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Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward
expectancy and the subject’s spatial position. Such contextual representations need not be restricted to V1 but could participate
in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific
mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection
task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability,
and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were
correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an
important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward
were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the
subject’s sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes
and may support crossmodal predictive processing.
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Introduction
Early sensory cortical areas were long viewed to primarily func-
tion as collections of unisensory feature detectors (Hubel and
Wiesel 1962; Felleman and Van Essen 1991; DiCarlo and Cox
2007; Miller 2016). More recently, single-unit recordings in awake,
behaving animals have shown responses in the auditory cortex
(AC) and visual cortex (primary visual cortex [V1]) to a wide
variety of perceptual and behavioral factors, suggesting these
areas have functions beyond unimodal sensory processing. In
rodent V1, these include responses to reward and reward timing
(Shuler and Bear 2006), reward predictive stimuli (Goltstein et al.
2013), running speed (Niell and Stryker 2010; Ayaz et al. 2013),
head-orienting movements (Guitchounts et al. 2020), orofacial
motor activity (Stringer et al. 2019), and responses which are
causal to visually cued action timing (Namboodiri et al. 2015).
Additionally, a growing number of studies show that many V1
neurons display location-correlated spiking activity (Ji and Wilson
2007), coding the animal’s position along real (Haggerty and Ji
2015) and virtual linear tracks (Fiser et al. 2016; Pakan et al.
2018; Saleem et al. 2018; Fournier et al. 2020). Various studies
report spatial and temporal correlations in the activity of V1 and
hippocampal area CA1, including correlated errors in position
decoding (Saleem et al. 2018; Fournier et al. 2020), correlated
trial-by-trial shifts in preferred spiking locations (Haggerty and
Ji 2015), and significant spike-phase coherence of V1 spiking and
hippocampal theta oscillations (Fournier et al. 2020).

A similarly broad variety of single-unit correlates is observed
in the primary auditory cortex (A1), including activity selective
for visual task cues (Brosch et al. 2005), behavioral demands
(Scheich et al. 2007), stimulus expectation (Jaramillo and Zador
2011), reward (Scheich et al. 2007), and instrumental action (Niwa
et al. 2012). However, much remains currently unknown about
the functional role and origins of such “extra-modal” activity
correlates, including whether they primarily contribute to local
sensory processes or reflect crossmodal interactions in the service
of more general and modality-independent cortical functions.
While spiking correlates to stimulus location are present in AC
(Town et al. 2017), no activity correlated to the spatial position
of the subject has hitherto been reported for AC. This would be
expected if the underlying mechanisms reflect general functions
of cortical sensory processing, including the maintenance and
updating of a coherent representation of space or of current and
future sensory states across sensory domains (Rao and Ballard
1999; Friston 2005; Gavornik and Bear 2014; Fiser et al. 2016;
Pennartz et al. 2019).

To determine whether location-correlated spiking activity
exists in the auditory cortical system and whether such activity
provides a representation that is coherent with the visual
modality, we analyzed single-unit data recorded simultaneously
from 2 anatomically connected, sensory cortical areas of freely
moving rats: AC and lateral, secondary visual cortex (V2L). We
show spatially modulated firing patterns in large proportions
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of V2L and AC single units which are reliable over time. Firing
patterns in each area collectively tiled the entire behavioral track
so that every location was marked by the activity of a subset of
neurons. Reconstructions of the rat’s position afforded by the
spiking activity of each area showed reconstruction errors that
were correlated in magnitude and direction, thereby indicating
that the sensory-spatial representations in AC and V2L are
coherent. Our freely moving paradigm allowed us to establish
the contributions of position, head direction, and their temporal
derivatives to location-correlated spiking activity in early sensory
cortices dedicated to different modalities. Our results uncover
striking similarities as well as quantitative differences in the
location-correlated neural activity of AC and V2L, suggesting
that such activity supports common functions in coordinated
mapping of sensory and contextual representations across
different sensory modalities.

Materials and methods
Experimental design
Subjects
Experiments were performed on Lister Hooded rats (n = 3, Envigo,
The Netherlands) at an age between 9 and 40 weeks. All rats were
socially housed during behavioral training, but were individually
housed during periods of recordings when rats had an implanted
tetrode array, under a normal day/night cycle (lights on: 8:00 am,
lights off: 8:00 pm). The rat’s food intake was restricted such

that its weight was at least 85% relative to the standard growth
curve provided by the breeder (Envigo, The Netherlands), which
was corrected for the deviance in weight between the rat and the
curve in the week before the start of food restriction. Weights
were maintained at a stable level after rats reached healthy,
adult body weight (Newby et al. 1990; Clemens et al. 2014). Rats
had ad libitum access to water throughout the experiment. All
experiments were performed in accordance with the National
Guidelines on Animal Experiments and were approved by the Ani-
mal Experimentation Committee of the University of Amsterdam.

Behavioral setup
Rats were trained to discriminate between auditory and/or visual
stimuli on an automated, rectangular figure-8-shaped track (92 ×
73 cm) which was raised 55 cm off the ground (Fig. 1A). The track’s
alleys were made of black-painted aluminum (width = 8.7 cm)
and contained raised edges (1.0 cm). At the front of the track, 2
LCD monitors (Iiyama ProLite B2776HDS) and 2 audio speakers
(Audaphon Neo CD 3.0) were available for stimulus presentation.
The monitors were positioned symmetrically from the center of
the track, and the speakers were located above the top-left and
top-right corners of the left and right monitors, respectively. Dur-
ing early training stages, transparent polycarbonate walls lined
the central alley to prevent the rat from prematurely exiting this
alley. Additionally, 2 transparent polycarbonate sliding doors were
positioned at the front and back of the central alley. The walls
and door at the front of the central alley contained small holes

Fig. 1. Behavioral apparatus and task. A) Rats performed a discrimination task on an automatized figure-8 track, which was located in a dark, sound-
attenuated laboratory room without other salient visual cues. At the front center T-junction (FC), rats responded to audio-visual stimuli presented from
2 screens and 2 speakers located in front of the track (green) by running to the track’s side corresponding to where the most salient stimulus was
presented. Rats were rewarded for a correct response with sucrose solution at the ports to the sides of the front alley (pink squares). The dotted line
indicates how the track was linearized for analysis. FL, front left; FR, front right; BC, back center. B) Example of a set of stimuli. Stimuli were visual
(moving checkerboard), auditory (filtered white noise), or audiovisual. In multisensory trials, target auditory and visual stimuli were always presented
at the same side of the track. The rat had to respond to the most salient stimulus (highest contrast and/or volume) and discard the distractor stimulus
(which was less salient). C) Trial layout and example AC and V2L spike trains during 7 s of a leftward trial with a correct response. NP center: Blue
line indicates the timing of the nose poke (NP) in the central well to initiate stimulus onset. Stimulus: the time interval during which the stimulus was
presented (2 s; green line). NP/lick: The time of the rat’s nose poke into the left reward well is indicated by the red shaded area and the individual licks by
the vertical tick marks. AC/V2L units: Single-unit spikes are indicated by the black vertical tick marks, whereas solid lines indicate Gaussian-smoothed
spike trains. Firing rates are observed to fluctuate in relation to stimuli and locations across the maze. Movement: speed of the rat along the linearized
trajectory.
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to allow for perception of the auditory stimuli. Two reward wells
were positioned at the left and right edges of the track’s front
alley. An additional reward well was positioned in the central alley
toward the front-end T-junction. Fluid sucrose solution (15% in
tap water) was delivered to the wells by syringe pumps (Razel,
VT, USA). All reward wells contained infrared photodetectors to
detect nose pokes and licks. The motor activity of the rat on the
track was registered with additional photodetectors, which were
located near the T-junctions at the front and back ends.

The track was entirely computer-controlled, obviating the need
for human interventions during the experiment, and was inter-
faced with the recording system to ensure synchronized time
stamping of behavioral events and neuronal activity patterns. It
was positioned in an enclosure of black curtains (2.8 × 2.2 m)
within a sound-attenuated room of 3 × 3 m. The room was dimly
lit by a small LED light pointed toward the ceiling. The exper-
imenter observed training and experiments from an adjacent
room to minimize interference with the rats’ behavior.

Stimuli
On each trial of the behavioral task, rats had to discriminate
between a target stimulus, displayed on one of the screens and/or
the adjacent speaker, and a distractor stimulus, appearing on the
other screen and/or speaker (Fig. 1B). Target and distractor were
either unisensory (visual or auditory) or multisensory (audio-
visual) and differed in stimulus amplitude. Three types of tar-
get/distractor combinations, in equal proportions, were presented
to the rat; large-difference unisensory trials (1/3), small-difference
unisensory trials (1/3), and small-difference crossmodal trials
(1/3). In a separate session for each rat, the threshold amplitude
differences (i.e. the amplitude differences at which the rat shows
a correct response in 50% of the stimulus presentations) were
determined using a staircase procedure. On the basis of these
data, stimulus parameters were set for each rat such that the
discrimination performance for the large-difference unisensory
trials was >70% correct and the discrimination performance for
the small-difference unisensory trials was >50% correct. The
stimulus settings remained the same for all recording sessions
of a rat. The amplitude differences for the stimulus components
in the audiovisual trials were identical to the differences for
the small-difference unimodal stimuli of the same session. The
specific screens (left or right) at which target and distractor were
displayed were pseudorandomly selected for each trial such that
the target stimulus was never displayed >4 successive trials at the
same side and the difference in left and right target presentations
across the session was not >4.

