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Abstract

Motivation: Methods to assess the quality of protein structure models are needed for user applications. To aid with
the selection of structure models and further inform the development of structure prediction techniques, we de-
scribe the ResiRole method for the assessment of the quality of structure models.

Results: Structure prediction techniques are ranked according to the results of round-robin, head-to-head compari-
sons using difference scores. Each difference score was defined as the absolute value of the cumulative probability
for a functional site prediction made with the FEATURE program for the reference structure minus that for the struc-
ture model. Overall, the difference scores correlate well with other model quality metrics; and based on benchmark-
ing studies with Naı̈veBLAST, they are found to detect additional local structural similarities between the structure
models and reference structures.

Availabilityand implementation: Automated analyses of models addressed in CAMEO are available via the ResiRole
server, URL http://protein.som.geisinger.edu/ResiRole/. Interactive analyses with user-provided models and refer-
ence structures are also enabled. Code is available at github.com/wamclaughlin/ResiRole.

Contact: wmclaughlin@som.geisinger.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As three-dimensional protein structures are currently available for
only a fraction of all known protein sequences, protein structure
prediction techniques are utilized to expand the coverage of protein
structure space (Baker and Sali, 2001). Once generated, protein
structure models may be examined to gain insights into the relation-
ships between three-dimensional structure and biological function
(Grabowski et al., 2007). One question is whether structure models
are accurate enough to enable the identification of functional sites
that are localized around specific residues. Such identification was
shown to be possible, as described for the functional assessments of
the CASP12 experiment (Liu et al., 2018). Also, methods like
COFACTOR (Zhang et al., 2017), 3DLigandSite (Wass et al., 2010)
and FunFold (Roche and McGuffin, 2016) have independently
shown that functional sites in experimental structures can be recon-
stituted in structure models.

Here, we address the somewhat reversed question of whether
protein structure prediction techniques can be effectively ranked

according to their capacities to generate structure models with func-
tional site predictions like those of experimental reference struc-
tures. To address this question and to provide an additional means
to assess model quality, we developed the residue role in assessment
method (ResiRole) to examine the matching between the functional
site predictions made for reference structures versus those made at
the corresponding sites in the structure models. The premise is that
if a functional site is predicted to be centered on a specific residue
within a reference structure and similarly predicted for a structure
model, then the structure model has reconstituted the structural and
physiochemical environment necessary for the functional site
prediction.

To perform the study, we retrieved collections of structure mod-
els available through the Continuous Automated Model EvaluatiOn
(CAMEO) server (Haas et al., 2018). CAMEO retrieves the amino
acid sequences of structures to be released in the Protein Data Bank
(PDB), a few days prior to the release of the three-dimensional coor-
dinates (Berman, 2000). CAMEO submits a selected set of these
sequences to the enrolled structure prediction servers; and time-
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stamped structure prediction results are generated. The structure
models produced are subsequently evaluated using model quality as-
sessment (MQA) programs, such as lDDT (Mariani et al., 2013) and
GDT-TS (Zemla et al., 1999). The entire protocol is run with a
weekly update cycle in coordination with the release of structures
from the worldwide PDB (Berman et al., 2007).

The ResiRole method considers functional site predictions cen-
tered on specific amino acid residues, as analyzed with the
FEATURE program (Wu et al., 2008). FEATURE was selected due
to the breadth of the functional sites addressed and the availability
of benchmarking data (Buturovic et al., 2014). The FEATURE pro-
gram enumerates the physiochemical properties of the environment
surrounding an anchor atom of a given residue into a computational
vector representation via sampling of multiple localized concentric
spherical volumes. The physiochemical properties addressed include
descriptions such as atom and residue types, partial charges, second-
ary structure assignments and van der Waals radii. FEATURE can
test this representation against the representation of a known or po-
tential functional site to predict the likelihood that the environment
surrounding the anchor atom constitutes a functional site. The types
of functional sites analyzed include small molecule and ion binding
sites which have corresponding sequence motifs described in
PROSITE (Hulo, 2006). Here, we measure the average degree of
matching between the functional site predictions of the reference ex-
perimental structures versus those for the structure models to com-
pare structure prediction techniques.

2 Materials and methods

2.1 Overview of the analysis pipeline
A flow diagram that describes the overall stages involved in compar-
ing the structure prediction techniques is provided inFigure 1. In
stage A, structure models produced by structure prediction techni-
ques hosted in CAMEO (Haas et al., 2018) were retrieved. CAMEO
also provided a source to retrieve the coordinates of the correspond-

ing PDB reference structures. In stage B, functional site predictions
were made with the SeqFEATURE models using the FEATURE pro-
gram (Wu et al., 2008).

