT4SE-Stack:
Prediction of Bacterial Type IV Secreted Effectors from Protein Sequences
Using a Stacked Ensemble Method. Front. Microbiol. 9, 2571. doi:10.3389/
fmicb.2018.02571

Xu, L., Liang, G., Liao, C., Chen, G. D., Chang, C. C., and k-Skip-n-Gram-Rf (2019).
K-Skip-N-Gram-RF: A Random Forest Based Method for Alzheimer’s Disease
Protein Identification. Front. Genet. 10 (33), 33. doi:10.3389/fgene.2019.00033

Xu, L., Liang, G., Wang, L., and Liao, C. (2018). A Novel Hybrid Sequence-Based
Model for Identifying Anticancer Peptides. Genes 9 (3), 158. doi:10.3390/
genes9030158

Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X., et al. (2018). What
Contributes to Serotonin-Norepinephrine Reuptake Inhibitors’Dual-Targeting
Mechanism? the Key Role of Transmembrane Domain 6 in Human Serotonin
and Norepinephrine Transporters Revealed by Molecular Dynamics
Simulation. ACS Chem. Neurosci. 9 (5), 1128–1140. doi:10.1021/
acschemneuro.7b00490

Yang, H., Ding, Y., Tang, J., and Guo, F. (2021). Drug-disease Associations
Prediction via Multiple Kernel-Based Dual Graph Regularized Least Squares.
Appl. Soft Comput. 112, 107811. doi:10.1016/j.asoc.2021.107811

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7958837

Lin Genomic Variation Prediction

https://doi.org/10.1016/j.jmb.2020.01.027
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1093/nar/gkx1076
https://doi.org/10.1073/pnas.1821550116
https://doi.org/10.1073/pnas.1618520114
https://doi.org/10.1073/pnas.1812975115
https://doi.org/10.1073/pnas.1812975115
https://doi.org/10.1007/s12031-018-1144-9
https://doi.org/10.3233/jad-170468
https://doi.org/10.1093/nar/gkz1007
https://doi.org/10.1093/database/baab050
https://doi.org/10.1093/bib/bbaa395
https://doi.org/10.1002/humu.23283
https://doi.org/10.1002/ctm2.432
https://doi.org/10.1038/nrg2841
https://doi.org/10.1371/journal.pone.0117380
https://doi.org/10.1109/access.2020.2972283
https://doi.org/10.1109/access.2020.2972283
https://doi.org/10.1016/j.jtbi.2018.11.012
https://doi.org/10.1016/j.jtbi.2018.11.012
https://doi.org/10.1093/bib/bby124
https://doi.org/10.1016/j.knosys.2021.107490
https://doi.org/10.1016/j.ymeth.2019.02.009
https://doi.org/10.1016/j.ymeth.2019.02.009
https://doi.org/10.1093/bib/bby127
https://doi.org/10.1093/bib/bby127
https://doi.org/10.1074/mcp.ra118.001169
https://doi.org/10.1093/nar/gkaa019
https://doi.org/10.1111/cge.12797
https://doi.org/10.1093/bib/bbab390
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1093/bioinformatics/bty451
https://doi.org/10.1109/tcbb.2013.146
https://doi.org/10.1109/tcbb.2017.2670558
https://doi.org/10.1109/tcbb.2017.2670558
https://doi.org/10.2174/1566523219666190716092203
https://doi.org/10.3389/fmicb.2018.02571
https://doi.org/10.3389/fmicb.2018.02571
https://doi.org/10.3389/fgene.2019.00033
https://doi.org/10.3390/genes9030158
https://doi.org/10.3390/genes9030158
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1021/acschemneuro.7b00490
https://doi.org/10.1016/j.asoc.2021.107811
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Yang, H., Ding, Y., Tang, J., and Guo, F. (2021). Identifying Potential Association
on Gene-Disease Network via Dual Hypergraph Regularized Least Squares.
BMC Genomics 22 (1), 605. doi:10.1186/s12864-021-07864-z

Yang, L., LiuLiu, B., Huang, B., Deng, J., Li, H., Yu, B., et al. (2013). A Functional
Copy Number Variation in the WWOX Gene Is Associated with Lung Cancer
Risk in Chinese. Hum. Mol. Genet. 22 (9), 1886–1894. doi:10.1093/hmg/ddt019

Yang, Q., Hong, J., Li, Y., Xue, W., Li, S., Yang, H., et al. (2020). A Novel
Bioinformatics Approach to Identify the Consistently Well-Performing
Normalization Strategy for Current Metabolomic Studies. Brief.
Bioinformatics 21 (6), 2142–2152. doi:10.1093/bib/bbz137

Yang, Q., Li, B., Tang, J., Cui, X., Wang, Y., Li, X., et al. (2020). Consistent Gene
Signature of Schizophrenia Identified by a Novel Feature Selection Strategy
from Comprehensive Sets of Transcriptomic Data. Brief. Bioinformatics 21 (3),
1058–1068. doi:10.1093/bib/bbz049

Yang, Q., Wang, Y., Zhang, Y., Li, F., Xia, W., Zhou, Y., et al. (2020). NOREVA:
Enhanced Normalization and Evaluation of Time-Course and Multi-Class
Metabolomic Data. Nucleic Acids Res. 48 (W1), W436–W448. doi:10.1093/
nar/gkaa258

