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Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-
small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune
escape has been demonstrated to play a key role in the initiation and progression of
NSCLC, although the underlying mechanisms are diverse and their puzzling nature is
far from being understood. As a critical participant in immune escape, the CD4+ T
cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has
been implicated in the occurrence of many types of cancers. Additionally, therapies
based on Treg blockade have benefited a portion of cancer patients, including those
with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor
tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved
in regulating the proliferation, differentiation, recruitment and suppressive functions of
Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted
and modulated in the NSCLC milieu will be discussed in this review.

Keywords: non-small cell-lung cancer, tumor microenvironment, CD4+ Tregs, differentiation, proliferation,
chemotaxis, phenotype

INTRODUCTION

Lung cancer is continuously evaluated and is considered the leading cause of cancer-related
mortality worldwide, with a dismal 5-year survival rate of approximately 19% in the United States
(1, 2). According to histopathological features, lung cancer can be further classified into small-
cell lung cancer (SCLC), which accounts for approximately 10% ∼ 15% of lung cancer cases, and
non-small-cell lung cancer (NSCLC), comprising the remaining 85% ∼ 90% (3, 4). NSCLC has
three histological subtypes: squamous cell carcinoma, adenocarcinoma, and large cell carcinoma
(5). Although genetic susceptibility and environmental hazards (i.e., cigarette smoke) that trigger
chronic pulmonary inflammation have been confirmed as high-risk factors for NSCLC (6); their
precise regulatory mechanisms are still puzzling.

Cancer immune escape, involving (a) loss of antigenicity, (b) loss of immunogenicity, and
(c) the presence of a complicated immunosuppressive tumor microenvironment, is a major
mechanism antagonizing antitumor immune responses (7). Published literature has emphasized
that tumor milieu-induced activation of immunosuppressive cells enhances cancer occurrence,
growth, invasion, and metastasis by diminishing tumor-killing immune responses (8–11). More
importantly, therapeutics targeting the contributing factors in the tumor microenvironment have
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achieved an unexpected breakthrough in some patients,
including those suffering from NSCLC (12–14), implying
the non-redundant role of immunosuppression in
modulating tumor biology.

CD4+ regulatory T (Treg) cells, which express the X
chromosome-linked, linage specific transcription factor Foxp3,
are potent immunosuppressive cells and can serve as brakes
during immune responses. Numerous studies on autoimmune
diseases have emphasized the protective role of Treg cells
in remitting inflammation and the requirement for Treg
supplementation therapy in these inflammatory diseases (15).
However, Treg cells play an opposite role in cancer immunity
as Treg cells recruited in tumor tissues become accomplices
that help cancer cells escape from immunological surveillance.
Heterogenetic Tregs with high frequencies in tumor tissues,
bone marrow, lymph nodes or peripheral blood from NSCLC
patients are considered predictors of disease outcome (16–
18). Further, accumulating evidence suggests that cytokines
or other agents derived from NSCLC tissues, as well as
phenotype modulators, might be the key factors leading to
the differentiation, trafficking and immunosuppressive effects of
Tregs. In the following sections of this review, we will discuss the
underlying mechanisms in detail.

GENERATION OR EXPANSION OF TREG
CELLS

CD4+ Treg cells are currently classified into two main subtypes,
natural Tregs (nTregs) and inducible Tregs (iTregs), according
to their origins, determinant markers and distributions (19).
Despite the existence of delicate differences, both subtypes
express the linage specific transcription factor Foxp3 and can
exert immunosuppressive effects. Considering that conventional
T cells undergo reprogramming, proliferation and differentiation
in the NSCLC milieu, it is worthwhile summarizing the
mechanisms of Treg cell generation induced by factors in NSCLC
microenvironment.

TCR Signaling
Recognition of antigen peptide-MHC complexes by T cell
receptors (TCRs) is the first step in T cell proliferation and
differentiation. An updated published work revealed that the
TCR repertoires of intratumoral Tregs from patients with
metastatic melanoma, gastrointestinal, and ovarian cancer have a
unique TCR repertoire different from that of other intratumoral
CD4+ T cells (20). These results emphasize the possibility that
ex vivo generation or expansion of NSCLC-infiltrating Tregs,
like other T cell subsets, also requires distinct TCR signaling in
response to neoantigens, which determines their heterogeneity.
This section will be discussed in the following part.

