
TYPE Review

PUBLISHED 22 August 2022

DOI 10.3389/fcvm.2022.968630

OPEN ACCESS

EDITED BY

Nicola Mumoli,

ASST Ovest Milanese, Italy

REVIEWED BY

Soroosh Sanatkhani,

Columbia University, United States

Cristiana Corsi,

University of Bologna, Italy

Christian Urbanek,

Klinikum Ludwigshafen, Germany

*CORRESPONDENCE

Zhiyong Li

zylicam@gmail.com

SPECIALTY SECTION

This article was submitted to

General Cardiovascular Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 14 June 2022

ACCEPTED 27 July 2022

PUBLISHED 22 August 2022

CITATION

Fang R, Li Y, Wang J, Wang Z, Allen J,

Ching CK, Zhong L and Li Z (2022)

Stroke risk evaluation for patients with

atrial fibrillation: Insights from left atrial

appendage.

Front. Cardiovasc. Med. 9:968630.

doi: 10.3389/fcvm.2022.968630

COPYRIGHT

© 2022 Fang, Li, Wang, Wang, Allen,

Ching, Zhong and Li. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Stroke risk evaluation for
patients with atrial fibrillation:
Insights from left atrial
appendage

Runxin Fang1, Yang Li2, Jun Wang3, Zidun Wang3,

John Allen4, Chi Keong Ching4,5, Liang Zhong4,5 and

Zhiyong Li1,6*

1School of Biological Science and Medical Engineering, Southeast University, Nanjing, China,
2Zhongda Hospital, The A�liated Hospital of Southeast University, Nanjing, China, 3First A�liated

Hospital, Nanjing Medical University, Nanjing, China, 4Duke-NUS Medical School, National

University of Singapore, Singapore, Singapore, 5National Heart Centre Singapore, Singapore,

Singapore, 6School of Mechanical, Medical and Process Engineering, Queensland University of

Technology (QUT), Brisbane, QLD, Australia

Left atrial appendage (LAA) is believed to be a common site of

thrombus formation in patients with atrial fibrillation (AF). However, the

commonly-applied stroke risk stratification model (such as. CHA2DS2-VASc

score) does not include any structural or hemodynamic features of LAA. Recent

studies have suggested that it is important to incorporate LAA geometrical

and hemodynamic features to evaluate the risk of thrombus formation in LAA,

which may better delineate the AF patients for anticoagulant administration

and prevent strokes. This review focuses on the LAA-related factors that may

be associated with thrombus formation and cardioembolic events.
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Introduction

Atrial fibrillation (AF) is the most common sustained rhythm disorder worldwide

(1–4), and the worldwide AF incidence is approximately 1–2% (3–6), and the prevalence

increases with age. In general, patients with AF have higher morbidity andmortality rates

due to increased risk of stroke (7–10). The risk of ischemic stroke related to AF, increases

from 4.6% for ages 50 through 59 years to 20.2% for ages 80 through 89 years (11).

Therefore, AF prevalence is expected to dramatically increase with an aging population

in the coming years (12).

In AF patients, irregular heart rhythm disturbs blood flow, which can lead to blood

stagnation and clot formation, with subsequent dislodgment and embolization in the

brain resulting in thromboembolic events (13–15). There is an agreement that AF

increases stroke risk by 5-fold (16), where AF-related strokes are associated with greater

disability, higher medical cost, poorer functional outcomes, and a lower chance of being

discharged to home compared to non-AF-related strokes (17).
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In AF patients with thromboembolic event, studies have

revealed that more than 90% of thrombi originate in the

left atrial appendage (LAA) (18–20), which is the remnant of

the embryonic left atrium and originates from the primordial

pulmonary vein and its branches (21–24). However, the

commonly applied stroke risk scoring model (viz.: CHA2DS2

or CHA2DS2-VASc, shown in the following Table 1) in the

clinic incorporates only patient demographics and clinical data

(25), but do not include any morphological or hemodynamic

information about the LAA, and we think that with the LAA

information added, some high stroke risk patients but with low

scores would be identified.

Recent studies have shown extensive evidence that it is

necessary to include some important LAA features to better

evaluate the thromboembolic risk and prevent stroke risk.

This study serves to overview of current concepts and recent

developments in the relationship between stroke risk and LAA

risk-related characteristics.

LAA characteristics related with
stroke

A number of studies have focused on the stroke-related

LAA characteristics. These characteristics can be classified into

three groups: shape, morphology and hemodynamics. In the

following paragraphs we elucidate the relationship between

these characteristic groups and stroke risk.