In stage C, each difference score was obtained as the absolute
value of the functional site cumulative prediction probability for a
site in the reference structure minus that for the corresponding site
in the structure model. For each structure prediction technique, the
difference scores were averaged across all the analyses done separ-
ately with each of the functional site prediction models
(SeqFEATURE models).

Structure prediction techniques were compared in a pairwise,
head-to-head, round-robin manner and ranked according to their
overall average difference scores. Mann–Whitney U tests were used
to estimate the significance level for each pairwise comparison of
structure prediction techniques.

2.2 Acquisition of the reference structures and structure

models
Protein structure models were generated from the sets of prereleased
target sequences from the PDB (Berman, 2000) using the structure
prediction techniques represented in CAMEO. The techniques
included HHPredB (Söding et al., 2005), IntFOLD2-TS (Buenavista
et al., 2012), IntFOLD3-TS (McGuffin et al., 2015), IntFOLD4-TS
(McGuffin et al., 2018), M4T (Fernandez-Fuentes et al., 2007),
Naı̈veBLAST (Cozzetto et al., 2007), Phyre2 (Kelley et al., 2015),
PRIMO (Hatherley et al., 2016), Princeton-TEMPLATE (Khoury
et al., 2014), RaptorX (Källberg et al., 2012), RBO Aleph
(Mabrouk et al., 2015), Robetta (Kim et al., 2004), SPARKS-X
(Yang et al., 2011) and SWISS-MODEL (Schwede, 2003). The
Naı̈veBLAST method selects the first template returned by searching
the target protein sequence against the full PDB archive and employs
MODELLER (�Sali and Blundell, 1993) with default parameters to
produce a baseline structure model.

Although CAMEO offers its benchmarking data for multiple
public modeling techniques, only the structure prediction techniques
that modeled at least 100 target sequences in common with each
other during the time frame considered, August 8, 2014 to February
24, 2018, were included for the study. For a complete list of the ref-
erence structures used for each pairwise comparison, see the data
file provided in Supplementary Material.

2.3 Predictions of the functional sites
All coordinate data for the reference structures and the protein
structure models were analyzed using the FEATURE program (ver-
sion 3.0), URL https://simtk.org/projects/feature (Halperin et al.,
2008). FEATURE is trained to associate certain physiochemical
environments with known functional sites utilizing supervised ma-
chine learning. The results are a collection of classification models,
called SeqFEATURE models (Wu et al., 2008), that can be used to
predict the likelihood that a given environment has structural fea-
tures like the classification model against which it is scored.
FEATURE uses a Bayesian scoring algorithm, which treats each
property as an independent event. We converted the raw prediction
score produced by FEATURE for each SeqFEATURE model to a Z-
score based on the mean and standard deviation of the dataset that
consisted of all predictions for that SeqFEATURE model made for
the reference structures. As experimentally determined structures
can sometimes lack coordinate data for regions that are available in
the structure models and vice versa, only residues for which coordin-
ate data existed in both were used in the analyses.

2.4 Comparisons of the structure prediction techniques

using functional site predictions
The difference score was defined as the absolute value of the cumu-
lative probability obtained for a functional site prediction within the
reference structure minus the cumulative probability obtained for
the function site prediction at the corresponding site within the
structure model. The cumulative probabilities were obtained by con-
verting the Z-scores to cumulative probabilities using the cumulative
density function in SciPy 1.1.0 (Jones et al., 2014).

A supporting analysis stage was performed to define the range of
probability values to be utilized for the study. For that purpose, a

Fig. 1. Flow diagram of the data analysis stages for comparing structure prediction

techniques regarding their capacities to have functional site predictions like those of

the reference structures
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matching specificity for each SeqFEATURE model was calculated as
the number of instances predicted as negative for both the reference
structures and structure models divided by the total number of nega-
tives predicted for the reference structures. We found that a 90%
matching specificity was, within the errors of the measurements,
identical to a functional site prediction specificity of 90%. Based on
this finding and to focus on predictions which have relatively high
Z-scores, only predictions in the reference structures that had Z-
score values corresponding to functional site prediction specificities
within the range of 90–100 were utilized. For that purpose, the Z-
scores that corresponded to specificity thresholds of 90% for each
SeqFEATURE model were extracted from the results of a bench-
marking study by Buturovic et al. (2014). These thresholds were
applied such that only those functional site predictions that had a Z-
score greater than the Z-scores corresponding to specificity levels of
90% for the SeqFEATURE models for the reference structures were
included. All other functional site predictions were removed or ‘fil-
tered’ from the subsequent analyses. Further details regarding the
supporting analysis stage are described in Supplementary Material.