Visual stimuli were full screen, upward-moving, and black-and-
white checkerboards (0.1 cycles/degree, 4 cycles/s; Fig. 1B). When
no visual stimuli were displayed, a gray background was visible.
All visual stimuli and the background were gamma corrected and
had the same overall luminance as measured with a photometer.
Contrast values between light and dark checkers varied between
0 and 1 in which 0 indicates no contrast and 1 indicates the max-
imum contrast possible with the monitor at its lowest brightness
setting.

Auditory stimuli were composed of white noise, which was
band-passed between 10 and 25 kHz. When auditory stimuli
were absent, background noise was played. Background noise was
white noise band-passed between 8 and 12 kHz. For auditory
stimuli, the difference between target and distractor was in the
relative volume between the speakers. Relative auditory volume
ranges between values of 0 and 1, with 0 and 1 indicating that the
volume is fully accounted for by 1 speaker or the other speaker.

Background noise was played with a contrast of 0.5, i.e. identical
volume through both speakers. Therefore, at every moment dur-
ing the session, sound was playing at the same volume, which was
set to 76 dB at the central reward well.

Behavioral training
After rats had learned to complete unidirectional laps on the
track and to nose poke for a duration of 1 s to earn reward,
they were trained to discriminate between target and distractor
stimuli and to respond by choosing the side at which the target
stimulus was present. When the front door opened at the start
of the trial, the target visual stimulus was presented on 1 screen
(i.e. on 1 side of the track), while the other screen maintained
the gray background. The rat earned a reward if it poked in
the well at the side of the track corresponding to where the
stimulus was displayed. The stimulus presentation lasted until
3 s following reward delivery, with the aim of strengthening the
stimulus–response–outcome association. When the rat made a
nose poke at the incorrect side, stimulus presentation stopped
immediately. From this stage onward, the length of the nose pokes
to start stimulus presentation was increased incrementally from
0 to 0.5–1.5 s (randomized across trials). If the rat performed at
least 60 trials within 60 min with 70% correct trials on 3 out of
5 consecutive days, stimuli switched from visual to auditory. If
this criterion was met also for auditory stimuli, subsequent ses-
sions included audio, visual stimuli, and audio-visual stimuli in
equal proportions and presented according to the pseudorandom
schedule (see “Stimuli”). In multisensory trials, the auditory and
visual stimulus components were always presented on the same
side of the track; i.e. no sensory conflicts were created. Once the
rat reached the same criterion with these 3 trial types included in
the session, the discrimination problem was made progressively
more difficult by introducing distractor stimuli and by lowering
the contrast of visual target stimuli in subsequent sessions. The
difference in amplitude between target and distractor stimuli was
gradually decreased over training sessions but never below the
level described above for “small-difference stimuli.” In parallel
with the increase in difficulty, the display time of the stim-
uli was progressively shortened until the stimulus duration was
2–3 s at this stage of training (labeled “stage 4”). To prevent rats
from developing habitual or stereotyped response preferences,
extra sessions were occasionally included in the training. In these
sessions, rats were allowed to collect reward from the correct
well after sampling the incorrect well. After an incorrect nose
poke, trials continued until the correct well was sampled. These
sessions did not count toward criterion performance.

In the final task, the trial procedure was similar to training
stage 4, and now the small and large difference unimodal stim-
uli were presented alongside with the crossmodal stimuli (see
“Stimuli”). To ensure enough trials were performed in all con-
ditions to allow statistical comparison, each session contained
either visual or auditory unimodal trials in addition to multisen-
sory trials. Recordings commenced when rats consistently per-
formed at criterion level: >60 trials in 60 min with >70% correct
on large-difference unimodal stimuli and above chance level for
small-difference unimodal stimuli and multisensory stimuli.

Tetrode array and surgical procedure
A custom-made, 128-channel tetrode array was implanted over
the right hemisphere of 3 rats (Lansink et al. 2007; Bos et al.
2017). Four bundles of 8 individually moveable tetrodes each were
targeted to A1 (AC, −4.4 mm AP, 6.8 mm ML, −4.4 mm DV);
lateral, secondary visual cortex (V2L, −5.8 mm AP, 6.0 mm ML,
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−2.6 mm DV); hippocampal area CA1 (CA1, −3.6 mm AP, 2.4 mm
ML, −2.6 mm DV); and perirhinal cortex area 36 (PRH, −4.4 mm
AP, 6.8 mm ML, −7.0 mm DV). Hippocampal and perirhinal data
were not used in the current study. Thirty minutes before surgery,
rats received the analgesics meloxicam (Metacam, 2 mg/kg) and
buprenorphine (Buprecare, 0.04 mg/kg) subcutaneously as well
as the antibiotic enrofloxacin (Baytril, 5 mg/kg). Anesthesia was
induced using 3% isoflurane in oxygen and maintained with
1–2% isoflurane. Animals were mounted in a stereotaxic device
(Kopf; Tujunga, CA, USA) and were placed on a heating pad to
maintain their body temperature. A single craniotomy was made
such that the points at which the bundles entered the brain were
positioned relative to bregma at −5.4 mm AP and 2.8 mm ML (AC),
−5.9 mm AP and 4.0 mm ML (V2L), −3.6 mm AP and 1.7 mm
ML (CA1), and −3.5 mm AP and 3.8 mm ML (PRH). Six screws
were placed into the skull, with the screw positioned over the
frontal bone serving as electrical ground for the tetrode array. The
hyperdrive was positioned such that the bottom of the bundles
touched the cortical surface. The craniotomy was then sealed
using silicone adhesive (Kwik-Sil), and dental cement was used
to fix the hyperdrive and screws to the skull. Postoperative care
consisted of subcutaneous injections of the analgesic meloxicam
(2 days) and Baytril antibiotic (1 day) and application of wound
healing ointment (Acederm, Ecuphar, Breda, Netherlands). On
postoperative days 1–3, rats received 10 g of extra food softened in
water to facilitate consumption. Tetrodes were gradually lowered
to their target regions across the first week after surgery. During
recordings, their depth was estimated from the number of turns
to the guiding screws and from the online Local Field Potential
(LFP) profiles.

Data acquisition and preprocessing
Recording sessions took place in the early afternoon during the
rats’ active period. One recording session was performed per day,
with 4–7 sessions per rat. Spikes and LFPs were recorded using
tetrodes (Gray et al. 1995) (nichrome, California Fine Wire, 16 μm
per lead, gold-plated to an impedance of 500–800 KOhm) using a
Neuralynx Digitalynx SX recording system (Neuralynx, Bozeman
MT). Raw signals were buffered using 4 32-channel unity-gain
head stage amplifiers before being passed through an automated
commutator (Neuralynx, MN). Each of the 4 tetrode bundles con-
tained an additional electrode that served as a reference channel
and was positioned in the white matter near the tetrode bundle.
The recorded signals were the raw signals with the reference
signal subtracted. For spike recordings, signals were band-pass
filtered between 600 and 6,000 Hz. Putative spikes were recorded
for 1 ms (16 bit, 32 kHz) from all leads of a tetrode whenever the
signal on any lead of that tetrode crossed a predefined threshold.
LFPs were low-pass filtered below 300 Hz and were recorded
continuously (16 bit, 3.2 kHz). The behavior of the rat was tracked
by a ceiling-mounted camera (at 720 by 576 pixels, 25 fps) and
were timestamped by the Digitalynx SX.

Spikes were attributed off-line to putative single units (clus-
ters) using the KlustaKwik automatic clustering algorithm (Kadir
et al. 2014), which was followed by manual refinement (MClust
3.5). Waveform features used for clustering were energy, the first
derivative of the energy, the overall peak height, and the peak
height during samples 6–11 where the action potential peak is
expected. Clusters were included for further analysis based on a
combination of quality metrics (Schmitzer-Torbert et al. 2005): L-
ratio (<0.2–0.8), isolation distance (>15–24), and interspike inter-
val (1.2 ms) violations (<0.1%—0.5%).

Histology
Following the last recording session, animals were anesthetized
using isoflurane and electrolytic lesions were made at each
tetrode tip by passing current (18 μA for 2 s) through 2 leads
of each tetrode. At least 24 h later, the animal was deeply
anesthetized with an intraperitoneal injection of nembutal
(1.0 mL, sodium pentobarbital, 60 mg/mL, Ceva Sante Animale,
Maassluis, Netherlands) and was transcardially perfused with
0.9% NaCl solution, which was followed by perfusion of a 4%
paraformaldehyde solution (pH 7.4 phosphate buffered). The
brain was extracted and was placed in 4% paraformaldehyde
solution for at least 24 h postfixation after which 40-μm trans-
verse sections were made using a vibratome. These were stained
with Cresyl Violet, which allowed the reconstruction of tetrode
tracks and their endpoints, which were marked by electrolytic
lesions (Paxinos and Watson 2007) (Supplementary Fig. S1) .

