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Organ-on-chip (OoC) systems are in vitro microfluidic models that mimic the microstruc-
tures, functions and physiochemical environments of whole living organs more accurately
than two-dimensional models. While still in their infancy, OoCs are expected to bring
ground-breaking benefits to a myriad of applications, enabling more human-relevant can-
didate drug efficacy and toxicity studies, and providing greater insights into mechanisms
of human disease. Here, we explore a selection of applications of OoC systems. The
future directions and scope of implementing OoCs across the drug discovery process are
also discussed.

Introduction
Attrition rates have long been considered as the main cause of costs in drug development, which has
been estimated to approximate $1 billion per new medicine entity between 2009 and 2018 [1].
Roughly half of the clinical trial terminations are attributed to a lack of efficacy and a further quarter
are related to safety concerns. The lack of clinical translation of preclinical models used for assessing
drug efficacy or toxicity is one of the major causes behind the high attrition rates [2]. Clearly, there is
an unmet need to update the current preclinical testing paradigm.
Motivation to address these limitations has given rise to the organ-on-chip (OoC) technology:

microfluidic, chip-based, three-dimensional (3D) cell culture models with an active flow (Figure 1). In
recent years, commercially available OoCs have been increasingly integrated within the drug develop-
ment phase, to replace more traditional preclinical models (Figure 2; [3–6]).
OoCs originated from the development of miniature devices compatible with cell culture and

imaging [7] with the earliest OoC developed in 2010 by Donald Ingber’s group [8]. The concept
evolved from a research interest in the mechanical control of tissue and organ development [9] and
led to the development of a lung-on-chip device; this integrated different tissues on the same chip to
replicate the alveolar–capillary interface and recreated a functional, structural and mechanical repre-
sentation of a lung alveolus. The temporal evolution of OoCs from precursor devices to the current
state-of-the-art is depicted in Figure 3 [8,10–17].
These models were initially referred to as microphysiological systems (MPS) and the denomination

has since evolved with the technology itself. However, the aim has remained constant: creating tissue
or organ functionality, beyond the capabilities of standard 2D or static 3D cell culture systems [18].
While ‘MPS’ and ‘OoC’ are often used interchangeably, the FDA define OoCs as part of a sub-
category of MPS; they classify an MPS as an in vitro system, with cells isolated from tissues/organs or
from organoids, that aims to recreate the physiological microenvironment. In contrast, an OoC is
defined as a miniaturised MPS that is ‘engineered to yield and/or analyse functional tissue units
capable of modelling specified/targeted organ-level responses’ [19], which is similar to the ORCHID
definition [20]. Examples of OoC models replicating the microstructure, mechanical properties and
functionalities of living organs have been reviewed [18,21]. Within the chip, one or more cell types
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are usually cultured within a 3D scaffold where cells can attach to an extracellular matrix (ECM) or porous
membranes. The cells are continuously perfused with media containing oxygen and nutrients to maintain their
function and survival, and the application of physical cues, such as shear stress, is possible. More recent
advances, have enabled structures with higher aspect ratios and sensors, to monitor cellular and environmental
changes [22,23].
The initial focus of OoCs was on single organs relevant to toxicology studies such as the kidney [13,24],

liver [25,26], lung [8] or heart [27,28] It is now widely accepted that more accurate toxicology readouts may be
achieved by incorporating multiple organs, to enable their interaction and more accurate evaluation of down-
stream metabolites. Efforts to integrate such models to form organ combinations are emerging, with the even-
tual goal of creating a ‘body-on-chip’ [29–31]. This provides greater scope and offers hope of gaining insight
into human disease mechanisms, predicting the safety and efficacy of novel therapies and reducing the use of
laboratory animals.
This review discusses the current applications of OoC technology and its scope for implementation in the

drug discovery process, as well as its future directions from a drug discovery focussed end user perspective.