Using the remaining set of ‘filtered’ functional site predictions,
an average difference score was calculated separately for each
SeqFEATURE model for the set of structure models produced by
each structure prediction technique. The protein structure prediction
techniques were then compared in a pairwise head-to-head, round-
robin manner using Mann–Whitney U tests that were performed on
the lists of average difference scores from the SeqFEATURE models.
For each pairwise comparison of structure prediction techniques,
only target sequences modeled in common between the two techni-
ques were considered.

All comparisons between structure prediction techniques were
repeated after the targets were categorized according to lDDT score
ranges to produce easy, medium and hard subsets, as described by
Haas et al. (2018). These categories corresponded, respectively, to
lDDT score ranges of greater than or equal to 75, between 50 and
75 and <50.

2.5 Comparisons of the difference score to other

assessment metrics
The difference scores were compared with other metrics for assess-
ing model quality. These metrics included lDDT (Mariani et al.,
2013), which provides a measure of local model quality. lDDT-BS
was used as a local measure of model quality around ligands found
in complex within the reference structures (Haas et al., 2018). TM-
score (Zhang and Skolnick, 2005), GDT-TS (Zemla et al., 1999),
GDT-HA (Read and Chavali, 2007) and GDC (Keedy et al., 2009;
Mariani et al., 2013) provided measurements of global model qual-
ity. For the comparisons to the difference score, averages of the met-
rics were found separately for the entire set of structure models
produced by each structure prediction technique. Each other metric
was averaged across all targets that received at least one score
according to a SeqFEATURE model.

The average difference scores obtained for the structure predic-
tions techniques were plotted against the averages of the other
metrics for assessing model quality. Best fit linear regression lines
were obtained for each of the plots to interpret the degree to
which the difference score provides a comparable estimate of
structure model quality. Standardized residuals obtained for devia-
tions of individual structure prediction techniques away from their
predicted values based on the best fit lines were used to interpret
potential outliers.

3 Results

3.1 Example illustration of functional site predictions
Consider an example of a functional site prediction in a reference
structure and the corresponding predictions within structure models.
Figure 2 provides a representation of the crystal structure of the
group I dockerin domain of hydrolase GDSL protein from the bac-
teria Ruminococcus flavefaciens (PDB ID: 5M2O, chain B) (Bule
et al., 2017). The experimental structure is shown to be aligned with

the structure models produced by RaptorX and Robetta using
PyMOL (DeLano, 2002). The type of functional site is a calcium
binding site centered on the oxygen of asparagine’s side chain. The
functional site prediction model, or SeqFEATURE model, is abbrevi-
ated as EF_HAND_1.5.ASN.OD1. For the asparagine at position
32, a positive prediction was made in the reference structure; but
negative predictions were made for the Robetta and RaptorX mod-
els. Notice that the asparagines in the RaptorX and Robetta models
adopt different rotamer states relative to that found for the reference
structure. These changes in conformations contribute to alterations
of the physiochemical properties assigned to the feature vectors used
for the function site predictions such that the RaptorX model
received a 3.49% functional site prediction cumulative probability
and the Robetta model received a 26.27% probability. The target,
in which the anchor asparagine is known to participate in a calcium
ion binding site (green), received a 99.96% functional site prediction
probability. The examples in Figure 1 illustrate that the prediction
probabilities can be used to measure the degree to which the physi-
cochemical and structural environment of a functional site has been
accurately reconstituted within a structure model.

3.2 Example calculations of the difference score
To further illustrate how the difference scores were calculated, con-
sider examples of functional site predictions made with the
EF_HAND_1.5.ASN.OD1 SeqFEATURE model. Shown in Figure 3
is a plot of the cumulative probabilities of functional site predictions
for the reference structures versus those made at the corresponding
sites in the Robetta models, which had targets in common with
RaptorX models.

Included in the plot are functional site predictions that had Z-
scores in the reference structures above a functional prediction speci-
ficity of 90%.