Coinhibitory Ligands and Receptors
Following TCR stimulation, T cells undergo further proliferation
and lineage fate determination subsequent to CD28-CD80/CD86
costimulatory interaction (21). Additionally, coinhibitory
crosslinking, including cytotoxic T lymphocyte associated

antigen-4 (CTLA-4)-CD80/86 and programmed cell death
protein-1 (PD-1)-programmed death-ligand-1 (PD-L1)
binding, both of which serve as brakes in the process for T
cell activation, can occur.

CTLA-4, a CD28 family receptor, is not expressed by resting T
cells but can be induced by de novo transcription and accumulates
on membranes upon T cell stimulation (22). On the one hand,
CTLA-4 induced by activated T cells can compete with CD28
to interact with CD80/86 with high affinity, causing T cell
anergy (23); on the other hand, it has a positive effect on
iTreg cell differentiation (24). Although the current mechanisms
by which CTLA-4 promotes Treg generation in vitro remain
unelucidated, this activity could be ascribed to an emulative
CTLA-4 mediated reduction in CD28-CD80/86-interaction-
induced NF-κB activity, which is specially required for iTreg, but
not nTreg differentiation, potentially in an miR-34a-dependent
manner (25–27). Alternatively, Treg generation can be achieved
via indoleamine 2,3-dioxygenase (IDO) production by dendritic
cells (DCs) upon CTLA-4-CD80/86 interaction, which favors
in vitro differentiation of iTregs (28–30). Emerging evidence has
indicated that CTLA-4 expression level is markedly elevated in
tumor-infiltrating T cells of NSCLC patients (31), which might
contribute to their conversion into iTreg cells (Figure 1A). So
far, two CTLA-4 monoclonal antibodies, namely ipilimumab
and tremelimumab, have been developed to enhance antitumor
immune responses by recovering T cell activation status (32,
33). Ipilimumab has been evaluated in advanced NSCLC in
combination with chemotherapy in a Phase II study and the
results showed that phased ipilimumab plus chemotherapy
significantly improved progression-free survival (PFS) compared
with chemotherapy alone (34). Notably, anti-CTLA-4 therapy has
shown a promising outcome for decreasing Treg cell numbers,
which has been mentioned and suggested for NSCLC treatment
(35–37); however, the definite effect of CTLA-4-based therapies
on Treg cell numbers needs further investigation.

PD-1, also called CD279, is an immune checkpoint receptor
that is a CD28 family receptor and is expressed on diverse types
of immune cells including Tregs (38–41). PD-L1, also termed
CD274 or B7-H1, is a transmembrane protein that transmits an
inhibitory signal promoting T cells to undergo apoptosis and
anergy by binding to its receptor—PD-1 (42–44). Numerous
studies in human NSCLC patients or a mouse model of EGFR-
driven adenocarcinomas have implicated hyperactivation of the
PD-1-PD-L1 axis in tumor immune escape and malignant
progression (45–47), and manipulation of Treg generation driven
by this axis constitutes one of the most predominant mechanisms
of NSCLC occurrence (Figure 1B). Using TCR transgenic CD4+
OT-II T cells, Wang et al. (48) found that the conversion of
OT-II T cells into iTreg cells was notably diminished after PD-
L1 blockade iv vivo, and that the loss of PD-L1 in DCs failed
to induce iTreg differentiation ex vivo, preliminarily suggesting
a PD-L1-dependent mechanism for Treg cell generation. Chen
et al. (49) showed that conventional CD4+ T cells with PD-
1 knockout displayed a strikingly diminished tendency toward
differentiation into iTreg cells, arguing that the PD-1-PD-L1
pathway, in addition to limiting conventional T cell activation
and proliferation, can also provoke peripheral tolerance by
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FIGURE 1 | Treg cell generation in lung cancer. (A) Ex vivo generation of Tregs is modulated by the first and second signaling of T cell activation in lung cancer. In
brief, neoantigens determines the TCR repertoire of Tregs (left) and CTLA-4-CD80/CD86 crosslink downregulates NF-κB activity, which was reported to inhibit Foxp3
expression by upregulating miR-34a, finally promoting Treg cell polarization. (B-C) APC- or tumor cell-derived PD-L1 or TGF-β can also induce Treg cell generation
by interaction their corresponding receptors, respectively, on TILs via diverse mechanisms. On the one hand, TGF-β induces CTLA-4 expression on TILs, on the
other hand, TGF-mediated activation of Smad and ERK1/2 can enhance Foxp3 expression in Treg cells. Moreover, TGF-β inhibits LSD1-Gfi-1 axis via an unknown
mechanism to enhance immunosuppressive CD103+ Treg differentiation. (D) IL-10 induced Foxo1 translocation into nucleus facilities its occupation in Foxp3
promoter upon STAT3 activation and PI3K-Akt inactivation.