The endpoints of 20 tetrodes were located in A1, while an
additional 2 endpoints were located in the adjacent dorsal sec-
ondary auditory cortex. Therefore, we will refer to these record-
ings as made from AC even though the large majority of cells
was recorded from A1. Endpoints for 19 tetrodes targeted at V2L
were located in that area, while 1 was located in the adjacent
dorsal posterior parietal cortex. Because it was not possible to
determine with certainty which recording channel this tetrode
was associated with, we removed each tetrode of this rat from
the dataset in turn and repeated our analyses. This did not lead
to qualitatively different results.

Statistical analysis
Statistical procedures
Unless specified otherwise, all statistics were performed using
linear mixed models (LMMs) or generalized linear mixed models
(GLMMs) in MatLab (MathWorks, Natick, MA), depending on the
distribution of the data. All reported statistical quantities (group
means, regression slopes, confidence intervals [CIs], etc.) were
derived from the (G)LMMs. All reported CIs are 95% prediction
intervals. To estimate the degrees of freedom of the denominator
for the F-tests, the Satterthwaite approximation was used for
LMMs and the residual degrees of freedom was used for GLMMs.
To correct for multiple comparisons, P-values are adjusted using
the Holm-Bonferroni method where applicable (Holm 1979)
(Fig. 2H).

Inclusion criteria
Behavioral performance was measured as the percentage of cor-
rect responses to stimulus presentation in a session. Sessions
were included for analysis only if the performance was above
chance level, which we defined as the number of observed cor-
rect responses being >95% of a binomial distribution with P = 0.5
(chance level) and n equal to the number of trials in the session.
Additionally, to exclude sessions where animals had a preference
for a particular response direction, sessions were included only
when responses to both left and right stimuli were performed
above chance using the same procedure.

Z-scored spiking activity and firing rates
Spike trains of individual units were binned into 1-ms temporal
bins and were smoothed with an exponential window with a time
constant of 150 ms. Z-scored spiking activity was calculated by
subtracting the mean from the smoothed spike train and dividing
the result by the standard deviation.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data


Paul E.C. Mertens et al. | 7373

Fig. 2. Spatially modulated firing patterns of AC and V2L units. A) Top panels show rate maps indicating the spatial firing-rate distribution of four
example AC units. Numbers in the left wing of each map represent peak firing rate (top) and spatial stability index (SSI, bottom). Bottom panels show
firing rate distributions along the linearized version of the track corresponding to the rate maps shown in the top panels. Red arrow heads indicate
individual firing-field peaks. Black arrow heads indicate a single firing-field peak that spans across an edge of the linearized track. Abbreviations below
linear rate maps refer to landmark locations (Fig. 1A). B) As (A) but for 4 example V2L units. C) Estimate of the proportion of spatially stable units in the
AC and V2L populations. Black vertical lines throughout (C–H) indicate 95% CIs (N.S., P > 0.05, F-test). D) SSI of spatially stable units. E) Number of firing
fields per spatially stable unit. F) Field length per unit (∗∗, P < 0.01). G) SI of spatially stable units (∗∗∗, P < 0.001). H) Proportions of stimulus responsive
neurons in AC (blue bars) and V2L (red) to auditory and visual stimuli (∗, P < 0.05).

Position tracking and 2D rate maps
The location of the rat’s body and head were determined sepa-
rately for each frame of recorded video using custom scripts made
with Bonsai Editor (Lopes et al. 2015). Frames with erroneously
assigned positions were manually corrected. The raw tracking
data were smoothed using the “smooth()” function in Matlab
using the “rlowess” method and a span of 5 pixels. Head direction
was determined for each video frame as the angle of the body–
head axis of the rat with respect to the left-to-right axis of the
setup.

Rate maps were constructed in 2D by spatially binning (bin
size = 10 by 10 pixels or 4.2 cm2) the smoothed spike trains of
single units into the spatial bin occupied by the rat in each
videoframe, summing the firing rates per bin and then averag-
ing over the time spent in each bin (occupancy). Binned spike
trains and occupancy maps were independently smoothed by
convolution with a 2D Gaussian (std = 1 bin) before averaging.

Time segments in which the running velocity of the rat was
<6 cm/s were excluded.

Linearization of position data and 1D rate maps
The goal of linearizing position data is to allow more powerful
analyses relating spatially modulated spiking activity to behavior.
The lateral range of body motion on the track was limited, and
the firing fields observed on the 2D rate maps generally spanned
the full width of the track. Linearization, therefore, allows to focus
on the spatial dimension containing the majority of the rate map
structure. Linearization of the rat’s position was achieved by first
determining the average path of the rat across the setup for each
recording session. This was achieved by manually tracing the
locations with the highest occupancy of each session’s occupancy
map. The starting point of the linearized track was chosen as the
starting point of the right alley segment at the 3-way junction at
the front of the setup, front center (FC; Fig. 1A). The linearized



7374 | Cerebral Cortex, 2023, Vol. 33, No. 12

Fig. 3. Spatial distribution of firing fields and lack of field sensitivity to task parameters. A) Top panel: Joint linear rate map including all individual,
spatially stable units recorded from AC. Firing rate is color-coded and the individual rate maps are sorted by peak location. Bottom panel: The firing-field
density across the spatial bins on the track are shown for the individual rats (thin, colored lines) and the mean across rats (thick, gray lines). The firing-
field density expresses for each spatial bin the proportion of individual firing fields that include that bin. B) As (A) but for V2L. C) Correlation between
firing-field densities of AC and V2L across spatial bins. Dots correspond to individual spatial bins; different shades of gray correspond to individual rats.
The dashed line indicates the linear regression of mean field densities across rats according to the linear mixed effects model. The value of P indicates
the significance of the regression line. D) One of the few AC cells whose rate map differed between unisensory auditory (A, green) and multisensory
(M, magenta) trials (P < 0.01, permutation test). E) Rate maps of AC and V2L cells were assessed for dependency on stimulus modality; A-M, modality-
dependent contrast: unisensory A versus multisensory M trials; V-M, unisensory V versus multisensory M; C-I, outcome-dependent contrast, rewarded
(correct, C) versus unrewarded (incorrect, I) trials, prev. trial: choice in previous trial contrast (previous trial choice left [pL] vs. previous trial choice right
[pR]). Error bars denote 95% bootstrapped CIs, asterisk denotes significant fractions of cells (significant if the CIs do not overlap with 0%). The small
fractions of modality-modulated cells are likely stimulus-responsive cells such as in (D). Stimuli were presented when the animal occupied locations
near the front center (FC).

track then consisted, in this order, of the right side of the track,
central alley, and left side of the track. The end position was the
center of the back-alley segment at the 3-way junction. The linear
position was then determined as the point along this linearized
track closest to each observed 2D position. Raw linearized position
was smoothed by convolution with a Gaussian with a standard
deviation of 2 pixels (0.4 cm). Linear speed was then calculated
from the linear location using the “gradient()” function in Mat-
Lab, and linear acceleration was calculated similarly from linear
speed. Finally, because the linearized track length varied slightly
between rats, linear location was normalized to the mean length
across animals (334 cm). Linear rate maps were made similarly
to the 2D rate maps but using the linear position data by using
the same inclusion criteria and smoothing parameters and with
a bin size of 16 pixels (3.3 cm). Joint rate maps (Fig. 3A and B)
were constructed from the linear rate maps of each neuron by
normalizing each rate map between 0 and 1 and then sorting all
rate maps of all sessions and rats by the location of the peak
firing rate (dark red in Fig. 3A). These rate maps were crossvali-
dated (Supplementary Fig. S3B and D) using the following proce-
dure. First, the rate maps were recomputed separately on the first
and second halves of the session and then neurons in both rate
maps were sorted using their peak location in the ratemap from
the first half of the session. This method reveals whether the
reported structures (as in Fig. 3A and B) could be an artifact of
the normalization and sorting procedures.

Firing fields
The procedure for determining the location of firing fields was
similar to the method described by Haggerty and Ji (2015) using
the unit’s linear rate map as a basis. First, the rate map was
smoothed using the “smooth()” function in Matlab (MathWorks)
with the “rlowess” method and a span of 5 bins. The baseline firing
rate was determined as the 40th percentile of this smoothed rate
map. The baseline was subtracted from the rate map, and local
maxima were determined for the baseline-corrected rate map.
Local maxima were kept for further processing if the rate was
>1 Hz and >0.2× the baseline rate (we found quantitatively and
qualitatively very similar results with more restrictive inclusion
criteria). Field boundaries were determined as the bins nearest to
a peak, where the firing rate was <10% of the peak firing rate. This
procedure sometimes produced very small fields near or on the
slope of larger fields (“shoulders”). Such shoulders were discarded
if the border of the field was ≤2 bins apart (<=6.6 cm) from the
border of a taller field unless the peak was ≥2 bins (>=6.6 cm)
away from its own border and the peak was >1.5 times the value at
this border. After the removal of spurious small fields, the borders
of remaining fields were extended to the bins where the activity
fell below the peak cutoff of 1 Hz and 0.2 times the baseline rate, or
until they reached the border of another peak. This procedure was
followed for each single unit from the tallest to the lowest peak.
Single fields that spanned the T-junctions at the front and back
of the experimental track were prevented from being detected as

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
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2 separate fields by considering the bins of the linear rate maps
that border the T-junctions as adjacent.