See that there is a wide distribution along the ordinate of the
scatter plot. But a significant correlation between the probabilities
found for the reference structures versus the models is apparent. The
correlation coefficient, Pearson’s r is 0.1358, with an associated P
value of 7.108�10�9. The point indicated by the arrow corresponds
to the probabilities of the predictions in the reference structure and
the Robetta model that are described in Figure 2. The difference
score for that point is 0.9996–0.2627, or 0.74.

3.3 Comparisons of structure prediction techniques
The lists of average difference scores associated with the
SeqFEATURE functional site models that were applied to the sets of
structure models generated by each the structure prediction tech-
nique were used to compare the structure prediction techniques in a
head-to-head, round-robin manner using Mann–Whitney U tests.

Fig. 2. Comparison of the crystal structure of the group I dockerin domain of hydro-

lase GDSL along with structure models at the location of a calcium binding site.

The function is predicted to be centered on an asparagine residue, which is shown in

stick representations. The experimental structure is in white, whereas the Robetta

model and RaptorX models are in yellow and magenta, respectively. The calcium

ion from the reference structure is shown in green
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The results are presented in Table 1. A total of 3382 targets were

utilized for the study based on the available structure models from
CAMEO for the study’s time frame. We see that the difference
scores provide a way to obtain a relatively high statistical signifi-

cance for most the pairwise comparisons of the structure prediction
techniques. The P values in yellow are those below a threshold value
of 6.54�10�7, the required threshold to meet the Bonferroni correc-

tion with a base P value of 0.0001 for a total of 153 different pair-
wise comparisons conducted across the 18 different structure

prediction techniques. The top five structure prediction techniques,
ranked by their global average difference scores were Robetta,
IntFOLD4-TS, SWISS-MODEL, M4T and Naı̈veBLAST.

Our submitted question was whether structure prediction techni-
ques can be effectively ranked according their capacities to enable

residue-level functional site predictions. Based on the head-to-head
pairwise comparisons, we infer that the average difference score pro-

vides an effective means to do so. We infer that if a given a pair of
structure prediction techniques were found to differ significantly by
their average difference scores, the one with lower difference score

can, on average, produce structure models which reconstitute more
of the local structural features of the reference structures at the pre-
dicted functional sites.

3.4 Results for the hard targets
Results of the assessments of the structure prediction techniques can

vary according the difficulty of modeling the target sequences. To
address that matter, CAMEO has devised categories of target

sequences based on lDDT score ranges (Haas et al., 2018); these des-
ignations are easy, medium and hard. The average difference scores
for structure prediction techniques for structure models produced

for hard target sequences are provided in Table 2. Here, Robetta,
IntFOLD4-TS, SWISS-MODEL, M4T and RaptorX were found to

be the top five structure prediction techniques regarding their abil-
ities to produce structure models with functional site predictions
like those of the reference structures. Otherwise, the order would be

different if going by lDDT. The results of all pairwise, head-to-head
comparisons for the easy and medium targets are provided in

Supplementary Material.

3.5 Consideration of Naı̈veBLAST as a benchmark

technique
The Naı̈veBLAST technique provides a baseline method to evaluate
the other structure prediction techniques because it identifies the se-
quence of an available three-dimensional structure which is similar
to the target sequence based on a BLAST search (Altschul, 1997).
The carbon alpha backbone of the closest template then provides
the structure on which to perform template-based structure predic-
tion with MODELLER (�Sali and Blundell, 1993). The resulting
model is energy minimized. By comparing the model produced from
another structure prediction technique with the structure model pro-
duced by Naı̈veBLAST, the degree to which the former model yields
additional information found in the reference structure, but cannot
be obtained from the nearest template structure, can be estimated.

As shown in Table 1, we see that Robetta, IntFOLD4-TS,
SWISS-MODEL and M4T outperform Naı̈veBLAST according to
the difference scores regarding the analyses done for all targets. That
is, these structure prediction techniques produced structure models
that had, on average, difference scores significantly better when
compared to the structure models produced by Naı̈veBLAST. For
the hard target sequence category, RaptorX, Phyre2 and HHPredB,
and RBO Aleph additionally outperformed Naı̈veBLAST. Our inter-
pretation is that that the models produced by these structure predic-
tion techniques have, on average, reconstituted more of the
structural features associated with the functional site predictions
than the structure models generated by Naı̈veBLAST for the hard
targets. The results provide evidence that these structure models
contain additional information regarding the structural features
required for functional site predictions and corroborate previous
findings that describe the utility of structure models for enabling
functional site predictions (Liu et al., 2018), especially for the target
sequences in the hard category.