supporting iTreg generation. Reportedly, genomic alterations
including gene amplification and translocation at chromosome
9p24.1 (50) and genomic structural alteration in the PD-L1 3′-
untranslated region (3′-UTR) (51), several epigenetic modifiers,
comprising the histone acetylation modifier bromodomain
and extra-terminal (BET) proteins (52, 53) and mixed-lineage
leukemia 1 (MLL1) with histone methyltransferase activities (54),
as well as oncogenic signaling pathways, involving JAK-STAT
(55), NF-κB (56), PI3K-Akt-mTOR (57), MAPKs (58, 59), and
Hippo (60), have been implicated in PD-L1 expression at different
levels. Further investigations are needed to disclose the precise
mechanisms underlying the hyper-induction of infiltrating Treg
cells in NSCLC driven by PD-1-PD-L1 activation.

TGF-β Cascade
Transforming growth factor beta (TGF-β) is a polypeptide
cytokine of the transforming growth factor superfamily that
includes three different isoforms (TGF-β1, 2, and 3) and
regulates multiple biological processes involved in embryonic
development, stem cell differentiation, immune regulation,
wound healing, and inflammation (61–63). This pathway is
initiated by TGF-β signaling through the cell-surface receptors,
TGF-βR1 and TGF-βR2, which are dual specificity kinases and
intracellular signal transducer proteins. Upon activation of these

receptors, Smad proteins undergo phosphorylation by TGF-βR1
kinase at the two carboxy-terminal serine residues and then
translocate into the nucleus to modulate target gene expression
(64). In addition, non-redundant pathways through which TGF-
β can also activate MAPK, Rho-like GTPase and PI3K pathways
independent of Smad have been recorded (65).

Both in vivo and ex vivo investigations suggested that
TGF-β signaling is required for the induction of Foxp3 in
peripheral CD4+ T cells through different mechanisms (66–
68). For instance, Smad3 can induce Foxp3 expression by
binding the conserved non-coding sequence 1 (CNS1) region of
Foxp3 enhancer or facilitating binding of the transcription factor
nuclear factor of activated T cells (NFAT) to Foxp3 enhancer,
further triggering histone acetylation at this locus (69, 70).
Zheng and colleagues (24) revealed that TGF-β can accelerate
the expression of CTLA-4, whose binding to CD80 shortly
after T cell activation enables Foxp3 induction in conventional
CD4+ cells and to endows them with suppressive activity,
implying that TGF-β participates in the coinhibitory crosslinking
between CTLA-4 and CD80. In addition, Lu and colleagues
(71) documented that TGF-β boosts iTreg cell differentiation
through Smad2/3 and MAPK-ERK1/2 signaling, suggesting the
involvement of non-redundant Smad and non-Smad signaling in
the development of Treg cells. Moreover, in the subset of CD103+
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iTreg cells which were defined as tumor-infiltrating Tregs (72),
TGF-β reportedly inhibited the expression of growth factor
independent 1 (Gfi-1), a transcriptional repressor that can form a
repressive complex with lysine-specific demethylase 1 (LSD1) in
the intergenic region of CD103 intron 1, resulting in epigenetic
upregulation of CD103 and differentiation of CD103+ iTreg cells
(73) (Figure 1C). It has been demonstrated that the concentration
of TGF-β in the plasma of NSCLC patients positively correlated
with the frequency of circulating Treg cells and that TGF-β and
Foxp3 were co-expressed in serial sections from tumor tissues
of lung cancer (74), implying a contributing role of TGF-β in
driving Treg generation in the process of NSCLC development.
More importantly, TGF-β signaling blockade has been shown
to decrease Treg cell numbers in a lewis lung carcinoma (LLC)
mouse model (75), indicating a potential strategy targeting Treg
cells for NSCLC treatment. Currently, the TGF-βR1 inhibitor
galunisertib is under clinical development in combination with
the PD-1 inhibitor, including nivolumab or durvalumab, in
NSCLC patients (76).