Yin, J., Li, F., Zhou, Y., Mou, M., Lu, Y., Chen, K., et al. (2021). INTEDE:
Interactome of Drug-Metabolizing Enzymes. Nucleic Acids Res. 49 (D1),
D1233–D1243. doi:10.1093/nar/gkaa755

Yin, J., Sun, W., Li, F., Hong, J., Li, X., Zhou, Y., et al. (2020). VARIDT 1.0:
Variability of Drug Transporter Database. Nucleic Acids Res. 48 (D1),
D1042–D1050. doi:10.1093/nar/gkz779

Yu, L., Xia, M., and An, Q. (2021). A Network Embedding Framework Based on
Integrating Multiplex Network for Drug Combination Prediction. Brief.
Bioinformatics. doi:10.1093/bib/bbab364

Yu, L., Wang, M., Yang, Y., Xu, F., Zhang, X., Xie, F., et al. (2021). Predicting
Therapeutic Drugs for Hepatocellular Carcinoma Based on Tissue-specific
Pathways. Plos Comput. Biol. 17 (2), e1008696. doi:10.1371/
journal.pcbi.1008696

Zhang, J., Zhang, Z., Pu, L., Tang, J., and Guo, F. (2020). AIEpred: an
Ensemble Predictive Model of Classifier Chain to Identify Anti-
inflammatory Peptides. Ieee/acm Trans. Comput. Biol. Bioinform, 1.
doi:10.1109/TCBB.2020.2968419

Zhang, S., Su, M., Sun, Z., Lu, H., and Zhang, Y. (2020). The Signature of
Pharmaceutical Sensitivity Based on ctDNA Mutation in Eleven Cancers.
Exp. Biol. Med. (Maywood) 245 (8), 720–732. doi:10.1177/1535370220906518

Zhang, T., Hu, Y., Wu, X., Ma, R., Jiang, Q., andWang, Y. (2016). Identifying Liver
Cancer-Related Enhancer SNPs by Integrating GWAS and Histone
Modification ChIP-Seq Data. Biomed. Res. Int. 2016, 2395341. doi:10.1155/
2016/2395341

Zhang, T., Wu, Y., Lan, Z., Shi, Q., Yang, Y., Guo, J., et al. (2017). Syntool: A Novel
Region-Based Intolerance Score to Single Nucleotide Substitution for
Synonymous Mutations Predictions Based on 123,136 Individuals. Biomed.
Res. Int. 2017, 5096208. doi:10.1155/2017/5096208

Zhang, X., Li, M., Lin, H., Rao, X., Feng, W., Yang, Y., et al. (2017). regSNPs-
Splicing: a Tool for Prioritizing Synonymous Single-Nucleotide Substitution.
Hum. Genet. 136 (Suppl. 9), 1279–1289. doi:10.1007/s00439-017-1783-x

Zhang, Z.-M., Tan, J.-X., Wang, F., Dao, F.-Y., Zhang, Z.-Y., and Lin, H. (2020).
Early Diagnosis of Hepatocellular Carcinoma Using Machine Learning
Method. Front. Bioeng. Biotechnol. 8, 254. doi:10.3389/fbioe.2020.00254

Zhang, Z.-M., Wang, J.-S., Zulfiqar, H., Lv, H., Dao, F.-Y., and Lin, H. (2020). Early
Diagnosis of Pancreatic Ductal Adenocarcinoma by Combining Relative
Expression Orderings with Machine-Learning Method. Front. Cel Dev. Biol.
8, 582864. doi:10.3389/fcell.2020.582864

Zhou, L.-Y., Qin, Z., Zhu, Y.-H., He, Z.-Y., and Xu, T. (2019). Current RNA-Based
Therapeutics in Clinical Trials. Cgt 19 (3), 172–196. doi:10.2174/
1566523219666190719100526

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lin. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7958838

Lin Genomic Variation Prediction

https://doi.org/10.1186/s12864-021-07864-z
https://doi.org/10.1093/hmg/ddt019
https://doi.org/10.1093/bib/bbz137
https://doi.org/10.1093/bib/bbz049
https://doi.org/10.1093/nar/gkaa258
https://doi.org/10.1093/nar/gkaa258
https://doi.org/10.1093/nar/gkaa755
https://doi.org/10.1093/nar/gkz779
https://doi.org/10.1093/bib/bbab364
https://doi.org/10.1371/journal.pcbi.1008696
https://doi.org/10.1371/journal.pcbi.1008696
https://doi.org/10.1109/TCBB.2020.2968419
https://doi.org/10.1177/1535370220906518
https://doi.org/10.1155/2016/2395341
https://doi.org/10.1155/2016/2395341
https://doi.org/10.1155/2017/5096208
https://doi.org/10.1007/s00439-017-1783-x
https://doi.org/10.3389/fbioe.2020.00254
https://doi.org/10.3389/fcell.2020.582864
https://doi.org/10.2174/1566523219666190719100526
https://doi.org/10.2174/1566523219666190719100526
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Genomic Variation Prediction: A Summary From Different Views
	Introduction
	Genomic Variation Prediction Methods
	Pathogenic Synonymous Mutations
	Genome Sequencing
	Deep Mining of Structural Variation Information

	Literature Contribution
	Conclusion
	Author Contributions
	Acknowledgments
	References