Replicating in vivo conditions
The primary aim of developing any OoC model for drug discovery purposes is to replicate in vivo physiology
and provide a translational in vitro model. Despite efforts, to attain true clinical translatability remains a chal-
lenge and the technology is limited to a few examples.
One path to overcoming the translational hurdle is through the inclusion in microfluidic systems of tissue-

specific environmental cues, such as flow and mechanical stress, recreating the tissue microenvironment in
which cells would normally reside in vivo. Karalis and co-workers [32] recently showed how cyclic stretch

Figure 1. Schematic diagram depicting an example of a basic liver-on-chip model as a representative organ-on-chip

(OoC).

The active flow within the channel of a chip enables cells to be perfused with media containing oxygen and nutrients (inlet) and

the removal of waste products and the sampling of metabolites for assessment of cell function (outlet). This schematic is for

illustrative purposes only and does not represent any particular existing OoC model or all possible types of OoC models. It is

intended to exemplify some of the basic bioengineering principles required for the development of an OoC unit.
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could lead to the development of a gut-on-chip model that is physiologically more relevant than the corre-
sponding static system; the transcriptomic profile of this model more closely resembled that of a gut tissue
biopsy than the corresponding non-chip-based organoid.
Maintaining long-term cell viability and functionality in vitro has been a major challenge, but continuous

perfusion of oxygen and nutrients, and removal of metabolic waste products in OoC models, enable longer-

Figure 3. Timeline for the evolution of organ-on-chip (OoC).

The first OoC model to accomplish organ-level functionality, tissue–tissue interactions and a physiologically relevant organ

microenvironment with vascular perfusion came in 2007 as a lung-on-chip by Huh et al. Since then, funding from organisations

such as DARPA and NIH, and the founding of Wyss Institute, has propelled OoC technology from a nascent idea to a rapidly

growing area of research with potential for utility across the drug discovery process. DARPA, Defence Advanced Research

Projects Agency; FDA, US Food and Drug Administration; IO, immuno-oncology; MEM, micro electromechanical system;

microTAS; miniaturised total chemical analysis system; NIH, National Institute of Health; PDMS, polydimethylsiloxane; TCTCs,

Tissue Chip Testing Centers.

Figure 2. Examples of commercialised organ-on-chip (OoC) systems.

(A) The HUMINIC chip 4 manufactured by Tissuse. (B) The OrganoPlate® 2-lane 96 manufactured by MIMETAS. (C) The

PhysioMimix™ OoC manufactured by CN-Bio. The pictures are reprinted courtesy of the manufacturers and with their

permission.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1883

Biochemical Society Transactions (2021) 49 1881–1890
https://doi.org/10.1042/BST20210840

https://creativecommons.org/licenses/by/4.0/


term culture and relevant cell analysis [33,34]. The use of primary cells obtained from multiple donors can
capture donor-to-donor variation and provide an important insight into how in vitro results may translate to
the clinic. In a liver-on-chip model, inter donor variability in metabolic clearance was predicted with albumin,
urea, lactate dehydrogenase and cytochrome P450 mRNA levels. The correlation of predicted clearance with in
vivo values enabled the development of an in silico drug metabolism model predicting pharmacokinetic vari-
ability [35]. The study provided insight into donor variability; however, the donor number was low and the
model could not accurately reproduce the variability of some of the drug clearance parameters measured. It is
likely that such models will be refined with the advent of higher throughput OoC models that enable testing of
a greater number of donors tested at statistical powers equivalent to clinical trial.
The use of primary cells, where possible, is an important consideration when replicating in vivo conditions

in OoC models. Obtaining good quality primary cells from tissues such as the central nervous system or a lung
alveolus, remains a challenge. Further complexity arises when multiple cell types from a single donor are
required to reconstitute organ functionalities. For example, a liver-on-chip model may require combinations of
cell types including stellate cells, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells. Induced pluri-
potent stem cells (iPSCs) are considered as an alternative to primary cells for autologous systems due to their
wider availability and amenability to genetic modification [36,37]. Their ability to differentiate into different
cell types, retaining single donor characteristics once differentiated, could enable personalised medicine devel-
opment. There are disadvantages of iPSC technology: dependent on the cell type, the differentiation protocols
can be complex and lengthy; iPSC derived cells are often structurally and functionally immature, as exemplified
by iPSC derived cardiomyocytes that resemble foetal cardiomyocytes [38]. The development of more refined
iPSC differentiation protocols leading to mature cell phenotypes would facilitate the establishment of autolo-
gous OoC models.