3.6 Comparison the difference score to other

assessment metrics
Consider the correlations between the difference score and other
metrics which assess the quality of structure models in relative to the
reference structures. In Figure 4, we present scatter plots of the aver-
age difference scores versus the averages for the other metrics, as
obtained for each of the 18 structure prediction techniques. Each
plot has a significant correlation coefficient, as indicated by the
associated P value.

See the linear regression fit for the plot of the average difference
scores versus the average GDC values (Fig. 4D). We see that the
Pearson r value is -0.856, which is higher than the Pearson r value
for the plot of the difference scores versus GDT-TS (Fig. 4B), which
was -0.7785. The difference between these two correlation coeffi-
cients is significant at a P value of .05, that is, when considering that
Pearson r for the correlation between GDC and GDT-TS is 0.9606,
as found using the paired.r module in R. For the same comparison
based on the hard targets only, the P value was 0.02.

GDC examines the distances between all superposed atoms,
whereas GDT-TS examines only the interatomic distances of the
superposed alpha carbon atoms. We infer that the higher absolute
value of Pearson r was obtained for GDC because functional site
predictions are more accurately represented by the relative distances
between all atoms of the side chain residues rather than just the
atoms of the alpha carbon backbone. Since GDT-TS only examines
the distances between the aligned and superposed alpha carbon
atoms, the lower correlation may mean that GDT-TS does not cap-
ture as many of the structural features required for the functional
site predictions described by the SeqFEATURE models, as compared
to GDC when using the difference score as the benchmark metric.

See that the average difference score versus the average lDDT-BS
metric is shown in Figure 4F. The lDDT-BS metric describes the
average lDDT score for atoms surrounding a ligand in complex with
the reference structure (Haas et al., 2018). The difference score cor-
relates well with the lDDT-BS metric with a Pearson r value of -
0.877. These metrics complement each other in the sense that differ-
ence score calculation does not require the reference structure to be

Fig. 3. Scatter plot of all the cumulative probabilities for functional site predictions

made in the reference structures versus those for the corresponding sites in the

Robetta models based on the SeqFEATURE model EF_HAND_1.5.ASN.OD1.

Pearson’s r is 0.1358 for the least-squares regression line. An example of a difference

score calculation of 0.74 is shown for the point indicated by the arrow
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in complex with a ligand. Also, the difference score examines pre-

dicted rather than verified functional sites.

3.7 The ResiRole server
The ResiRole server, http://protein.som.geisinger.edu/ResiRole/, is

established to provide routine updates to the analyses of structure
models addressed in the CAMEO project. The accuracies of the
structure prediction techniques according to their average difference

scores are provided. Calculations are done for defined release inter-
vals in CAMEO. For example, results are provided for weekly,

monthly and yearly updates.
The results on the ResiRole server are further categorized

according to target difficulty. The categories are all, easy, medium
and hard, according to the lDDT score ranges described in CAMEO
(Haas et al., 2018). The ResiRole server also provides the average

difference score for each structure model versus its reference struc-
ture, thereby enabling structure prediction techniques to be com-
pared at the per target granularity.

A means for users to analyze their own structure model versus a
reference structure through an interactive web submission page is
also enabled. Here, the user uploads the coordinates of their struc-
ture model along with the coordinates of the reference structure.
The overall average difference score for the functional site probabil-
ities is calculated and sent to the user via email. The interactive page
thereby enables analyses of structure models generated by additional
structure prediction techniques and targets outside of the scope of
CAMEO. A potential application is for the Critical Assessment of
Structure Prediction (CASP) experiment (Kryshtafovych et al.,
2019).

4 Discussion

4.1 Overall assessments of structure prediction

techniques
ResiRole may be used to assess the accuracies of structure prediction
techniques for comparisons between different techniques and be-
tween different versions of the same technique. Consider for

Table 1. Results of round-robin, head-to-head comparisons using difference scores