IL-10 Signaling
IL-10, an anti-inflammatory cytokine reportedly found at high
levels in the cancer microenvironment including in NSCLC
(77), is not only an effector, but also a strong inducer of
Treg cells (78, 79). IL-10 signals through a receptor complex
consisting of two IL-10R1 and two IL-10R2 subunits, which
then triggers STAT3 phosphorylation at tyrosine 705 and serine
727 via the phosphorylation of the cytoplasmic tails of IL-
10R1 and IL-10R2 driven by JAK1 and Tyk2, respectively (80–
82). Accumulating evidence indicates that massive production
of IL-10 is indispensable for iTreg generation in NSCLC. Hsu
and his colleagues (79) found that human monocyte derived-
IL-10 potentiated TGF-β-induced iTreg generation, which was
abolished in patients with IL-10R gene deficiency and dominant-
negative STAT3 mutation. Mechanistic studies revealed that IL-
10 not only triggered STAT3 phosphorylation, but also prevented
PI3K-Akt activation, both of which induce the transcription
factor Foxo1 to translocate into the nucleus via a direct protein-
protein interaction or phosphorylation (79, 83). Foxo1 then
functions as an upstream transcription factor regulating Foxp3
expression during IL-10 stimulated iTreg cell differentiation
(84) (Figure 1D).

MIGRATION OF TREG CELLS

CCL22/CCL17-CCR4 Axis
Recruitment of Tregs into NSCLC tumor tissues relies on
chemokines overproduced by innate immune cells, tumor cells,
as well as stromal cells that act through their corresponding
receptors (Figure 2). It has been proposed that chemokine (C-
C motif) ligand 22 (CCL22), expressed by different immune
cells including DCs, macrophages and so on, can induce Treg
cell migration by interacting with chemokine receptors such
as C-C chemokine receptor type 4 (CCR4) on Treg cells (8,
85, 86). The CCL22-CCR4 axis is currently the most reported
mechanism underlying Treg trafficking. TGF-β, the potent

FIGURE 2 | Treg cell recruitment into lung cancer. In NSCLC
microenvironment, chemokines attract Tregs by binding to their corresponding
receptors. Among them, DCs, macrophages and eosinophils are sources of
CCL22, CCL17 is derived from DCs and lung cancer cells, CCL15 can be
produced from lung cancer cells and MDCSs, lung cancer cells and stromal
cells in NSCLC microenvironment are the major producers of CXCL12 and
CCL20, respectively. Besides, CCL18 is generated from DCs and
macrophages, lung cancer cells are responsible for CXCL1 and CCL28
production.

inducer of tumor progression and metastasis (87, 88), can
augment CCL22 production by reducing the level of its upstream
antagonist miR-34a in hepatocellular carcinoma (HCC) (89).
Similarly, Wiedemann et al. (90) confirmed that IL-1α-induced
Treg migration in HCC was also CCL22 dependent. This precise
mechanism may also explain why Treg cells are recruited into
NSCLC tumor tissues, as TGF-β and CCL22 are also enriched
in these areas (91, 92). Zaynagetdinov et al. (93) found that
IL-5, a cytokine involved in allergic and infectious diseases,
promotes lung metastasis of tumor cells. Further mechanistic
studies revealed that IL-5 contributes to CCL22 production by
eosinophils in lung tissues, causing Treg cell recruitment and
immunosuppression in the lung cancer milieu.

CCL17, derived from DCs and tumor cells including lung
cancer cells, is another reported ligand for CCR4 during Treg cell
recruitment (8, 94–96). It has been indicated that the abundance
of CCR4+ Treg cells attracted by CCL17 was correlated with the
clinical stage in NSCLC patients (97). To date, approaches based
on Treg depletion in NSCLC patients via CCR4 neutralization
have shown promise (98, 99).

CCL5-CCR5 Axis
CCL5 (also called RANTES) is a member of the CC family
of chemokines. The roles of CCL5 in cancer biology are
versatile as this ligand not only triggers antitumor immune
responses but also is implicated in tumor progression and
metastasis formation (100, 101). CCL5 has been implicated
as a pathogenic factor in NSCLC. By establishing a murine
intratibial model of cancer-associated bone resorption,
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Kim et al. (102) showed that Runt-related transcription
factor 3 (RUNX3) silencing in NSCLC cells triggered cell
proliferation, migration and invasion, accompanied by
osteolytic lesions, by enhancing CCL5 levels, suggesting
that CCL5 may be a potent promoter of NSCLC progression.
Additionally, Schlecker et al. (103) revealed that MDSC-
derived CCL5 infiltration into tumor tissues shared a
mechanism similar to CCL5-CCR5 crosslinking to induce
Treg cell accumulation.