Evaluating drug safety and efficacy
One of the main potential applications of OoCs is to assess the safety of drugs prior to entering clinical trials.
Only 48% of adverse drug reactions in humans are predicted in preclinical testing [39]. This is in part due to
the limited ability of commonly used preclinical species to capture human drug toxicities, as shown for the
liver-induced toxicity of diclofenac [40].
A standard approach for the validation of a novel safety model, is to determine the sensitivity and specificity

of the model with a set of compounds that have a large body of preclinical and clinical data available [41,42].
Once the dynamic range of the model is established, clinical safety outcomes are then replicated in an acute or
chronic state. An immunocompetent liver-on-chip model described by Sarkar et al. [40] incorporated hepato-
cytes and nonparenchymal cells such as Kupffer cells to assess the acute form of drug-induced liver injury
resulting from diclofenac secondary metabolite formation. As these cells typically lack functional longevity in
standard static cultures, controlled perfusion via a microfluidic pump and a 3D scaffold, enabled the formation
of tissue-like structures, which are critical for maintaining functionality [43]. In the model, diclofenac produced
a metabolism and toxicity profile comparable to that observed in humans, but not in animal models. This
liver-on-chip model subsequently enabled the development of a viral infection model by virtue of maintaining
40-day functional stability of the system for chronic safety testing [44].
The anti-proliferative effects of cancer drugs on haematopoietic stem cells are also not well-predicted in pre-

clinical animal models. Bone marrow-on-chip models are being developed to examine potential toxicity screen-
ing of various compounds, including small molecules and large biologics. The bone marrow is a highly
specialised niche composed of an array of cell types with complex phenotypes and these models must mimic
the in vivo microenvironment and enable the growth of mesenchymal stem cells [45]. In collaboration with
AstraZeneca, researchers from the Wyss Institute developed a vascularised bone marrow-on-chip model that
successfully captured the dynamic physiology of a healthy bone marrow; the model supported the differenti-
ation of multiple hematopoietic cell lineages over the course of 4 weeks, which reproduced the clinically
observed toxicity profile of the inhibitor of aurora B kinase AZD2811. This enabled AstraZeneca to investigate
better-tolerated dosing regimens for this compound in the clinic [46]. This model appears promising for evalu-
ating long-term bone marrow toxicities of new chemotherapies and drug combinations. Furthermore, Cohen
et al. [47] were able to study the mechanism of the drug-induced nephrotoxic side effects of cisplatin and
cyclosporine with a novel kidney-on-chip model. The authors hypothesised that the clinical adverse effects of
the two drugs were linked to glucose accumulation. This was validated by retrospectively analysing the clinical
data of 247 patients that received cyclosporine or cisplatin in combination with the glucose reabsorption
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inhibitor empagliflozin, which was found to significantly reduce the incidence of kidney damage when com-
pared with control groups. This work provides a perfect example of the potential for unravelling drug-induced
toxicities with OoCs.
Predicting drug efficacy in preclinical models is another major challenge in drug discovery because current

animal models do not always replicate well the pathophysiology of human disease. Recreating disease pathology
affecting the pulmonary vasculature, for example, is highly challenging. A lung-on-chip model that successfully
recreated a functional alveolar–capillary interface paved the way for various applications in the respiratory
disease area [8]. The architecture of the lung in idiopathic pulmonary fibrosis, with its patchy stiff fibrotic
tissue, has also been modelled by a lung-on-chip model that enables the study of anti-fibrotic drugs in greater
detail than possible in vivo, such as the inhibitory effect of nintedanib on neo-vascularisation [48].
There has been significant interest in building human in vitro OoC models of disease in cases where animal