Spatial stability
The spatial stability of the firing of individual units was deter-
mined using a permutation analysis. First, separate linear rate
maps of each individual trial were constructed, similarly to the
procedure described above, except that the data were split into
leftward and rightward trials. The correlation between a single-
trial rate map and the rate maps of all other trials on the same
side of the track was computed (Pearson correlation) for each trial
and then the average correlation coefficient was computed. These
steps were repeated for 1,000 shuffled versions of the spiking
data. For each shuffled iteration, the spiking data were temporally
rotated within a single trial by a random number of samples
(Louie and Wilson 2001). This method of shuffling leaves the
temporal structure of spiking patterns largely intact. Positions and
spikes emitted during periods of immobility (<0.06 cm/s) were
excluded from analysis. A unit was considered as spatially stable
if its average single-trial rate map correlation, for both leftward
and rightward laps, was >95% of the distribution of average,
shuffled single-trial rate map correlations of the corresponding
side. To calculate the spatial stability index (SSI), the mean of the
distribution of average, shuffled single-trial rate map correlations
was subtracted from the average observed single-trial rate map
correlation; the result was divided by the standard deviation of
the shuffled distribution. This procedure was done for each unit
for both leftward and rightward trials and the reported SSI was
the mean of those 2.

The probability of the spatial stability of a unit was modeled
using a GLMM with link function g (Pstable) = ln (Pstable) and the
following equation:

Pstable ∼ Area + (
1 + Area|Subject

)
,

where Area is a categorical variable indicating the cortical area
where the unit was recorded, and Subject is a categorical variable
indicating from which experimental subject the data originated.

Spatial information
Spatial information (SI) for each unit was calculated from the
linearized location data and firing rate following (Skaggs et al.
1992):

SI =
N∑

i=1

Pi
Xi

r
log2

Xi

r
,

where Pi is the probability of finding the animal in bin i, Xi is the
sum of the firing rates observed when the animal was found in
bin i, r is the mean spiking activity of the neuron, and N is the
number of bins of the linearized trajectory (104). The SI for each
unit was modeled with a GLMM using a gamma distribution with
link function g (SI) = SI−0.01 and the following equation:

SI ∼ Area + (
1 + Area|Subject

)
.

Correlating firing-field densities
Firing-field densities were calculated per rat by first determining
for each linear spatial bin the number of firing fields, across
all units, in which this bin took part. Then, this number was
divided by the subject’s total number of fields. The average firing-
field density is reported as the mean of the field densities for

the individual rats. Firing-field densities of AC and V2L were
correlated with an LMM using the following equation:

DensityAC ∼ DensityV2L + (
1 + DensityV2L|Subject

)
.

Linear regression of spiking activity on behavioral
covariates
Linear regression was used to determine whether firing-field
correlations between AC and V2L could be explained by similar
linear dependencies between single-unit firing rates and behav-
ioral covariates. The instantaneous, z-scored spiking activity of
each unit was regressed on linear running speed, acceleration,
head direction, and change in head direction (angular velocity)
using the general linear model:

Z ∼ Spd + Acc + SinHD + CosHD + ωHD,

where Z is the instantaneous, z-scored spiking activity, Spd is
linear speed, Acc is linear acceleration, SinHD and CosHD are the
sine and cosine of head direction, and ωHD is the angular velocity
in head direction. The model residuals of each unit were used to
produce linear rate maps and to subsequently determine firing
fields without linear dependencies on the behavioral covariates.

Stimulus responsiveness
The responsiveness of a unit to the sensory stimuli was assessed
by statistically comparing the mean, z-scored firing rates
of the time intervals of [350–50]-ms prestimulus onset and
[0–300]-ms poststimulus onset using Wilcoxon’s signed-rank test
(alpha = 0.05). A subset of units gradually increased or decreased
firing rates before stimulus onset (“ramping activity”) without
showing a change in spiking activity at stimulus onset. To
preclude that such activity would erroneously be considered
as significantly stimulus responsive, only units with a stable
prestimulus onset firing rate were considered; i.e. the unit’s firing
rates between [1,000–700]- and [350–50]-ms prestimulus onset
were required to be similar (Wilcoxon’s signed-rank test, P > 0.05).
The probability of a unit’s responsiveness to stimuli was modeled
using a GLMM with link function g

(
Presp

) = ln
(
Presp

)
and following

equation:

Presp ∼ Area ∗ Modality + (
1 + Area + Modality

∣∣ Subject
)
,

where Modality is a categorical variable indicating the modality
(auditory or visual) of the stimulus being considered.

Information theoretic analysis
For the information theory-based analyses, linear spatial bins of
∼16.4 cm were used such that the linearized track was divided
into 21 bins. As predictors, we used running speed, head direction
(θhead), and head direction change (�θhead). Running speed and
θhead were calculated as described above, and �θhead was calcu-
lated as the degrees per second change in θhead. The predictors
were binned in 21 equipopulated bins to match the number of
location bins. Spike counts were binned in 300-ms time bins,
and instances with running speed <0.1 m/s were excluded. Dis-
crete mutual information (MI) and discrete conditional mutual
information (cMI) were computed using the Java Information
Dynamics Toolkit (Lizier 2014). Bias due to finite sample sizes
was corrected by generating, for every computation of MI and
cMI, a population of 500 surrogates. When creating the surrogates,
only spike count vectors were shuffled such that the relationship
between the target and conditional predictor (in the case of cMI)
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was preserved. The MI and cMI values reported are the differences
between the observed values and the average of the surrogate
populations. Differences in MI between AC and V2L were statis-
tically assessed using Mann–Whitney’s U test. The P-value of cMI
values of individual units was computed as the fraction of the
surrogate dataset which had higher information values than the
observed one. To correct for multiple comparisons, a Bonferroni
correction was applied across all neurons and was tested at the
0.05 significance level. Reported confidence bounds correspond to
95% bootstrap CIs, which were computed with the Waskom (2021).

Encoding: predicting spike trains from behavioral variables
First, the position of the rat was taken as the 2D variable with
x- and y-coordinates with a resolution of 0.205 cm/pixel recorded
by the system without further binning. Encoding was performed
with a random forest encoder using 100 trees and 5-fold cross-
validation with randomized folds (Benjamin et al. 2018). Encoding
over time was performed using continuous folds to preserve the
order in time. Encoding quality was measured with the Poisson
pseudo-R2 score and was averaged over folds. Statistical com-
parisons of encoding quality for individual predictors, and com-
parisons of improvement in encoding quality above all other
predictors, were made using Wilcoxon’s signed-rank test and used
the average of the AC and V2L (improvement in) encoding quality
for each predictor. Reported confidence bounds correspond to 95%
bootstrap CIs, which were computed with the Waskom (2021).

Decoding of animal position
The position of the rat was decoded from the neuronal data
recorded from AC or V2L if a session included at least 16 neurons
from that area showing a rate map peak > 2 Hz; only those neu-
rons were included for each session. This number was determined
to provide a balance between decoding quality and number of
included sessions. Spikes were binned in 400-ms bins, and the
true position (i.e. the actual position of the rat on the track) at
every timeframe was assigned to a spatial bin on the linearized
track (total of 35 bins, bin size ∼9.8 cm). When the linear position
changed spatial bins within a temporal bin, the position was
assigned to the spatial bin which occurred most often within
the temporal bin. Running speed was linearly interpolated at the
centers of the temporal bins. Samples with speed <0.1 m/s and
with spike count <5 were excluded. A Bayesian classifier was
employed to predict the spatial bin occupied by the rat on the
basis of the temporally binned neural data (Davidson et al. 2009).
A 5-fold crossvalidation routine with shuffling was used, with
identical shuffling (i.e. similar-sized training set for each fold)
across the 2 areas for a given session.

Decoding errors were used as a main metric for decoding per-
formance and were computed as the Euclidian distance between
the centers of the true and the decoded spatial bin in 2D space.
Pearson correlations of instantaneous decoding errors between
the 2 cortical areas in time were calculated to assess whether
AC and V2L encoded the same position. This was performed
separately for the error in the x-direction and that in the y-
direction in 2D space to preserve the directionality of the error
in addition to its magnitude.

Instantaneous error correlations resulting from these compu-
tations were compared with error correlations that were com-
puted following shuffling of the errors within the same spatial
bin and running speed range (Saleem et al. 2018). Running speed
bins were defined per session by taking the full range of speeds
and subdividing it into 5 equipopulated bins. Significance of
differences in error correlations before and after shuffling
were tested using Wilcoxon’s signed-rank tests. Joint error

density maps for AC and V2L were computed for the error
correlations of recorded and shuffled data and for the x- and
y-directions separately. Joint error density maps were averaged
across all included sessions and were smoothed with a Gaussian
filter with a standard deviation of 4 spatial bins. The relative
probability of observing an error of a particular size and
direction in the recorded versus shuffled data was calculated
by taking the difference between the actual and shuffled joint
density maps.