LAA shape

Shape is an intuitive term for describing the external form,

contours, or outline of the LAA, and various classification

approaches have been proposed for describing LAA shape

(26–29). In these classification schemes, a widely accepted

classification, first proposed by Wang et al. (26), classifies LAA

into 4 types: cactus, chicken wing, windsock and cauliflower

(Figure 1). This classification was derived from 612 patients

TABLE 1 Definition of CHA2DS2-VASc or CHADS2 (17).

Letter Risk factor Score

C Congestive heart failure 1

H Hypertension 1

A2 Age≥75 2

D Diabetes mellitus 1

S2 Stroke history 2

V Vascular disease 1

A Age 65–74 1

Sc Sex category (i.e., female sex) 1

based on characteristics of bend, lobes and overall length.Where

the characteristics were used as the guidance for LAA closure.

Di Biase et al. (31) conducted an initial study to investigate

the relationship between LAA shape and stroke risk. In their

study, 932 AF patients were classified into four groups based

on Wang’s shape types obtained using computer tomography

(CT)/magnetic resonance imaging (MRI), and they found

that the chicken wing LAA type was less likely to have a

stroke/transient ischemic attack (TIA), and the cauliflower

was the highest stroke risk type. As the first study to focus

on the association between stroke risk and LAA shape, Di

Biase’s research obtained considerable attention. Subsequent

independent investigations conclusively established chicken

wing as the “safe” LAA type (32, 33), and from that point to

present, the consensus that chicken wing type LAA is least likely

to result in stroke (i.e., is the “safe” LAA type) is widely accepted

in clinical practice (34).

After recognition of chicken wing as the LAA shape with

lowest risk, questions remained regarding high-risk LAA shapes,

motivating a series of investigations to figure out the “unsafe”

LAA types, which found that all the three non-chicken wing

LAA shapes were “unsafe” (35–39). Specifically speaking, Lee

et al. (39) conducted a case-control study on 255 patients based

on the history of cardiovascular adverse events, and concluded

that the cauliflower type is associated with an increased risk

of stroke. Deng et al. (37) evaluated stroke risk via detection

of spontaneous echo contrast (SEC) or thrombi using 3D

transesophageal echocardiography (TOE) in 320 AF patients

and found that the cauliflower LAA type was associated with a

higher prevalence of SEC or thrombi. Adukauskaite et al. (35)

found that windsock was the highest stroke-prone LAA type

FIGURE 1

The shape classification of LAA. (A) Cactus, (B) Windsock, (C)

Cauliflower, (D) Chicken wing. This picture is driven from the

classification performed by the clinicians based on Wang’s

scheme (30).
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TABLE 2 Studies on association between stroke risk and LAA shape based on Wang’s scheme.

LAA classification References Patients Imaging

modality

Judge for stroke risk Conclusions

Wang’s model: cactus,

chicken wing, windsock

and cauliflower

Di Biase et al.

(31)

932 CT/MRI Prior stroke Chicken wing less likely to have suffered the

prior stroke; Cauliflowermore likely to have

suffered a cerebrovascular ischemic event

“Safe”

LAA

type

Lee et al. (32) 360 CT Prior stroke Chicken wing associated with lower prevalence

of stroke

Luperico et al.

(33)

2596 CT/TEE/MRI Prior thromboembolic events

(TE)

Chicken wing less likely to develop TE

——————————————————————————————————————————————————————
Lee et al. (39) 255 CT Prior CETIA or CES Cauliflower associated with increased risk of

CETIA and CES

“Unsafe”

LAA

typeAdukauskaite

et al. (35)

158 CT Prior cardio-embolic (CE) stroke Windsock associated with CE stroke

Deng et al. (37) 320 TEE Detection of SEC or thrombi Cauliflower associated with higher prevalence of

SEC or thrombi

Anselmino et al.

(36)

348 CT/MRI Silent cerebral ischemia (SCI)

burden

Cauliflower and windsock associated with

prevalence of SCI

Kimura et al.

(38)

80 CT Prior stroke Cauliflower considered as the most stroke-prone

LAA type

Smit et al. (40) 908 CT Prior stroke and/or transient

ischemic attack

Swan shape independently associated with prior

stroke/TIA
———————————————————————————————————————————————————————————————
Two types:

chicken wing

&non-chicken wing

Kong et al. (41) 219 CT Prior stroke Non-chicken wing: an independent predicator of

stroke

Du et al. (42) 555 CT Detection of LA/LAA thrombus Non-chicken wing: a powerful predicator of

LA/LAA thrombosis

Yaghi et al. (43) 172 CT Prior stroke The prevalence of non-chicken wing type higher

in patients with CE stroke

TEE, Transoesophageal echocardiography; MRI, Magnetic Resonance Imaging; LAA: left atrial appendage.

based on a stroke history assessment of 158 patients. Anselmino

et al. (36) reached the conclusion that cauliflower and windsock

are associated with a higher prevalence of silent cerebral

ischemia based on a study of 348 AF patients. Kimura et al.