models do not exist. One such example is Hepatitis B virus (HBV) infection; associated with liver cirrhosis and
hepatocellular carcinoma, it is a global health concern, with over 240 million people infected worldwide [49].
Our understanding of the host–pathogen interactions is limited by the complexity of establishing a relevant
model: patient-derived isolates of primary human hepatocytes (PHH) must be permissive to HBV infection
and infection throughout all stages of the viral life cycle must be maintained. To overcome this hurdle, a
liver-on-chip was developed to mimic HBV infection [44]. PHH cells were seeded onto the platform; continu-
ous circulation of nutrients and oxygenated media led to the formation of hepatocyte microtissues which could
be maintained in culture for at least 40 days, enabling the completion of the viral life cycle. Importantly, HBV
infection resulted in innate immune responses, which replicated the clinical outcome in infected patients and
supported the use of clinically relevant low viral titres. This aspect demonstrates the potential of OoC models
to enable the investigation of immune evasion pathways of viruses, the modelling of drug treatment and the
identification of novel clinical biomarkers.
In vitro human disease models are now proving suitable for efficacy testing and improving our understand-

ing of molecular mechanisms of disease. Non-alcoholic steatohepatitis (NASH), the most severe form of non-
alcoholic fatty liver disease (NAFLD), is a prime example. With the increasing prevalence of diabetes and
obesity, NAFLD has become the most common chronic liver disease in developed countries with no specific
pharmacological therapeutic options [50,51]. Previously, the mechanism for the association of a genetic variant
of the lipase PNPLA3 in NAFLD was not well understood [52]. PHH and Kupffer cells were cultured on chip
with wild-type or PNPLA3 I148M mutant hepatic stellate cells in the presence of free fatty acids to induce a
NASH-like phenotype. In the model, hepatic stellate cells carrying the mutation, potentiated the disease state.
The addition of the anti-NASH compound obeticholic acid reduced inflammatory mediators, as observed in
clinical trials [53,54]. Those in vitro observations from the liver-on-chip model would have not been possible
in a static 3D culture model, such as a PHH spheroid model, for several reasons: static models are incompatible
with maintaining the physiological function of hepatocytes for prolonged periods and adding Kupffer and stel-
late cells to hepatocytes without the disruption of the spheroid structure is extremely challenging.
In conclusion, whilst OoCs appear to have tremendous potential for the assessment of drug safety and effi-

cacy, systematic studies comparing the predictive power of available OoCs to those of current methodologies
are lacking. It is, therefore, too early to provide a definitive view on the translational relevance of the OoC tech-
nology and how it compares to the current approaches in drug discovery.

Incorporating immune cells
The immune system is influential in the progression of many diseases including cancer, neurodegenerative dis-
eases, chronic infections and autoimmunity. Considering the substantial differences between the human and
animal immune system, the ability to incorporate immune cells into OoC systems to model human-specific
immune responses to treatments targeting the immune system, such as biologics or cell therapies, will enable
immunotoxicity assessments that are otherwise missed in in vivo models. The challenge is recapitulating the
structural and functional complexity of the human immune system in a relevant manner [55].
The addition of immune cells to tumour-on-chip models enabled the study of the migratory phenotype of

activated natural killer cells and their ability to penetrate into a glioblastoma tumour using time-lapse micros-
copy [56]. In another example, an immune-competent tumour-on-chip model, was used to track interactions
between tumour fragments and autologous tumour infiltrating lymphocytes (TILs). Using automated quantitative
image analysis, the fraction of cell death attributable to TILs was found to respond to the immune checkpoint
inhibitor anti-PD-1 [16]. A hepatocellular carcinoma-on-chip model was used to evaluate the impact of tumour
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microenvironment conditions on the cytotoxicity of different T cells engineered to express a tumour-specific
T cell receptor (TCR). Using this tumour-on-chip, it was possible to detect how T cell-mediated cytotoxicity was
influenced by the tumour relevant hypoxic and inflammatory conditions. Optimal T cell-mediated cytotoxicity
was observed under normoxic and inflammatory conditions, whereas hypoxia reduced their functionality. This
difference in avidity of TCR–T cells was beyond the sensitivity of the 2D well plate-based assay that was run in
parallel, showing the potential of OoC in immuno-oncology applications. A vascularised breast cancer-on-chip
also enabled the identification of the immunomodulatory effect of cancer-associated fibroblasts on the anti-HER2
antibody, trastuzumab, mediated cytotoxicity [57].
Emulating the immune system in a standalone tissue-on-chip, for example a lymph node-on-chip, would