A bootstrapping procedure was performed for testing how
the decoding performance depended on the size of the popula-
tion. First, for each included session, 50 unique, random groups
of units were selected for each ensemble size (ranging from 5
to the maximum number of units in each session minus one).
Then, the decoding analysis was performed for each group before
averaging the decoding performance across the groups. For the
largest ensembles, with 1 fewer unit than the session total, it
was not possible to create 50 unique groups. For these ensembles,
some groups were included twice. Crossvalidation was performed
for every group by splitting the data into a training set (80%)
and test set (20%), with identical shuffling across all groups
of a session.

To exclude the possibility that the observed correlations in
instantaneous decoding errors are a result of decoding artifacts in
sessions with poor decoding, Pearson’s correlation was computed
for the average decoding errors and the correlation in instanta-
neous decoding errors across sessions for AC and V2L average
errors separately and for instantaneous errors in the x- and
y-directions separately.

Head direction tuning curves
Observed spike counts as regarding head direction were deter-
mined per video frame and were counted for 60 overlapping bins
along the unitary circle. Each bin was π/6 radians wide and the
bin overlap was 80%. The firing rate at each of the 60 direc-
tions was assumed to follow a Poisson distribution. Maximum
likelihood estimates and 95% confidence bounds of the Poisson
rate were calculated from a Gamma distribution using MatLab’s
“makedist()” and “icdf()” functions, with α equal to the number
of spikes in each bin plus one, and β equal to the inverse of the
number of observed head directions in each bin plus one. This
resulted in rate estimates per video frame, which were multiplied
by the framerate to produce firing rates in Hertz.

Results
We investigated the responsiveness of neurons in the lateral,
secondary visual cortex (V2L) and AC to spatial location when
rats were running on a rectangular, figure-8-shaped track (Fig. 1A).
On the track, rats performed an audio-visual discrimination task
in which they earned reward by responding to the most salient
stimulus out of 2 by running from the stimulus presentation
site to the reward well on the track side corresponding to the
location of that stimulus (Fig. 1A and B). Our analyses were pri-
marily based on the spatial components of the rats’ behavior
regardless of task performance (a summary of which is provided
in Supplementary Fig. S2). If the neuron’s spiking activity was
reliably modulated by the rat’s body location over the course of a
recording session, we refer to this as “location-correlated activity.”
We emphasize that this definition includes not only responsive-
ness to allocentric position but also to specific conjunctions of
locally available sensory cues and task-related information. With
this caveat in mind, we will sometimes use the term “location-
selective” as well.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
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We made simultaneous recordings from both V2L and AC, with
a total of 526 single units from V2L and 603 units from AC across
17 recording sessions from 3 rats. Units in both AC and V2L
showed firing patterns with ≥1 peaks in firing rate on various
locations of the track (2A-B). For all further analyses, we selected
the units with sufficient firing on the track, i.e. peak firing rate
>2 Hz in the spatial map, which amounted to 400 units from V2L
and 413 from AC. The locations of the tetrode endpoints were
verified with histology (Supplementary Fig. S1).

Spiking activity of most auditory and visual
cortical neurons is reliably correlated to location
First, we assessed whether neurons in AC and V2L displayed
spatially modulated firing patterns. Visual inspection of rate maps
of the spatial firing distribution of individual neurons indicated
that some units in AC and V2L showed increased spiking activity
in a single, concentrated location on the track, whereas other
units displayed modulations of spiking activity at multiple areas
or across a larger area of the track (Fig. 2A and B, top panels).
An important constraint for a unit to reliably code location is
that the firing activity at that location is consistently, rather
than incidentally, present across individual traversals through
that location. Therefore, we assessed the reliability of each unit
by computing pairwise correlations between all single-trial rate
maps of that unit and comparing the observed mean pairwise
correlation with a shuffled distribution. A unit was considered
spatially stable if its observed mean correlation was >95% of the
shuffled distribution. The proportions of spatially stable units
were very similar for AC and V2L and comprised on average
about 70% of the total population; Fig. 2C; AC: 0.69 (95% CI: 0.49,
0.84), V2L: 0.72 (CI: 0.31, 0.94), F(1, 32) = 0.072, P = 0.79, ANOVA. We
quantified the spatial stability of a unit using a spatial stability
index (SSI), which is defined as the number of standard deviations
by which the observed mean correlation was removed from the
shuffled distribution (Fig. 2D). The SSI of spatially stable units
was similar between AC and V2L; Fig. 2D; AC: 12.7 a.u. (CI: 8.39,
15.44), V2L: 14.3 a.u. (CI: 10.4, 24.4), F(1, 1194) = 0.44, P = 0.50,
ANOVA. Supplementary Figure S3 shows firing rate maps for the
same, spatially stable example units as in Fig. 2A and B, split
between the first and last 30% of the recording session, illustrating
spatial stability. Examples of spatially unstable units are shown
in Supplementary Fig. S4. In summary, large fractions of AC and
V2L units display spatially stable activity patterns with high
reliability.

Individual firing fields were then identified for spatially stable
units as local increases in the mean spiking activity of a unit on
the linearized representation of the track (Fig. 2A and B). Neurons
in AC and V2L exhibited a similar number of around 3 firing fields
per unit; Fig. 2E; AC: 3.17 (CI: 2.97, 3.39), V2L: 3.40 (CI: 3.20, 3.61),
F(1, 588) = 2.22, P = 0.14, ANOVA; the average length of firing fields
was significantly smaller in V2L than in AC—Fig. 2F; AC: 50.5 cm
(CI: 47.2, 54.1), V2L; 46.3 cm (CI: 43.5, 49.4), F(1, 1939) = 9.0, P = 0.003,
ANOVA—indicating that the spatial granularity of spiking activity
is modestly finer in V2L than AC.

The extent to which units show spatially modulated fir-
ing can be expressed as the information about the rat’s
position that is conveyed by a single spike, which is quan-
tified as spatial information (SI; Skaggs et al. 1992). In line
with the smaller firing fields in V2L, the SI was signifi-
cantly higher for V2L units; Fig. 2G; AC: 0.15 bits/spike (CI:
0.12, 0.17), V2L: 0.24 bits/spike (CI: 0.20, 0.28), F(1,556) = 16.5,
P = 5 ∗ 10−5, ANOVA.

Both auditory and visual cortical neurons
respond to discrete auditory and visual stimuli
Besides showing location-selective firing, subsets of units in both
AC and V2L responded with significant firing-rate changes to
the auditory and visual stimuli, presented as individual (unisen-
sory) task cues; Fig. 2H; stimulus conditions were pooled for each
modality; see Materials and methods. As expected, a larger pro-
portion of AC neurons responded to auditory than to visual stimuli
in all rats; AC auditory: 0.20 (CI: 0.15, 0.28), AC visual: 0.07 (CI:
0.04, 0.13), F(1, 30) = 10.34, P = 0.003, ANOVA. Additionally, respon-
siveness to visual stimuli was more common in V2L than AC;
V2L visual: 0.15 (CI: 0.09, 0.24), F(1, 30) = 4.60, P = 0.0402, ANOVA.
Surprisingly, however, a comparable proportion of V2L neurons
responded to both visual and auditory stimuli; V2L auditory:
0.20, (CI: 0.15, 0.26), F(1, 30) = 0.93, P = 0.34, ANOVA; and auditory
responses were equally common in both areas; F(1, 30) = 0.013,
P = 0.91, ANOVA. Although AC and V2L responsiveness to discrete
stimuli is not the focus of our current analyses, these results
not only indicate that responses to stimuli in >1 modality are
common in both AC and especially V2L but also underscore
the existence of substantial heterogeneity in cortical sensory
selectivity.

Stable, spatially modulated activity patterns were much more
abundant in both areas than responses to sensory stimuli (AC:
P < 10−15; V2L: P < 10−13, binomial tests on pooled data). We then
asked whether the spatial tuning of cells depends on behavioral
parameters such as stimulus modality and reward (see, example
cell, Fig. 3D). To assess this, we constructed rate maps for different
splits of the trials; Fig. 3E; modality: unisensory (i.e. auditory
or visual) versus multisensory trials, reward outcome: rewarded
versus unrewarded trials, and trial history: left-side choice versus
right-side choice in the previous trial; and we tested whether these
rate maps differed significantly (permutation testing, n = 1,000
shuffles). In both areas, small proportions of cells had their
rate maps modulated by modality; AC, unisensory auditory ver-
sus multimodal trials: 0.6 (0.0–1.4) % of cells (mean ± 95% boot-
strapped CI), AC, unisensory visual versus multimodal trials: 2.1
(0.4–3.7) % of cells, V2L, unisensory auditory versus multimodal
trials: 1.25 (0.3–2.5) % of cells, V2L, unisensory visual versus
multimodal trials: 2.9 (0.8–5.3) % of cells; while no modulation of
rate maps as a result of trial outcome (rewarded vs. unrewarded)
or choice in the previous trial was found in either area. The
small fractions of cells having rate maps that were dependent on
modality were not significantly larger than chance in AC and were
borderline significant in V2L (the fraction of cells is significant if
the bootstrapped CIs do not overlap or border with 0%).