(38) performed a case-control study investigating the high-risk

LAA type in 80 AF patients with low CHADS2 score, and found

cauliflower to be the most stroke-prone LAA type. Additionally,

Smit et al. (40) developed a new 4-type classification scheme

(chicken wing, swan, cauliflower and windsock) and evaluated

stroke risk as a function of prior stroke history. Their results

demonstrated that the swan LAA type (LAA presented a second

sharp curve folding the structure back) was independently

associated with the prior stroke history. Given the results of these

studies, researchers subsequently combined the three “non-

chicken wing” shapes into a single category and conducted

studies to confirm an “unsafe” designation for risk of stroke

on the “non-chicken wing” type (41–43). The simplification

and efficiency of this two-type classification scheme is widely

recognized in clinic (33, 34).

However, it is worth mentioning that several studies did not

justify the origin of the emboli, as many studies considered that

most strokes for AF patients are resulted from the cardioembolic

origin. We think it is important to determine the embolic origin

in future studies.

Detailed information onWang’s scheme of LAA shape types

and the related studies on the association between stroke risk is

summarized in Table 2.

Although Wang’s scheme is widely accepted in clinical

application, however, several studies have revealed marked

variability in shape classification based on the scheme. Both

Wu et al. (44) and Khurram et al. (45) pointed out the high

inter-observer variability in the classification schemes based on

Wang’s shape description.

Table 3 illustrates the diversity in the prevalence among

Wang LAA shape types observed by different investigators.

Such disparity indicates that rigorous ascertainments based on

these rather subjective descriptors is difficult and not reliably

reproducible. The need for greater objectivity in defining
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LAA classification parameters enabling reliable assessment

of associations with stroke risk led to the development of

morphology parameters.

LAA morphology

The LAA morphology classification approach, with

characteristics categorized by means of dimensional level, is

superior to the LAA shape scheme in terms of objectivity and

reproducibility and is widely studied.

TABLE 3 Prevalence of LAA shapes in di�erent studies.

References Sample

size

Prevalence (%)

Chicken

wing

Cactus Windsock Cauliflower

Wang et al.

(26)

612 18.3 5.9 46.7 29.1

Di Biase et al.

(31)

932 48 30 19 3

Lee et al. (32) 360 43.1 30 13 13.9

Deng et al.

(37)

320 14.1 42.8 13.4 29.7

Du et al. (42) 555 67.9 18.7 11.2 2.2

Among these morphological characteristics, the LAA orifice

(see Figure 2A) attracts a lot of focus, and a number of studies

have revealed the correlation between orifice size and the stroke

risk. In these studies, LAA orifice is consistently shown to be

positively related to the stroke risk, both for its area (35, 46, 47)

and diameter (41, 45, 48–50) (see Figure 2B). Although the

positive relationship is widely accepted, the cut-off value of

the orifice size for determining the high stroke risk is seldom

calculated. Only Lee et al. (46, 47) gave the different criteria of

>3.5 cm2 and >4 cm2 respectively in their two studies, with the

criterion being larger for those with low CHA2DS2-VASc scores.

Though the large orifice is believed to relate to the high

stroke risk, Khurram et al. (45) draw a contrary conclusion

that a smaller LAA orifice diameter is associated with prevalent

stroke. In seeking for the reasons for such different conclusions

regarding the association between LAA orifice and stroke risk,

we found that these studies used different definitions of LAA

orifice (Figure 3).

Intuitively speaking, the LAA orifice would be the section at

the interface between the LAA and LA (Figure 3, blue dashed

line). This intuitive definition was used by Khurram et al. (45).