further advance this technology. A simple design has recently been developed, where T cells and dendritic cells
can interact with each other in a single channel, on the same plane. This interaction aimed to recapitulate the
T cell and antigen-presenting cell cross-talk in the lymph node, which marks the initiation of the adaptive
immune response through the appropriate antigen interrogation [58]. Ingber and co-workers [17] further devel-
oped a model and used it to evaluate a vaccine response; cell types self-organised into lymphoid follicles, the
building blocks of germinal centres where B cells differentiate into antibody-secreting plasma cells. While these
studies are promising, the qualification of these lymph node-on-chip models in other settings is important,
such as testing the ability to generate antigen-specific neutralising antibodies during pathogen infections.

Materials and scaffolding
Polydimethylsiloxane (PDMS) is used extensively to manufacture chips and membranes and is advantageous for
several reasons [59]. Its gas permeability enables oxygen supply to cells in microchannels, which is particularly
beneficial for cultures of primary cells with high metabolic demands such as hepatocytes [60]. Its flexibility
enables dynamic forces to be applied to cells: the mechanical stress of respiratory movements can be replicated in
lung-on-chip models, where cyclic strain is applied to a PDMS membrane to act as a micro-diaphragm, replicat-
ing in vivo conditions [32,61]. The optical clarity of PDMS facilitates on-chip immunohistochemical staining and
imaging, enabling easy characterisation of microtissues. Despite its versatility, the material properties of PDMS
also present challenges. Its high hydrophobicity precludes cell adhesion and chemical or biological modifications
are necessary to enable cells adhering to its surface [62,63]. Of importance for pharmaceutical applications, the
hydrophobic surface also encourages the non-specific, unpredictable binding of small molecules to its surface,
which reduces free drug concentration [64,65]. Another challenge with the use of PDMS in microfluidic systems
is the leaching of remaining uncured oligomers into the culture medium and cells which can interfere with bio-
logical processes and lead to spurious experimental outcomes [66–68] The field has been looking into alternative
materials that are non-absorbent, gas permeable, biocompatible, optically clear and amenable to mass manufac-
turing. Thermoplastics, hydrogels, glass and biocompatible materials with a long history of being used for tissue
engineering, such as polylactic acid (PLA), as well as the combinations of these materials, are investigated to
support the next generation of microfluidic chip manufacturing [69–71].

Increasing general uptake
For a wider adoption of OoCs by the pharmaceutical industry, increased throughput and integration with exist-
ing laboratory equipment need to be addressed [72]. In lead optimisation, there is an increasing desire to evalu-
ate potency in more complex models. This is in contrast with the late preclinical phase of clinical candidate
identification where numbers of compounds tested are typically in the single-digit range and where in vivo rele-
vance becomes a greater priority. The lead optimisation phase is where OoCs could gain traction, if throughput
and cost could be improved. The OrganoPlate® platform with a microtitre plate footprint and 96-well capabil-
ities exemplifies more recent trends fulfilling these conditions [73]. Its thin glass-bottom facilitates microscopic
imaging and the microtitre plate format is compatible with automated readers and robot handling. Further
development of OoC systems with the standard footprint of 24-, 96- or 384-well microtitre plates would ensure
their seamless integration within the current robotic solutions and automation equipment already in place in
the pharmaceutical research and development environment.
Achieving regulatory acceptance is also key to the mainstream adoption of the technology by end users.