Spatial distributions of firing fields are highly
correlated across auditory and visual cortex
The reliable coding of specific locations by individual units is
necessary but is not sufficient for building a representation of
an environment or the sequence of sensory states an animal
experiences when navigating across the track. Another prereq-
uisite for either type of representation would be that the spatial
distribution of firing fields in each area covers the entire series
of locations traversed by the animal. Figure 3A and B shows the
linear rate maps for all spatially stable units ordered by peak
location for AC and V2L and reveals that firing-field peaks occur
at every location along the track. We further analyzed the density
of firing fields tiling all locations by computing the proportion of
firing fields which include a specific spatial bin on the linearized
track. The distributions of firing-field densities confirm that the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
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entire track was covered by AC and V2L firing fields (Fig. 3A
and B, bottom; for crossvalidation of population rate maps, see
Supplemental Fig. S3).

The joint rate maps and field density plots indicate simi-
lar firing-field distributions in AC and V2L. Indeed, the field
densities across spatial bins of the track were highly correlated
between the areas; Fig. 3C; regression slope: 0.83 (CI: 0.57, 1.09),
F(1, 39.5) = 3.2, P = 0.007, ANOVA. This strong correlation, however,
may also be due to similar responses of AC and V2L neurons to
behavioral covariates such as locomotion speed, acceleration, and
head direction (θhead). To correct for the potential influence of
these covariates on field densities, we performed linear regres-
sion of spiking activity on the running speed, acceleration, head
direction, and the angular change in head direction (�θhead) and
repeated the detection of firing fields and field density correla-
tions on the residuals. When using the model’s residuals, field
densities between AC and V2L were still highly correlated; regres-
sion slope: 0.71 (CI:0.36, 1.06), F(1, 3.0) = 16.1, P = 0.028, ANOVA. It
is, therefore, unlikely that locomotion and head direction can fully
explain the firing-field densities of AC and V2L neurons on the
track or their shared spatial distribution. These analyses, how-
ever, did not take into account possible nonlinear relationships
between location and behavioral covariates.

Spiking activity carries information about
position and head direction
We next used information-theoretic measures to quantify the
influence of navigation parameters, i.e. position, running speed,
head direction (θhead), and changes in head direction (�θhead), on
the spiking activity of recorded units. MI quantifies the reduction
in uncertainty obtained about spiking activity after observing
these factors and captures both linear and nonlinear relation-
ships (Lizier 2014; Olcese et al. 2016). Of these individual factors,
position carried the most information about spiking activity of
both AC and V2L units, which was followed by head direction
(Fig. 4A; MI of position vs. θhead: AC: P = 1.1 ∗ 10−15; V2L: P = 3.0 ∗

10−15, Wilcoxon’s signed-rank test). To give an impression of head
direction-associated spiking activity at the level of single neurons,
Supplemental Figure S5 shows the average firing rates for all head
directions of example neurons as they were recorded during the
experiment. Running speed and changes in head direction carried
relatively little information about the spiking activity in both
areas. For all individual factors, the mean MI was higher in V2L
than in AC (P = 2.0 ∗ 10−6; running speed: P = 4.7 ∗ 10−4, θhead: P = 1.4
∗ 10−7, �θhead: P = 1.6 ∗ 10−5, Mann–Whitney’s U test).

When a particular θhead is predominantly encountered at a
given position, MI cannot distinguish between the possibilities
of a neuron encoding either that position, head direction, or a
combination of the 2. To determine the amount of information
carried by spikes about speed, θhead and �θhead, that cannot be
explained by (nonlinear) correlations with position, we computed
the debiased cMI between each of the 3 factors conditional on
position (Fig. 4B) (Lizier 2014; Bos et al. 2019). Averaged across
all spatially stable units, the amount of information that spike
trains carried about running speed and changes in head direction
beyond position, i.e. mean cMI (spikes, speed | position) and mean
cMI (spikes, �θhead | position), was negative for both AC and V2L,
confirming that running speed and changes in head direction
contributed little information about the spiking activity on top of
position (Fig. 4B). By contrast, the average cMI for head direction,
cMI (spikes, θhead | position), was significantly larger than 0 for
both AC and V2L (Fig. 4B, AC: P < 10−15; V2L: P < 10−15; Wilcoxon’s
signed-rank test), indicating that the spiking activity of both AC

and V2L units coded information about head direction in addition
to information about position.

To study the prevalence of position coding in populations of
single units, we calculated cMI between spikes and position con-
ditional on θhead, thereby excluding any contributions from θhead

(Fig. 4C). Significant cMI (spikes, position | θhead) was found in 140
out of 413 AC units (33%) and in 197 out of 400 V2L units (49%),
indicating that spiking activity of large proportions of single units
in both areas contains information on spatial position on top of
any information on θhead, with V2L showing a significantly larger
proportion (z = 4.64, P = 1.7 ∗ 10−6, binomial test; Fig. 4D). Smaller,
but substantial subsets of neurons in each area showed signifi-
cant cMI (spikes, θhead | position), indicating that the spike trains of
these neurons carry information about head direction even after
correcting for position (Fig. 4D, AC: 16.5% and V2L: 31.2%), with
V2L here also showing a significantly larger proportion of neurons
(z = 4.9, P = 4.2 ∗ 10−7, binomial test). Among all units encoding
position and/or head direction, V2L units were also significantly
more likely to provide information on both factors (Fig. 4D, AC:
13.1%, V2L: 25.5%, z = −4.50, P = 3.4 ∗ 10−6, binomial test). In sum-
mary, this analysis confirmed that substantial fractions of AC and
particularly V2L neurons continued to show location- and head
direction-associated selectivity after correcting for the influence
of the other behavioral covariate.

Position is the strongest predictor of auditory
and visual cortex single-unit activity, followed by
head direction
Next, we used a random forest encoding algorithm (Benjamin
et al. 2018) to determine how well spiking activity could be pre-
dicted by each of the behavioral factors. This provided the oppor-
tunity to extend the analysis of dependencies between behavioral
factors and spiking activity beyond 2 behavioral factors. Encoding
of firing rates of 2 units from AC and V2L is exemplified in Fig. 4E.
For both areas, encoding quality was best for a model incorporat-
ing all predictors (Fig. 4F; all predictors vs. only position for AC and
V2L combined, P < 10−15, Wilcoxon’s signed-rank test), whereas
of the individual factors, position provided the best performance
(position vs. each other individual predictor for AC and V2L, all Ps
< 10−15, Wilcoxon’s signed-rank tests). The large effect of position
on encoding performance could not be explained by confounds
arising from the other behavioral factors since adding position
to a model already utilizing all other factors led to substantial
improvements in encoding performance for both AC and V2L
(Fig. 4G; position vs. each other individual factor, all Ps < 10−15,
AC and V2L combined, Wilcoxon’s signed-rank tests). Comparing
the contributions of position and θhead separately for individual
units confirmed that, among the behavioral factors considered,
position was dominant in explaining spiking activity in both areas,
while θhead provided the second strongest contribution (Fig. 4G).
This is also illustrated in Fig. 4H, which shows, for each neu-
ron, the improvement in encoding when adding θhead or position
to models containing all other behavioral factors. For the vast
majority of units in both areas, adding either factor improved
encoding quality, but this difference was larger for position than
for θhead. When analyzing the mean improvement in decoding
performance achieved beyond all other predictors, we found that
this value was larger for position (0.048) than for θhead (0.019; all
Ps < 10−15, Wilcoxon’s signed-rank tests) or the other 2 covariates.
Furthermore, the improvement due to θhead was larger than for
these other factors (speed: 0.011; P < 10−15; �θhead: 0.008; P < 10−15,
Wilcoxon’s signed-rank tests).