Server DS RB I4 SM M4T NB HB I3 P2 RX I2 RA PBCL PR SX PB3D PH3D PHCL

RB 0.1528

I4 0.1718 3.E-01

213

SM 0.1721 *** ***

1509 397

M4T 0.1736 *** *** ***

659 166 1135

NB 0.177 *** *** *** ***

1107 326 2247 777

HB 0.1786 *** 8.E-05 *** *** ***

993 281 1834 580 1386

I3 0.1795 *** *** 3.E-01 *** *** ***

436 349 699 308 545 491

P2 0.1799 *** *** *** *** *** *** ***

1230 268 2532 997 1690 1304 548

RX 0.1802 *** *** 6.E-04 3.E-03 *** *** 4.E-01 ***

1489 402 2621 978 1919 1665 707 2040

I2 0.1862 *** *** 6.E-04 * *** *** 1.E-01 *** ***

948 197 1230 510 867 744 410 1021 1217

RA 0.1909 *** *** *** *** *** *** *** *** *** ***

642 229 1284 674 804 642 327 1156 1028 552

PBCL 0.192 *** *** *** 5.E-01 *** *** *** * *** *** ***

307 302 875 178 791 572 361 494 817 219 277

PR 0.1924 *** *** *** 5.E-01 *** *** *** * *** *** *** 4.E-01

308 303 877 178 791 576 362 492 818 219 275 885

SX 0.1954 *** *** *** *** 2.E-01 *** *** *** *** *** *** * *

815 360 2161 847 1454 979 666 1770 1720 741 955 750 752

PB3D 0.1968 *** *** *** *** 3.E-01 *** *** *** *** *** *** *** *** ***

305 302 874 178 790 575 357 491 812 218 274 879 880 748

PH3D 0.1998 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *

284 263 818 158 733 556 333 445 772 200 244 799 803 707 796

PHCL 0.2014 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *

289 272 836 158 743 570 341 457 786 206 248 814 817 720 811 825

PT 0.2075 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

973 357 2285 1007 1523 1065 631 2077 1790 862 1181 560 559 1839 557 516 527

Note: The overall average difference scores are displayed in the left column next to the technique identification. P values that are associated with each pairwise

comparison are based on the Mann–Whitney U tests. Yellow ***, ** and * indicate comparisons in which the techniques were statistically different after applying

the Bonferroni-corrected P value threshold of 6.54�10-7, as calculated based on initial P values of .0001, .001 and .01, respectively. The number of targets in

common for each pair of techniques are given for each comparison.

DS, average difference score; RB, Robetta; HB, HHPredB; I4, IntFOLD4-TS; I3, IntFOLD3-TS; I2, IntFOLD2-TS; P2, Phyre2; NB, Naı̈veBLAST; RA, RBO

Aleph; RX, RaptorX; PB3D, PRIMO-BST-3D; PBCL, PRIMO-BST-CL; PH3D, PRIMO-HHS-3D; PHCL, PRIMO-HHS-CL; PR, PRIMO; PT, Princeton-

TEMPLATE; SM, SWISS-MODEL; SX, SPARKS-X.
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example the significant improvement of the IntFOLD4-TS over
IntFOLD3-TS, as accessed with the difference scores described in
Table 1. We find that the results confirm the significant improve-
ment previously reported based the lDDT metric (Mariani et al.,
2013; McGuffin et al., 2018). The advancements in model quality
between the IntFOLD4-TS over IntFOLD3-TS server versions are
described as being due in part to the use of ModFOLD6 for the se-
lection of the final model. ModFOLD6 evaluates the agreement be-
tween the contacts found in the model versus the contacts predicted
using MetaPSICOV (Maghrabi and McGuffin,2017). MetaPSICOV
utilizes covariation to identify residue contact and predict long-
range hydrogen bonds (Jones et al., 2015).

4.2 Relative performances of Phyre2 and NaiveBLAST
When the results presented in Figure 4 are further considered, we see
instances in which the structure prediction techniques had either less
than or more than their expected values relative to what was pre-
dicted by the line formulas. To identify potential outliers, we calcu-
lated standardized residuals for the structure prediction techniques
using the standard method in R (Team, 2017).

See the plot of average difference scores versus the average lDDT
values and notice the point for Phyre2, which is indicated by the
arrow in Panel E of Figure 4. The standardized residual for this
point is -2.611 Further, the standardized residual for the plot of dif-
ference score versus lDDT for Phyre2 for the hard targets was -2.20
(see Supplementary Fig. S2). Our interpretation of the relatively
large residuals is that as Phyre2 explicitly includes measures of

functional information for structure model generation in the form of
local sequence conservation, template binding site information, cleft
detection and consensus binding site conservation (Kelley et al.,
2015; Kelley and Sternberg, 2009). The lDDT score may underesti-
mate the ability of Phyre2 to produce models that accurately recon-
stitute functional site predictions using the difference score as the
benchmark metric. But the linear fit of average lDDT-BS value ver-
sus the difference score is relatively high; and Phyre2 did not have a
residual indicative of a possible outlier. Since the lDDT-BS metric
focuses only on the accuracy of ligand binding sites, the result may
provide more evidence to the above claim.