However, an anatomical definition of the LAA orifice exists,

and it is usually specified as the section aligning with the left

upper pulmonary vein ridge and the circumflex coronary (51)

(Figure 3, red dashed line). This seems more accurate and less

subjective compared to the intuitive definition, and is used as

the measurement method for LAA orifice in (52). However,

several studies have defined the LAA orifice as the narrowest

FIGURE 2

LAA morphological parameters. (A) LAA orifice measurement from 3D echo, (B) LAA orifice diameter measurement from planer echo, (C) LAA

volume measurement from 3D reconstruction of CT images, (D) LAA orifice & depth measurement from planer CT images, and (E) LAA depth

measurement from planar echocardiogram.
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portion at the entrance into the left atrium (49, 53). We deduced

that this wide-spread definition had its origins in studies of

LAA occlusion, as the location of occlusion is usually defined

as the narrowest portion (Figure 3, orange dashed line), which

would be defined as the LAA neck in our context. The differing

definitions caused the diversity of conclusions. In this regard, a

clear and unified definition of LAA orifice would be required in

the future studies.

Apart from LAA orifice, LAA volume (see Figure 2C)

is another prominent parameter. Several studies on the

associations between LAA volume and stroke risk have shown

that AF patients with a history of stroke/TIA tend to exhibit

a larger LAA volume (48, 49, 54–57). However, the specific

cardiac phase for defining the LAA volume was not clearly

defined in most of the above-mentioned studies. Only Chen

et al. (55) clearly stated their LAA volume was at the end-

diastolic phase, and the results showed that LAA end-diastolic

volume was positively associated with the stroke risk. Although

consensus has been achieved regarding a qualitative relationship

between the LAA volume and stroke risk, a cut-off value or

quantitative relationship was not defined in most of the related

studies. Chen et al. (55) and Burrell et al. (54) proposed cut-

off values of 8.6 and 34 cm3, respectively, for judging stroke

risk, although the two values reflect a large disparity which

could be attributed to differences in cardiac cycle phase. In this

regard, the specific cardiac cycle phase of LAA volume should be

defined clearly in future studies, which will allow a standardized

comparison among different studies. However, it is worth to

mention that the LA will be dilated with the impact form AF,

and so the volume of LAA will also be enlarged. Meanwhile,

thesemorphology characteristics would be better compared with

the normalizations to the other patient specific characteristics

[e.g.,: body mass index (BMI), body surface area (BSA)], so that

FIGURE 3

Di�erent definition of LAA orifice. LA, left atrial; LAA, left atrial

appendage; LCA, left coronary artery; LSPV, left superior

pulmonary vein.

these morphology characteristics could be compared between

different patients.

Different from the focus on LAA volume for a specific

cardiac phase, Al-Issa et al. (58) focused on the changes in LAA

volume during the whole cardiac cycle. In their study, the LAA

area change ratio (known as regional function) was measured

by CT and used to denote the volume change, and the result

showed this parameter was significantly associated with stroke

risk history, where stroke/TIA group tended to have a lower area

change ratio compared with the control group.

In addition to the above-mentioned characteristics, some

other characteristics were also studied, such as the angle of LAA

bend (59), the depth (48, 53) (see Figures 2D,E) and the number

of lobes (52, 60). In these studies, the acute angle, increased

depth and large number of lobes was each considered as a high-

risk morphology of LAA. All these morphological characteristics

suggest that the stroke risk is increased with the increasing

of LAA morphology complexity. Detailed information on

the associations between stroke risk and LAA morphological

parameters are summarized in Table 4.

To better quantify this complexity, Kaminski et al. (62) used

different parameters to describe the whole LAA. In their study,

different parametric schemes with various parameters were used

to describe the different LAA types. In addition to Bieging et al.

(63), where they assessed the LAA shape using statistical shape

analysis on the “surface” of the LAA, Sanatkhani et al. (64)

also performed an analysis to parametrize the LAA region’s

appearance based on principal components and eigen shapes.

And also, Slipsager et al. (65) conducted the unsupervised

clustering based on the LAA shapes, which result into two

clusters: chicken wing and non-chicken wing shapes.

Although the morphology parameters are considered to

be an objective approach for characterizing the LAA, the

morphology parameter features are inherently isolated from

the complex LAA geometry, and it lacks a comprehensive

and mechanistic prospective for stroke evaluation. Under this

circumstance, the hemodynamic analysis attracted the attention,

for that the hemodynamic description utilizes the entire 3D

dataset and is more comprehensive compared to the single

or several morphological parameters. Furthermore, the study

of hemodynamics is aligned with Virchow’s triad used to

characterize the relationship between blood flow and thrombus

formation. In this regard, evaluating the stroke risk from

the aspect of hemodynamics in the LAA may be an optimal

approach for evaluation of stroke risk.

LAA hemodynamics

LAA flow velocity accounts for the majority of studies on

the hemodynamic characteristics. Verhorst et al. (66) firstly

evaluated the stroke risk using peak LAA velocity (both

emptying and filling) and concluded that peak LAA velocity may
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TABLE 4 Studies on the association between stroke risk and LAA morphological parameters.