Both the cMI and encoding analysis show that neurons can
carry significant information on both factors. However, other

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
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Fig. 4. Encoding: Predicting single-unit spiking activity from behavioral factors. A) Average MI between spiking activity of AC (blue) and V2L (red)
single neurons and the behavioral factors position, running speed, head direction (θhead), and head direction change (�θhead). Error bars represent 95%
bootstrapped confidence bounds. B) Debiased cMI between spiking activity and behavioral factors speed, head direction and changes in head direction,
conditional on position. Error bars as in (A). C) Relationship between the MI of spikes and position and the cMI between spikes and position conditional on
head direction for all spatially stable single units for AC (left) and V2L (right). Blue/red points mark units with significant cMI about position conditional
on θhead, indicating that these units carry significant information on position that cannot be explained by θhead. Inset shows in color the number of
units per area having significant cMI about position conditional on θhead as fraction of the total number of units (gray: non-significant units). D) Venn
diagrams showing for each area the number of neurons transmitting significant cMI (spikes, position | θhead) (dark color) and cMI (spikes, θhead | position)
(light color). Overlapping region indicates neurons which transmit significant information on both position and θhead, neither of which can be explained
entirely by the other factor. E) A random forest encoder was used to predict spiking behavior on the basis of position, running speed, θhead and �θhead.
Figure shows 60 s of firing rate of an example AC unit (black line; left panel) and V2L unit (black line; right panel) and the predicted firing rate based
on the models, including the different behavioral parameters (colored lines). F) Mean encoding quality across all AC (blue) and V2L (red) units using
single behavioral factors as predictor and using all predictors. Error bars as in (A). G) Mean improvement in encoding quality across all single units
following the addition of the indicated behavioral factor to a model already containing all other factors. Error bars are 95% confidence bounds. H) The
relationship between encoding quality of individual single units when all predictors are considered and the encoding quality when all predictors except
linear position (left) or head direction (right) are considered. Points above the diagonal belong to units with improved encoding due to the inclusion of
linear position/head direction which cannot be attributed to any other included factor. Blue: AC units, red: V2L units. Diagrams to the right and top of
the main scatterplot show the empirical distributions of the data depicted in the scatterplots projected onto a single dimension.

factors, such as stimulus availability, choice, and reward, may
have influenced these results because, during track running, they
are closely associated with both position and head direction in
space and/or time (Zaidel et al. 2017). Re-analysis of conditional
information, now on data in which the period of stimulus presen-
tation ±1 s was eliminated, showed a decrease in the amount
of information on θhead conditional on position, which was

nevertheless still significantly larger than 0 for both areas (cMI
difference from 0, AC: P = 1.7 ∗ 10−4, V2L: P < 10−15, Wilcoxon’s
signed-rank tests; Supplementary Fig. S6A, cf. Fig. 4B). Simi-
larly, re-analysis of encoding improvement with data from
which the stimulus presentation period ±1 s was eliminated
yielded similar results compared with the original finding
(Supplementary Fig. S6B, cf. Fig. 4G). Together, these results

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad045#supplementary-data
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Fig. 5. Reconstruction of spatial position from auditory and visual cortical populations and between-area correlation of errors. A) Confusion matrices
indicating the performance of Bayesian decoding of linearized position from AC neuronal populations averaged across sessions. The probability that
a sample of spiking activity is assigned by the decoder to the true location of the rat is coded in blue shades. B) As (A) but for V2L populations.
C) Distribution of decoding errors (i.e. distances between the true and decoded position) across AC (blue) and V2L (red) sessions. D) Decoding error
as a function of population size, obtained by randomly selecting units from the neuronal populations. Thin lines indicate means for individual sessions
for AC (blue) and V2L (red). Thick lines indicate means over sessions. E) Correlations of measured (abscissa) and shuffled (ordinate) instantaneous
decoding errors in the X-dimension of the maze. Shuffling was performed inside the same spatial bin and within the same running speed range.
F) Same as (E) but for the Y-dimension. G) The size and direction of instantaneous errors were correlated between AC and V2L. We computed the joint
probability distribution of decoding errors along the X-direction in AC and V2L and subtracted from it the joint distribution computed on shuffled data,
to obtain a relative probability (�P; a value of +0.3 indicates that a particular error is 30% more likely to be observed in actual data than in shuffled
data). H) Same as (G) but for the Y-dimension.

suggest that position and, to a lesser degree, head direction
are important drivers of firing activity of neurons in AC and
V2L. Along with position and head direction, additional subject-
induced sensations may have occurred, potentially contributing
to spike-coded information on these 2 behavioral parameters.

Coherent mapping of location in auditory and
visual cortical populations
If the neuronal populations in AC and V2L code the animal’s track
position, it should be possible to infer the position of the rat from
the collective neuronal activity. We used a Bayesian decoder to test
whether spatial location can indeed be predicted from population
activity (sessions with >16 neurons/area were included). Decoding
of position was successful for both AC and V2L, because the
chance that a decoded position matched the true position of the
rat was larger than the chance that it matched any other location
on the track (i.e. clear diagonal structure in Fig. 5A and B; AC:
n = 15 sessions; V2L: n = 12 sessions). The distributions of decoding
errors, which are the Euclidean distances between the true and
decoded positions, clustered near 0 m for both areas (Fig. 5C).
V2L showed, on average, higher proportions of smaller errors than
AC, indicating that decoding spatial position from V2L was more
accurate than from AC (V2L error: 0.11 m, 0.10–0.42; AC error: 0.29
m, 0.26–0.37; median and interquartile range, in meters).

Increasing the number of neurons included in the decoding
analysis decreased the mean decoding error for both areas. We
considered several population sizes, which were similar for both
areas (AC: 16–38 neurons, V2L: 16–40 neurons), but bootstrap
analysis showed no signs of plateau performance with progressive

population sizes (Fig. 5D). Although decoding from both areas
likely could be improved had more neurons been recorded, at
identical population size, the decoding performance for V2L was
better than for AC both for the mean across sessions and for
most individual sessions. Furthermore, the average performance
of the decoder was virtually independent from stimulus modal-
ity, reward, and trial history (Supplementary Fig. S7), which is in
agreement with Fig. 3E.

To investigate whether locations are encoded coherently across
both areas, we calculated the correlation in instantaneous decod-
ing error between AC and V2L. Instead of only taking the magni-
tude of the error into account, errors in the x and y dimensions
of the maze were considered separately and their directionality
was preserved. When decoding errors were computed for sessions
which contained >16 simultaneously recorded neurons in each
area, we found significant correlations (P < 0.001 for all 11 ses-
sions). This was also the case when including all sessions where
at least 1 of the 2 areas provided 16 neurons, again indicating that
AC and V2L encode locations coherently. However, these corre-
lations may be confounded if certain locations are represented
more accurately than others in both areas, or if firing patterns
are subjected to a common modulation by locomotion speed.
To control for these possibilities, we shuffled the data across
time points at which the animal was in the same spatial bin
and running within the same range of speeds. The correlations
between the shuffled decoding errors were significantly lower
than the observed correlations (x-direction, P = 0.01, y-direction
P = 0.02, Wilcoxon’s signed-rank test). This difference remained
significant when we included all sessions where at least 1 area
provided 16 neurons (x-direction, P = 0.001, y-direction, P = 0.01).
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The residual decoding errors, obtained by subtracting the shuffled
distribution from the observed joint distributions, displayed a
diagonal structure (Fig. 5G and H), indicating that representa-
tions of location in AC and V2L remain coherent even when the
position cannot be decoded accurately from the population of
either area. This coherency exceeds what would be expected from
a common influence of speed. In addition to the mean across
sessions (Fig. 5G and H), these results also held for individual
rats (Supplementary Fig. S8). It is unlikely that error correlations
can be accounted for by decoding artifacts in sessions with poor
decoding performance because there was no evidence of a positive
relationship between instantaneous decoding error correlations
and average decoding error; rather, their linear correlations were
not significant (Supplementary Fig. S9).

Discussion
We showed location- and head direction-correlated firing patterns
in large proportions of neurons in AC and V2L of freely moving rats
navigating a figure-8 maze. This activity takes part in coherent
representations across areas, as indicated by highly correlated
firing-field densities (Fig. 3A–C) and correlated errors in recon-
structed position (Fig. 5). A first implication of these results is that
neural representations bound to subject location exist in the AC,
thus outside the visual system. Such activity may be expected in
V2L because of similar observations in V1 (Ji and Wilson 2007;
Haggerty and Ji 2015; Fiser et al. 2016; Saleem et al. 2018; ) and
egocentric trajectory correlates in the spiking activity of posterior
parietal cortex (McNaughton et al. 1994; Nitz 2006; Whitlock et al.
2012; Krumin et al. 2018). These areas share anatomical borders
with V2L and bidirectional, monosynaptic connectivity (Miller and
Vogt 1984; McNaughton et al. 1994; Haggerty and Ji 2015; Krumin
et al. 2018). Previously, spatial modulation was also found in
higher visual areas of the mouse cortex, but in this study, animals
were head-restrained, thus lacking changes in vestibular inputs
(Diamanti et al. 2021). That AC neurons also show location-tuning
is more surprising because AC activity has hitherto not been
associated with animal location. However, in many mammals, this
area is required for sound localization (Heffner 1978; Thompson
and Cortez 1983; Jenkins and Merzenich 1984; Kavanagh and Kelly
1987) and contains neurons tuned to the location of sound sources
(Middlebrooks and Pettigrew 1981; Town et al. 2017; Wang et al.
2019). In addition to visual cortex and AC, indications for spatial
mapping in primary somatosensory cortex were presented by
Long and Zhang (2021).