We also find that the standardized residuals for the Naı̈veBLAST
method are relatively pronounced for all the plots shown in
Figure 4. Consider the regression fits for the difference score versus
TM-score, GDT-TS, GDT-HA, GDC, lDDT and lDDT-BS in which
the standardized residuals for Naı̈veBLAST were, respectively, -
1.70, -1.46, -1.26, -1.73, -1.63 and -2.77. Also, the corresponding
values for analyses regarding the hard targets are interpreted as out-
liers at -3.37, -3.00, -2.78, -3.21, -2.51 and -3.08. (See
Supplementary Tables S4 and S5.) Naı̈veBLAST is thereby ranked
inaccurately with the other assessment metrics when using the differ-
ence score as the benchmark. Its ability to produce structure models
with detailed structural features of accurately predicted functional
sites is underestimated by the other metrics. We interpret the result
by considering that Naı̈veBLAST produces a baseline model using
the nearest template structure. If the nearest template structure al-
ready has the functional site to be predicted, the precise local

Table 2. Results of round-robin, head-to-head comparisons using difference scores for the hard targets

Server DS RB SM M4T RX P2 I4 HB RA NB I3 SX PT I2 PH3D PHCL PR PBCL

RB 0.2229

SM 0.2501 ***

254

M4T 0.2539 *** 6.E-04

51 143

RX 0.2545 *** *** ***

262 686 119

P2 0.2597 *** *** 3.E-02 ***

214 686 119 539

I4 0.2604 *** *** *** *** ***

37 107 15 111 72

HB 0.2666 *** *** *** *** *** 4.E-01

176 493 84 434 350 72

RA 0.2669 *** 8.E-03 8.E-03 *** *** 2.E-01 ***

113 280 70 224 257 42 143

NB 0.2775 *** *** *** *** *** *** *** ***

145 536 102 445 377 79 329 138

I3 0.278 *** 5.E-01 5.E-04 *** *** *** *** *** ***

80 188 27 198 157 100 131 82 125

SX 0.2795 *** *** 9.E-03 *** *** *** *** 5.E-01 *** 3.E-02

127 606 107 483 505 93 283 203 355 183

PT 0.2816 *** *** *** *** 9.E-05 *** *** *** *** * ***

166 640 129 496 586 96 313 270 361 174 512

I2 0.2827 *** 3.E-03 3.E-01 *** *** *** ** *** *** 4.E-02 4.E-03 2.E-02

188 327 60 322 289 55 193 142 184 119 218 252

PH3D 0.3136 *** *** *** *** *** *** *** *** *** *** *** *** ***

38 239 23 228 120 73 163 46 197 95 202 145 56

PHCL 0.3151 *** *** *** *** *** *** *** *** *** *** *** *** *** ***

40 247 22 237 125 81 170 47 203 100 210 152 58 245

PR 0.323 *** *** *** *** *** *** *** *** 3.E-01 *** *** *** *** *** ***

39 250 23 236 128 83 165 47 212 97 208 157 57 233 240

PBCL 0.3233 *** *** *** *** *** *** *** *** 3.E-01 *** *** *** *** *** *** 5.E-01

38 247 23 233 128 82 161 47 210 96 205 156 57 229 236 256

PB3D 0.3423 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

39 247 23 231 127 82 162 46 210 95 204 155 56 229 236 255 253
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structural features required for that functional site may be repre-

sented in the corresponding structure model a priori, thereby
accounting for the relatively low difference score measurements. We

infer the other metrics did not capture the relevant structural fea-
tures of the functional site predictions as well as the difference score.

4.3 Utilities of the ResiRole server
Although from a theoretical standpoint, it may be obvious that
structure model quality is the cause of similar functional site predic-

tions between the structure models and the reference structures, an
advance that made the overall assessments possible here was the

benchmarking studies by Buturovic et al. ( et al2014). Using these
benchmarking results, the same functional specificity threshold
range could be applied for each of the functional site prediction

models (SeqFEATURE models). See supporting analyses in
Supplementary Material for a description of the selection of the spe-

cificity ranges used for the study. That enabled the calculation of the

difference score as an overall, normalized metric that could be aver-
aged across different types of functional site predictions.

The ResiRole framework does not necessitate that each of the
predicted functional sites be present within the reference structures.
seqThe analysis thereby provides an objective means to measure
the ability of the structure prediction technique to reconstitute
the structural features found at local sites within the reference
structures.