FOXP3 expression has been reported in several tumors
such as melanoma, pancreatic cancer, breast cancer and lung
cancer (and is referred to as cancer-FOXP3) despite its non-
redundant role in the regulation of Treg cell differentiation,
development and functions (104, 105). A positive link
between cancer-FOXP3 expression levels and Treg cell
accumulation in pancreatic ductal adenocarcinoma (PDAC)-
derived tumor tissues was recently shown. Mechanistically,
cancer-FOXP3 directly transactivates CCL5, and the CCL5-
CCR5 axis promotes Treg cell accumulation in tumor
lesions from peripheral blood in vitro and in vivo (106).
Considering that cancer-FOXP3 has been identified as
a biomarker for poor prognosis in NSCLC (107, 108),
it is rational to propose that FOXP3-initiated CCL5-
CCR5 interactions may also participate in Treg cell
migration in NSCLC.

The mechanisms underlying CCL5 elevation in the tumor
microenvironment are increasingly clear. Nuclear focal
adhesion kinase (FAK) was reported to induce Treg cell
accumulation in the tumor milieu predominantly by modifying
chemokine/cytokine and ligand-receptor crosstalk, including
initiation of CCL5 transcription. Mechanistic investigations
revealed that FAK integrated with chromatin in the nucleus
could form a complex with transcription factors and their
upstream regulators that control CCL5 expression (109).

Notably, the migration of Treg cells into tumor areas was
reduced when the CCL5-CCR5 signaling was disrupted via the
reduction of CCL5 production or systemic administration of
the CCR5 inhibitor TAK-779 (110), suggesting that selective
interventions with CCL5-CCR5 axis might represent a novel
immunomodulatory strategy for NSCLC treatment.

Other Chemokine-Receptor Crosslinks
Reportedly, interactions between CXCL12 and CXCR4 (111),
CCL20 and CCR6 (112), CCL18 and CCR8 (113, 114), CXCL1
and CXCR2 (115), and CCL28 and CCR10 (116, 117) are also
important contributors to Treg accumulation in NSCLC.

HETEROGENEITY OF TREGS

Cancer immunotherapies based on Treg blockade have shown
sustained clinical responses in NSCLC treatment (118, 119), but
their therapeutic efficacy varies and depends partially on the
cell phenotype, gene expression, and the functional activities
of Treg cells, which endow them with high heterogeneity.
In other words, the heterogeneous characteristics of Treg
cells make immunotherapy more complicated than ever

expected and emphasize a better definition of the cells in
lung cancer milieu.

As mentioned above, TCR signaling in response to
neoantigens, might determine the heterogeneity of Tregs.
By characterizing the TCR profiles of Treg cells from
patients with metastatic melanoma, gastrointestinal, and
ovarian cancers, Ahmadzadeh et al. (20) showed that the
TCR repertoire of intratumoral Treg cells was distinct from
that of intratumoral conventional T cells and that tumor
antigens can induce the clonal expansion of intratumoral
Tregs. Their findings also suggested a dynamic migration
of tumor-antigen specific Treg cells from circulation into
tumor sites due to the overlap between the TCRB clonotypes
of intratumoral Treg cells and those of circulating Treg
cells. Thus, it is reasonable that heterogeneous Tregs might
receive TCR signaling from tumor antigens to proliferate
during lung cancer progression. More importantly, the
subtypes and abundances of functional characteristics
of activated Treg cells are also heterogeneous in tumor-
resident Treg cells, which might be correlated with their
immunosuppressive activities.

Treg-Locking Transcription Factors
By studying the phenotypic, functional, as well as the
transcriptional features of Treg cells in 92 NSCLC patients
at the single-cell level, Akimova et al. (17) documented
that the number and suppressive functions of intratumoral
Tregs were dramatically elevated versus those of Tregs
in the blood, lungs, and lymph nodes. This group also
demonstrated that tumor Tregs exhibited a phenotype of
increased abundance of Foxp3, as well as other transcription
factors including Eos, IRF-4, Satb1, and Gata-1. Furthermore,
the expression of these “Treg-locking” transcription factors
was positively correlated with Foxp3 mRNA level, with
the highest correlations for Eos and Satb1. Eos had an
additional, Foxp3 mRNA-independent, positive correlation
with Foxp3 protein level in NSCLC tumor Treg cells (17).
Mechanistically, Eos limits Treg plasticity by preventing their
reprogramming (120) and IRF-4 and Satb1 promote Treg cell
differentiation via regulating IL-10 and Foxp3, respectively
(121, 122).