Parameters References No. Modality Criterion Relation Cut-off

Orifice

(area)

Adukauskaite et al. (35) 158 CT PriS Positive (Pos) -

Lee et al. (46) 218 CT PriS Pos 3.5 cm2

Lee et al. (47) 66 CT PriS Pos 4 cm2

Orifice

(diameter)

Khurram et al. (45) 678 CT PriS Negative (Neg) -

Kong et al. (41) 219 CT PriS Pos -

Jeong et al. (49) 88 CT PriS Pos -

Sakr et al. (50) 50 TEE PriS Pos -

Beinart et al. (48) 144 MRI PriS/TIA Pos -

Volume Beinart et al. (48) 144 MRI PriS/TIA Pos -

Korhonen et al. (56) 151 CT PriS Pos -

Jeong et al. (49) 88 CT PriS Pos -

Taina et al. (57) 122 CT PriS Pos -

Chen et al. (55) 444 TEE DoT Pos 8.6 ml

Burrell et al. (54) 96 MRI PriS Pos 34 cm3

Volume

change

Al-Issa et al. (58) 36 CT PriS/TIA Neg -

Bend Yaghi et al. (59) 408 CT PriS/TIA Pos -

Depth Beinart et al. (48) 144 MRI PriS/TIA Pos

Chen et al. (55) 444 TEE DoT Pos -

Dudzińska et al. (61) 169 CT PriS Pos -

Lobes Yamamoto et al. (52) 564 TEE DoT Pos -

Wang et al. (60) 472 TEE DoT Pos -

PriS: Prior Stroke; TIA: Transient ischaemic attack; DoT: Detection of thrombus; TEE: Transoesophageal echocardiography; MRI: Magnetic Resonance Imaging.

potentially identify patients at high risk for systemic embolism.

In subsequent studies, both peak LAA filling and emptying

velocity were found to exhibit significant difference between

the stroke and non-stroke patient groups (50). In a series of

related studies, the peak LAA emptying velocity (pLAAev) was

then used to quantify LAA flow velocity, revealing a correlation

between a lower pLAAev and a higher stroke risk (32, 39, 67–

69). However, the cut-off values for pLAAev were neglected

in most studies, with only a few studies calculating this value.

Generally speaking, the velocity of 20 cm/s is widely accepted

as the threshold for determining the stroke risk (70–72). Chen

et al. (73) concluded a slightly higher cut-off value of 21.5 cm/s

based on study of 307 AF patients. However, Lee et al. (47)

found that 37 cm/s could be used as a prognostic threshold

for stroke risk in AF patients, with a higher value of 40 cm/s

in patients with low CHA2DS2-VASc scores (46). The large

difference for the aforementioned values (∼20 vs. ∼40 cm/s)

may attribute to the different placement of sample volume in

the TEE measurement. In Lee et al.’s (46, 47) measurements, the

sample volume was placed at the middle portion of the LAA,

while the other measurements placed 1–2 cm inside of LAA.

In addition to LAA flow velocity, other hemodynamic

parameters such as flow pattern and LAA ejection fraction

(LAAef) have also been studied. For LAA flow pattern,

Garciafernandez et al. (74) identified three different flow

patterns and studied their association with stroke risk. Their

results revealed that the flow pattern characterized by the

absence of identifiable flow waves was associated with a higher

prevalence of LAA spontaneous contrast (higher stroke risk).

Regarding LAAef, consensus was reached that the LAAef is

negatively related with the stroke risk (75, 76). Specifically

speaking, Park et al. (76) retrospectively studied 176 paroxysmal

AF patients, and the result revealed that LAAef was significantly

lower in the stroke group compared with the non-stroke

group. LAA emptying fraction assessed by the feature-tracking

echocardiographic method was put forward by Iwama et al.

(75) who found that LAA emptying fraction was significantly

reduced in AF patients with thrombus compared to those

without thrombus. However, the cut-off values for LAAef were

not determined in the studies, which should be considered in the

future research. Studies on association of stroke risk and LAA

hemodynamic parameters are summarized in Table 5.

Although evaluation of stroke risk by means of LAA

hemodynamic parameters is particularly convincing, the

availability of direct clinical measurements of these parameters

is often limited. Alternatively, computational fluid dynamics

(CFD) method has been used to obtain these parameters.

CFD is a numerical analysis approach for predicting the
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TABLE 5 Studies on association between stroke risk and LAA hemodynamic parameters.