Currently, the use of OoC models is limited to preclinical drug discovery, with the data restricted to internal
study reports. Given the potential power of OoC platforms in their clinical predictability, it is regrettable that
those data are not included in regulatory documents as part of investigational new drug (IND) submission to
regulatory bodies. To gain regulatory acceptance, models should have a defined test methodology, proven
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relevance, qualification and evidence of reliability in their context of use. A list of reference compounds with
known toxicology and metabolism data has been compiled by the industry, to aid the qualification of
liver-on-chip models [41]. A dialogue is encouraged by regulatory authorities both in Europe and the United
States (US); by the European Medicines Agency Innovation Task Force and are also by the US Food and Drug
Administration via the Center for Drug Evaluation and Research and the Alternative Methods Working Group.
There are also ongoing efforts to qualify OoCs through the National Institute of Health’s National Center for
Advancing Translational Sciences. Ultimately, these efforts must be replicated globally to accelerate the wider
acceptance of OoCs.

Multi-organ combination in vitro
Although standalone OoC models can improve the predictability of preclinical testing, their full potential will
be unleashed through multi-organ combinations. Single-organ models are not always fully predictive of the
pharmacokinetic and safety properties of drugs, a multi-organ model has enormous potential in reducing or
replacing animal usage. One of the first liver-on-chip designs developed at the Massachusetts Institute of
Technology by Linda Griffith, has been adopted to create 4-, 7- and 10-way organ models that have demon-
strated organ functionality for up to 4 weeks [74]. A similar approach with a 4-organ chip that connects the
gut, liver, kidney and bone marrow was used to predict the pharmacokinetic properties of cisplatin [75].
Maschmeyer et al. [76] developed both a 2-organ and 4-organ chip, and used the 4-organ chip to interconnect
models of human intestine, liver, brain and kidney derived from iPSCs, using a universal medium to enable the
maintenance of the different cell types used for 2 weeks. Multiple examples of interconnected OoC models
quickly followed, with an integrated gut–liver [77], female reproductive tract [78] and an 8-OoC combination
coupled to an automated culture and sampling system [79]. Although these initial multi-organ models repre-
sent promising proof of concept studies, their day-to-day relevance to drug discovery remains to be confirmed.
More targeted approaches with 2- to 4-organ combinations enabling specific pharmacokinetic/pharmacody-
namic (PK/PD) or absorption, distribution, metabolism and excretion (ADME) modelling are more likely to be
initially adopted.
The main bottleneck to developing multi-organ chips lies in chip design and tissue maturation. A potential

barrier to interconnecting multiple OoC models is the wide variety of platforms being designed, pointing out a
clear need for standardisation. For maximum usability, each module should have connector valves and similar
scaling to accurately mimic in vivo vascular blood supply and flow rate. The tissue culture media must also be
compatible with cell types across all connected models; a challenge, considering the specific requirements of
cell types to specialised culture media [45]. Advances in the development of common media for multiple
organ-derived cell types have been reported, but these only support short-term co-cultures [30]. Modular ‘plug
and play’ systems are being developed to provide flexible connections without leakage. For example, the
μOrgano system is a Lego®-like plug and play system which enables the initial culturing of independent OoC
systems and subsequent connection to create an integrated multi-organ system [80]. The flexibility to integrate
models at different timepoints, opens the opportunity for tissue-specific maturation processes and truly multi-
organ chip models. There are multiple engineering challenges, such as different chip design requirements per
organ, integrating a vascular connection to each organ and avoiding the introduction of air bubbles or infection
risks at connection points.

Conclusions
OoC technology is still in its early stages of uptake in drug discovery, however, its potential to predict drug
safety and efficacy could have significant impact throughout the drug discovery process. The potential of OoC
models, to recapitulate the physiological, mechanical and biochemical complexity of human tissues may enable
the assessment of in-depth functional parameters beyond the scope of current in vitro cultures. The qualifica-
tion and regulatory acceptance of these models will help to derisk their uptake by the pharmaceutical industry
and should facilitate wider adoption. Plug and play immune-competent multi-organ systems manufactured in
the right materials, compatible with existing laboratory equipment and meeting the throughput needs of the
industry is key for their overall success. Ultimately, adopting a collaborative approach, with academia and
industry working in close partnership will be required in order to meet those objectives. New disruptive drug
discovery paradigms are on the horizon.
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