GARP
Glycoprotein A repetitions predominant (GARP), encoded
by leucine-rich repeat containing 32 (LRRC32), is expressed
on the surface of activated human Treg cells and endows
them with TGF-β-dependent bioavailability (123). Exposure
to soluble GARP (sGARP) induces Foxp3, represses
interleukin IL-2 and IFN-γ production and reduces T cell
proliferation, promoting naïve T cells to skew toward iTreg
cells. This process is attributed to Smad2/3 phosphorylation
(124). Jin et al. (125) found that GARP expression was
enhanced in Tregs from the tumor tissues of lung cancer
patients and was associated with lymph node metastasis,
distant metastasis, and clinical stage, which was partially
consistent with Akimova’s findings (17). Furthermore,
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infiltrating Tregs from patients with early stage lung cancer
displayed higher GARP expression than those from patients with
advanced cancer, indicating a role for GARP in early diagnosis.
Ex vivo studies demonstrated that human lung cancer cells
might induce the expression of GARP in Tregs by cell contact-
independent mechanisms.

TNFRSF9
To shed light on the baseline landscape of the composition,
lineage and functional states of tumor-infiltrating lymphocytes
(TILs) in NSCLC, deep single-cell RNA sequencing of 12,346 T
cells from 14 treatment-naïve NSCLC patients was performed
by Zhang’s group (126). Their findings showed that tumor
Treg clonal expansion was mostly cluster-specific and occurred
within tumors. Closer examination of the tumor-resident Treg
cluster with suppressive functions revealed heterogeneity based
on genes correlated with Treg functions. Notably, tumor necrosis
factor receptor superfamily member 9 (TNFRSF9), a known
activation marker for antigen-specific Tregs, exhibited a striking
bimodal expression distribution within tumor-infiltrating Treg
cells. Compared to the TNFRSF9− Treg population, the
TNFRSF9+ population exhibited high levels of a set of 260 genes,
including those performing immunosuppressive functions,
further supporting the finding that TNFRSF9+ cells not only
are antigen-experienced but also form the major population of
functional tumor Tregs. Survival analysis showed that the 260-
gene signature was predictive of worse patient prognosis.

CD45RA
Treg cells have been proposed to exist in multiple differentiation
states with naive, effector and memory phenotypes (127). Two
functionally distinct phenotypes of Tregs with suppressive
activities, including CD45RA+ Foxp3lo naive Treg and
CD45RA− Foxp3hi effector Treg (eTreg) populations, have been
identified (128). The tumor milieu is fulfilled with Treg cells with
an effector phenotype (129). It has been demonstrated in lung
cancer patients that the number of CD45RA− Foxp3hi effector
Tregs, but not the populations with the naïve CD45RA+ Foxp3lo
phenotype, was increased in TILs compared to the number
of those cells in peripheral blood monocyte cells (PBMCs).

However, further studies are needed to explore the mechanisms
of CD45RA in modulating the suppressive activities of eTreg cells
and to evaluate the role of these subpopulations of Tregs in the
modulation of NSCLC progression.

PERSPECTIVE

Many cancers, including NSCLC, are not easily diagnosed by
early laboratorial examination. Immunosuppression is not only a
result of cancer progression but also a critical contributing factor
for cancer initiation. With the introduction and development
of precision medicine together with several developmental
sequencing techniques, particularly single-cell sequencing (130),
recent advances in examining the mechanisms underlying Treg
migration, differentiation and phenotypes have opened new
avenues for identifying Treg-based therapeutic strategies for
NSCLC. Immune checkpoint inhibitors targeting CTLA-4 and
PD-1, as well as neutralizing antibodies against chemokines or the
corresponding receptors on Tregs, are showing promise in many
cancers such as NSCLC (98, 131). Currently, the burgeoning
immunometabolism field has revealed unexpected links to cancer
immunology (132, 133). We consider identification of novel
mechanisms within this field to be highly valuable, because
metabolism disorder may be a mediator between the NSCLC
milieu and infiltrating Treg cells. Overall, identification of the
precise mechanisms by which Treg cells are recruited, generated
or activated in NSCLC tissues not only is essential for improving
the understandings of NSCLC pathogenesis but also can provide
new insights into other types of cancers with analogous etiologies.
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