Parameters References Patients Criterion Modality Relation Cut-off

Peak velocities Patrick et al. (66) 54 PriS TEE Negative (Neg) -

Sakr et al. (50) 50 PriS TEE Neg -

pLAAev Goldman et al. (68) 721 Risk features TEE Neg -

Lee et al. (32) 360 PriS TEE Neg -

Lee et al. (39) 255 TIA/ PriS TEE Neg -

Taguchi et al. (69) 32 PriS TEE Neg -

Bernhardt et al. (67) 271 SEC TEE Neg -

Kamp et al. (70) 88 Prior events TEE Neg 20 cm/s

Negrotto et al. (72) 306 DoT TEE Neg 20 cm/s

Miyazaki et al. (71) 88 Embolic event* TEE Neg 20 cm/s

Lee et al. (47) 218 PriS TEE Neg 37 cm/s

Lee et al. (46) 279 PriS TEE Neg 40 cm/s

Chen et al. (73) 307 DoT TEE Neg 21.5 cm/s

Flow pattern Garciafernandez et al. (74) 39 SEC/DoT TEE TypeIII -

LAAef Park et al. (76) 176 PriS /TIA TEE Neg -

Iwama et al. (75) 142 DoT TEE Neg -

TEE, Transoesophageal echocardiography; MRI, Magnetic Resonance Imaging; PriS, Prior Stroke; TIA, Transient ischemic attack; SEC, Spontaneous echo contrast; DoT: Detection

of thrombus.

behavior of fluid flows whereby the hemodynamic details of LA

and LAA can be obtained and visualized. Utilizing the CFD

method, Gracia-Isla et al. (77) not only obtained the velocity

profile located at the LAA orifice, but also calculated the other

hemodynamic descriptors such as time-averaged wall shear

stress (TAWSS), oscillatory shear index (OSI), endothelial cell

activation potential (ECAP), relative residence time (RRT), and

vortex structures in four different LAA models.

Based on CFD, some other studies applied more intuitive

and quantitative methods in evaluating thrombus formation.

Bosi et al. (78) used contrast dye to simulate blood stasis in

the LAA and then evaluated the risk of thrombus formation

in the LAA (Figure 4A). Additionally, Masci et al. (79, 80) and

Fang et al. (81) adopted a fluid particle distribution simulation

in analyzing thrombus formation risk (Figure 4B). Similarly,

Sanatkhani et al. put forward a mean residence time of blood-

borne particles (82) and asymptotic concentration remaining

(83) inside LAA for evaluating thrombus formation. In a

further study, Yan et al. (84) applied a numerical thrombus

model presented by Menichini et al. (85) to predict thrombus

formation risk. This thrombus model included not only the flow

characteristics, but also the biomedical characteristics of platelets

and coagulation.

In addition to studies assumed the boundary walls to be

rigid to simulate the idealized AF conditions (77, 78, 86–88).

Different ways were applied to realize the wall motion, several

studies applied the immersed boundary analysis to fulfill the

fluid-structure interactions, where the walls were moved with

the impact from the fluid flows (89–91). Followingly, with the

FIGURE 4

CFD analysis for evaluating thromboembolic risk in LAA. (A)

Contrast dye simulations and (B) Fluid particle distributions.

lack of knowledge in the material and mechanical properties

for heart walls, several other studies used a four-dimensional

displacement vector field directly generated from the medical

images, and the displacement filed was then applied to the LA

structure to move the walls (80, 92–94). Meanwhile, with the

lack in the dynamic medical images, several other studies also

fulfill the wall motion with the displacements generated form

literature (95, 96). To better compare the difference between the

rigid walls andmoving walls simulation, Duenas-Pamplona et al.

(97) performed a comprehensive comparation between the two

type simulations, and they found that the rigid wall model can

lead to a poor approximation in some cases.
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Although several hemodynamic parameters proposed by the

CFDmodels rely on numerical simulations to evaluate thrombus

formation risk. further research is required to validate their

potential application in stroke risk evaluation in patients.