Nature and function of location-correlated firing
in sensory cortices
In addition to single or multiple peaks in single-cell firing rates
tessellating the entire maze, we found that AC and V2L spike
patterns were spatially stable across trials and coded significant
amounts of information on animal position (Figs. 2 and 4).
Our maze harbored repetitive elements requiring the same
local behavior, such as directional body turns or running along
straight maze stretches, whereas many cells showed single firing-
rate peaks and thus did not reflect these repetitions (Fig. 2).
Furthermore, the encoding analysis revealed animal position
as the strongest predictor of AC and V2L activity even after
correcting for head direction (Fig. 4). Moreover, subject position
could be inferred from AC and V2L ensemble activity using
Bayesian decoding (Fig. 5). Despite these indications, we argue
that neither our current findings nor previous results on V1

(Ji and Wilson 2007; Haggerty and Ji 2015; Fiser et al. 2016; Saleem
et al. 2018) necessarily imply coding of (allocentric) position per
se, because proving this would require additional experimental
manipulations to establish that location-selective activity is
independent of the locomotion direction through a location and
tolerates the manipulation of local sensory cues (Speakman and
O’Keefe 1990; Knierim 2002; Leutgeb et al. 2005; Lansink et al.
2012; Wilber et al. 2014).

We propose the more general alternative that sensory cortical
areas integrate modality-specific evidence with information from
other sensory, motor, and association areas to generate sequential
representations, which are not merely sensitive to local sensori-
motor cues but also to contextual elements (which may comprise
spatial and also other task-relevant elements, such as reward
proximity, task rule execution, etc.). For instance, activation of
visual cortex neurons depends on the subject’s field of view
which in turn depends on animal position and head direction (cf.
Haggerty and Ji 2015). This combination of view, position, and head
direction may give rise to a predictive visual representation in the
cortex, which will be compared to further visual input to compute
error signals, as posited by predictive processing models (Rao and
Ballard 1999; Friston 2005; Fiser et al. 2016; Keller and Mrsic-Flogel
2018; Pennartz et al. 2019). Although this proposal needs further
testing, it is generally supported by the literature documenting
extensive corticocortical connections (Felleman and Van Essen
1991; Groenewegen and Uylings 2000; Bizley et al. 2007; Budinger
and Scheich 2009; Campi et al. 2010; Laramée et al. 2011; D’Souza
et al. 2016; Leinweber et al. 2017; Gămănuţ et al. 2018; Harris
et al. 2019), contributions to neural coding in sensory cortices
by nonsensory parameters (Shuler and Bear 2006; Goltstein et al.
2013; Namboodiri et al. 2015; Pakan et al. 2018), and auditory–
visual cortical interactions (Iurilli et al. 2012; Ibrahim et al. 2016;
Meijer et al. 2017; Morrill and Hasenstaub 2018; Knöpfel et al.
2019; Meijer et al. 2020).

This view does not conflict with a potential role for sensory
cortices in updating spatial (e.g. hippocampal) representations
in a bottom-up fashion, or with the navigational system con-
tributing to top-down sensory predictions (Fournier et al. 2020).
However, the hypothesis of the hippocampus causally driving
spatial coding in V1 (Saleem et al. 2018) faces the issue that
the hippocampus proper does not directly project to the sensory
cortices, and its output is transformed by the synaptic matrices
of intermediate parahippocampal regions on which the nonhip-
pocampal structures also converge (Witter et al. 2000; Furtak
et al. 2007; Rusu and Pennartz 2020). Instead of guiding spatial
navigation, the bidirectional, cortico-hippocampal circuitry may
subserve declarative memory consolidation (O’Keefe and Nadel
1978; Squire 1986; Eichenbaum 2000; McGaugh 2000; Rusu and
Pennartz 2020). Although the medial entorhinal cortex seems
to be better situated to issue spatial-mapping signals, as it is
known to project to the entire neocortical mantle (Swanson and
Kohler 1986; Insausti et al. 1997; cf. Sargolini et al. 2006), the
hippocampus may nonetheless act as a driver for spatial coding
in neocortex, as hippocampal lesions were shown to impair the
development of location-specificity of neocortical cells (Esteves
et al. 2021).

Sensitivity to head direction in auditory and
secondary visual cortex
For 33% of neurons in AC and 49% in V2L, the information
conveyed on head direction was significant after correcting for
position (Fig. 4B and D). This finding is consistent with results of
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Guitchounts et al. (2020) in rat V1, albeit that they did not cor-
rect for changes in self-position within the home cage. Recently,
Mimica et al. (2022) also reported coding of head-orienting fea-
tures in auditory and visual cortices of freely foraging rats. While
their results are consistent with our findings as concerns head ori-
entation, Mimica et al. focused on neural correlates of elementary
behaviors, not on maze running or self-location. A further reason
why they did not report prominent location-selective firing may
lie in differences in behavioral settings, as they studied rats for-
aging for randomly scattered food crumbs, whereas self-location
in our task is deemed relevant for mapping of, e.g., proximity to
reward sites and stimulus displays.

As is the case for location, these overall findings relate to how
sensory-specific states coded by AC and V2L depend on head
direction and how these sensory cortices may use this sensi-
tivity to emit head direction signals to target areas. Basic head
direction signaling is regulated by the vestibular nuclei carrying
information about the head’s motion relative to external space
(Cullen 2014) and, in rodents, about static neck position (Barresi
et al. 2013; Medrea and Cullen 2013). Vestibular input is a key
contributor to the brain’s head direction system (Taube 2007),
including anterior thalamus (Taube 1995), postsubiculum (Taube
et al. 1990), and medial entorhinal cortex (Sargolini et al. 2006).
Vestibular information was shown to reach the visual system
directly and indirectly, viz. via the retrosplenial cortex (Vélez-Fort
et al. 2018), which was proposed to mediate between the sensory
cortices and the head direction system of the temporal lobe (Page
and Jeffery 2018). In addition to head direction signaling based on
vestibular inputs, it should be noted that, in the current task, head
direction sensitivity may also depend on other sensory inputs
associated with maze running (e.g. visual and proprioceptive).

Whether head direction signaling in AC and V2L has a causal
role in distributing head direction information to target areas is up
for further research. There is evidence to support the hypothesis
that areas along the cortical hierarchy may use both allocentric
and egocentric representations, with a gradient of egocentric-to-
allocentric processing from sensory to temporal cortices, as also
proposed for parietal-retrosplenial circuitry, where V2L is some-
times included as part of parietal cortex (Wilber et al. 2014; Chen
et al. 2018; Clark et al. 2018). Recent studies, however, question the
validity of such a gradient, pointing to egocentric coding in several
temporal lobe areas in addition to allocentric bearings (Wang
et al. 2018; LaChance et al. 2019; Kunz et al. 2021).

Comparison between auditory and secondary
visual cortex
We were particularly struck by the broad, qualitative similari-
ties between AC and V2L spiking patterns. Both areas showed
comparable levels of spatial stability, amounts of firing fields per
unit (Fig. 2) and spatial distributions of firing fields (Fig. 3). More-
over, the contributions to predictions of firing-rate patterns from
position, head direction, and other factors were highly similar
for AC and V2L (Fig. 4). These observations lend support to the
hypothesis that coordinated representations are a general feature
of sensory cortical areas.

Neural coding in AC and V2L also showed interesting quantita-
tive differences, which consistently point to a higher SI content
(Fig. 2), stronger correlations with location and head direction
(Fig. 4), and better position reconstruction in V2L than AC. How
this greater accuracy arises in V2L is unknown, but it may relate
to a larger amount of spatially informative visual cues in our maze
compared to auditory cues and to more consistent changes in
visual inputs due to self-motion than to (self-induced) auditory
inputs.

Significance of crossareal coordination in cortical
mapping of location and head direction
Arguably, our most novel result is the highly coherent nature of
location-selective representations across sensory domains of the
cortex (Figs. 3 and 5), suggesting that location- and head direction-
sensitive mappings in auditory and visual cortical systems are not
computed independently but are coordinated. Such coordination
of context-dependent sensory mappings offers the computational
advantage that evidence from multiple sensory modalities can
be combined to improve estimates of the subject’s task-relevant
state, although this comes at the expense of error sharing.

Previous studies on auditory–visual interactions were predom-
inantly guided by the theoretical framework of multisensory cue
integration, whereby evidence for the detection of a stimulus in
1 modality is augmented by another modality (Fetsch et al. 2013;
Stein et al. 2014; Meijer et al. 2019). Our findings go beyond inte-
gration of discrete sensory cues and instantaneous sensory states
as they indicate a crossmodal coordination of context-sensitive
representations. In our proposal, this common mapping subserves
the construction of a multimodal survey of the subject’s current
situation, thereby enabling efficient goal-directed action plan-
ning and execution (Pennartz 2018). As argued by Hawkins et al.
(2017), self-parameters, including head direction and position
within a task sequence, are key priors in determining how and
when to undertake goal-directed actions. In line with predictive
processing, knowledge of these self-parameters is required to
interpret novel sensory inputs and to anticipate sensory outcomes
of actions (cf. Schürmann et al. 2019).

Conclusion
In conclusion, both the auditory cortex and secondary visual
cortex map the subject’s position and head direction, and both
areas coherently generate this neural code during spatial nav-
igation. Together, these sensory cortical areas are proposed to
integrate modality-specific evidence with information from other
neocortical areas to sustain context-sensitive representations.
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