There will be advantages and disadvantages for each selected
structure quality assessment metric which a user may select based on
an intended application. If the goal is to identify whether an overall
predicted fold is accurate, global measurements such as TM-Score
or GDC may be preferred. If the application entails evaluation of
documented or potential local functional sites, then an estimate of
structure model quality using the difference score may provide a
more accurate method to estimate the likelihood that the structure
model reconstitutes the local structural features required to observe
similar functional site predictions.

A B

C D

E F

Fig. 4. Correlations between the difference scores and other metrics for assessing structure model quality. The regression lines for the scatter plots off the average difference

scores for the 18 different structure prediction techniques versus their corresponding average values of the other quality assessment metrics are provided. The other metrics are

TM-Score (A), GDT-TS (B), GDT-HA (C), GDC (D), lDDT (E) and lDDT-BS (F)
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As future development, it would be useful to extend the ResiRole
method to include analyses of functional site predictions made with
multiple functional site prediction methods which evaluate the fea-
tures of the three-dimensional coordinates. We anticipate that, in
addition to PROSITE mappings to SeqFEATURE models, other pri-
mary sequence motifs, such as those available from BioSeq-
Analysis2.0 (Liu et al., 2019), may be utilized to generate 3D func-
tional site prediction models. For their subsequent use in structure
MQA, we see a need to obtain benchmarking results for each of the
3D functional site prediction models that would include correspond-
ences between the Z-scores of the predicted functional sites and the
functional site specificity thresholds. Via such benchmarking results,
the Z-scores may be confidently mapped to the corresponding cu-
mulative probabilities. These cumulative probabilities would then
be comparable across different types of functional site predictions.
The average difference score obtained using the different types of
functional site prediction models may provide additional means to
assess the accuracies of the structure prediction techniques more
accurately.

The ResiRole method currently does not serve the purpose of
benchmarking how accurately experimentally verified functional
sites are identified via the functional site predictions. That would
require the collection of experimentally verified functional sites
available for the CAMEO targets and curating these about their
correspondences to the SeqFEATURE models. We therefore see
that future developments are needed in that area. It would be
worthwhile to estimate the capacity of the structure models to re-
constitute experimentally verified functional sites that are found in
the reference structures. These assessments would enable ResiRole
to additionally serve as a tool for evaluating whether functional
site predictions in the structure models are likely to correspond to
actual functional sites within the target structures. But we find
implementing that additional aspect is not a requirement for esti-
mating the relative accuracies of the structure models based on
their capacities to have functional site predictions like those of the
reference structures.

5 Conclusion

Here, we describe the ResiRole method as means to assess the aver-
age quality of structure models produced by each structure predic-
tion technique based on comparing the functional site predictions in
the reference structures to predictions at the corresponding sites
within structure models. The method provides an objective means to
assess the relative accuracies of structure prediction techniques since
it uses parameters not directly linked to the generation of the struc-
ture models. Consider for example, that physics-based or empirical-
ly derived energy functions that are used in structure prediction
(Kelley et al., 2015), are not used in calculating ResiRole’s assess-
ment metric. A disadvantage of the method is that the reference
structures need to be available.

The top four structure prediction techniques based on difference
scores for all targets considered were Robetta, IntFOLD4-TS,
SWISS-MODEL and M4T. These techniques had a statistically
higher performance relative to Naı̈veBLAST, which indicates that,
on average, their structure models provide more information regard-
ing the predicted functional sites of the reference structures than can
be obtained from the nearest template structures. For targets in the
hard category, as defined by a low lDDT score, several other techni-
ques such as SWISS-MODEL, M4T, RaptorX and Phyre2 were
found also to on average to outperform Naı̈veBLAST.

The difference score metric provides a direct measure of the ac-
curacy of each structure prediction technique to generate structure
models that reconstitute functional site predictions of the reference
structures. As shown with outlier analysis with Naı̈veBLAST as the
benchmark technique and the difference as the benchmark metric,
we infer the other metrics do not capture the relevant structural fea-
tures of the functional site predictions as well as the difference score.

The ResiRole server provides routine updates for the analyses of
structure prediction techniques represented in CAMEO with the
goal of providing a complementary means for structure MQA. An

interactive web submission site enables the evaluation of user-
provided models. We expect that the results will further inform the
development of more accurate structure prediction techniques and
aid with the selection of models for user applications.
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