Discussion

Intra-group relationship

As illustrated in the former section, shape, morphology and

hemodynamic parameters of the LAA are all validated to be

highly associated with the risk of stroke. Several studies have

pointed out the subjectivity of the shape classifications and the

advantages of morphology and hemodynamic descriptors as

objective classifiers, which have led to studies of relationships

among these parameters. A number of these studies have

established that the non-chicken wing type LAA is usually

associated with a larger LAA orifice (32, 33) and higher lobe

count (60). Studies on the relationships between shape and

hemodynamic parameters revealed that peak LAA flow velocity

exhibited significant difference among LAA shapes (72, 78)

with a low LAA flow velocity associated with the non-chicken

wing LAA type (98) and vice versa (33, 99). In addition,

several other studies have identified the relationships between

the hemodynamic and morphological parameters. In a multi-

linear regression analysis, LAA morphology was found to be

the significant determinant of LAA flow velocity (99). In other

studies, flow velocity was shown to be negatively correlated with

orifice size, and many studies found that a greater orifice size

usually resulted in decreased flow velocity (32, 47, 53). CFD was

also applied in studies relevant to morphology parameters in

which LAA length, orifice area, tortuosity, etc. were studied for

their relationship with hemodynamic parameters. Masci et al.

(79) concluded that even qualitatively simple LAA morphology

could lead to a high probability of thrombus formation. The

summarized intra-group relationships are illustrated in the

Figure 5.

FIGURE 5

The relationship among di�erent characteristics.

The relationships among the shape, morphology and

hemodynamic parameters highlight the importance of LAA in

stroke evaluation, which motivates further studies to find and

evaluate the key LAA features.

Imaging modalities

As shown in the Tables 2, 4, 5, different imaging modalities

were used for the evaluation of LAA shape, morphology and

hemodynamic parameters, namely the TEE, cardiac CT and

MRI modalities.

TEE

Compared with other imagingmodalities, echocardiography

can obtain the image at low cost and with high efficiency,

so it is a widely used method in clinics. During the imaging

procedure, the probe of TEE is close to the heart with high

frequency, and therefore TEE can be used not only to assess

the LAA morphology, but also to screen out the thrombus and

spontaneous echo contrast (SEC) in the LA/LAA (100), and

it is considered as the gold standard modality for detecting

the LAA thrombi (100, 101). Additionally, TEE is superior in

time resolution, and so it can obtain the LAA hemodynamic

parameters (e.g.,: LAA flow profile) within the continuous

cardiac cycles (102). Beside the above-mentioned applications,

TEE is also applied in the guidance and evaluation during

the LAA occlusion operation in most centers, for that TEE

allows the real-time imaging, without ionizing radiation or

contrast medium. Under this circumstance, TEE is considered

as the conventional gold-standard imaging modality for LAA

occlusion (103). However, TEE may not be applicable for some

cases and it is considered to be a semi-invasive test that carries a

small risk to the patient, although very rare, some complications

can be life threatening (104, 105).

All in all, TEE is widely applied in the clinical practice

related with LAA with its efficient, clear and low-cost imaging

procedure. And this imagingmodality with high time-resolution

is applicable in the shape, morphology and especially the

hemodynamic evaluations for the LAA.

Cardiac CT

Compared with TEE, cardiac CT offers superior spatial

resolution. Its high-quality multi-planar and 3D reconstruction

would domuch help in the characterization of the LAA anatomy

and accurate sizing (31). Therefore, CT has been considered

as the gold standard for visualizing the LAA (106, 107), and it

is widely applied in the evaluation of shape and morphology

parameters. Meanwhile, some studies have also considered

cardiac CT with a delayed imaging as a useful modality for the

detection of LAA thrombi (108), and therefore it is routinely
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performed to screen the LA/LAA thrombi before the AF ablation

procedure in clinics. However, compared to TEE, CT imaging

modality is limited in the time resolution, it cannot get the real-

time visualization of the hemodynamics and LAA structure with

the cardiac cycle. To strike the deficiency in the time resolution,

it is worth mentioning a new CT-based method proposed by

Morelos-Guzman (109), which can calculate the flow velocity

with the scans. It is a novel method that can expend the CT

application to the hemodynamic parameter evaluation.

In general, cardiac CT is limited in the time resolution, but

its high spatial resolution contributes to a wide application in the

shape and morphology evaluation for LAA.

Cardiac MRI

Cardiac MRI is a noninvasive imaging modality for the

structure and hemodynamic evaluation. It has excellent tissue

characterization capacity but a lower spatial resolution when

compared to the cardiac CT (110). Meanwhile, it is often used

to delineate the anatomy of the left atrium but conferring no

ionizing radiation to patients. Additionally, MRI can measure

the LAA flow velocity and shows a good correlation with TEE

(111), and MRI shows the good sensitivity and specificity in

evaluating the LAA thrombi (110), thus, it has the potential

to be a useful imaging modality for the detection of LAA

thrombi. However, similar with CT, the real-time visualization

of LAA is not permitted and it is not applicable for patients

with pacemakers.

Generally speaking, though theMRImodality is noninvasive

and can obtain the shape, morphology and hemodynamic

parameters of the LAA, the present number of its application

scenarios in LAA are small, most for the patients unsuitable

for TEE and CT (110). Its potential capabilities in LAA related

evaluation will be strongly stimulated with the high-resolution

MRI in the future applications.

Perspectives

Stroke prevention is the cornerstone of AF management

and the anticoagulation decision is currently based on the

CHA2DS2-VASc score scheme. This scheme first became part

of guideline medical therapy as part of the 2012 European

Society of Cardiology updated guidelines (112) as well as

the 2014 American Heart Association/American College of

Cardiology/Heart Rhythm Society (AHA/ACC/HRS) guideline

for the management of patients with AF (113). Both the

European and US guidelines specifically recommend risk

stratification with the CHA2DS2-VASc score, and delineate that

anticoagulation may be considered for males with a score of 1

and females with a score of 2 (113, 114). However, CHA2DS2-

VASc score does not take into account paroxysmal vs. non-

paroxysmal AF as well as duration of paroxysmal AF episodes.

Even patients with low CHA2DS2-VASc score may suffer a

stroke. The score also fails to take into consideration the

structure (31, 115) and the hemodynamic characteristics for

the LAA (37, 116, 117) in addition to other clinical markers

(118–120). Thus, additional LAA features and clinical markers

may further risk stratify stroke prevention for patients with AF.

These two additional predictors may improve the sensitivity and

specificity of LAA-related stroke risk.

Meanwhile, with the requirement of large data bank

processing, several potential tools (or algorithms) could be

utilized for the LAA related studies:

Computer aided pre-processing

The pre-processing of image segmentation and

reconstruction are the foundation for shape and morphology

evaluation, while the manual segmentation and reconstruction

for a patient-specific data is time-consuming. In this regard,

some auto or semi-auto segmentation and reconstruction

algorithms were put forward (121–124) to improve the

efficiency. Besides the study for the efficient segmentation

and reconstruction algorithms, there is also a need for the

image-based measurement algorithms. With the measurement

algorithms, not only the time of the measurement can be

greatly reduced, but also the reproducibility will be improved.

In this regard, studies that focus on the auto or semi-auto

measurement, like Leventic et al.’s (125) work, should be

encouraged in future studies. Clinical studies are also needed to

validate the developed algorithms.

CFD analysis

Blood stasis is one of the three conditions in Virchow’s

triad, the study of blood stasis requires a comprehensive

characterization of the local hemodynamics, and the clinical

measurement of echocardiography is currently the main tool

to explore the blood flow patterns and velocity profiles. While

the echocardiography cannot fully characterize the complexity

of 4D blood flow patterns, new imaging techniques like 4D

flow MRI or blood speckle tracking are promising but their

capability to capture the low flow velocities related to thrombus

formation is still unclear. As an alternative, CFD poses a

great potential to thoroughly assess the hemodynamics inside

the LA/LAA, and several studies have been performed to

analyze the hemodynamic parameters in the LAA in relation to

thrombogenic risk (72, 80–82, 84).

However, these CFD analysis uses various settings for

boundary conditions, LA wall behavior, mesh resolution and

etc., and different modeling strategies were used. It has to admit

that the optimal strategy is difficult to identify due to the absence

of joint benchmark studies with reliable ground truth (126).

Meanwhile, there is no consensus on the most appropriate

metrics for the quantification of the CFD result. Therefore, the
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consensus for the appropriate metrics needed to be reached

in the future studies. Based on the consensus, the modeling

pipelines would be proposed for improving the capacity to

process the increased number specific cases. Moreover, these

CFD analysis should be validated with reliable ground truth to

form the benchmark studies for optimal strategy in future work,

and Duenas-Pamplona et al. (127) proposed an in-vitro flow

equipment to validate there CFD models. Finally, it is worth to

mention the work performed by Morales et al. (96), where they

performed a deep learning surrogate models of CFD analysis for

thrombus formation risk evaluation in the LAA.

Conclusion

Stroke prevention remains a major goal in patients in

AF. Significant evidence indicates that the assessment of

LAA structural and hemodynamic parameters have meaningful

implications for the stroke risk evaluation. Future work is

needed to understand the role of LAA structural (shape and

morphology) and hemodynamic parameters on stratification

of stroke risk, especially in patients with low CHA2DS2-VASc

scores. Computer-aided tools will become instrumental in the

stroke evaluation with these LAA-related parameters.
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