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Abstract: In this work, nitrogen-doped bamboo-based activated carbon (NBAC) was in situ syn-
thesized from simply blending bamboo charcoal (BC) with sodamide (SA, NaNH2) powders and
heating with a protection of nitrogen flow at a medium temperature. The elemental analysis and
X-ray photoelectron spectra of as-synthesized NBAC showed quite a high nitrogen level of the
simultaneously activated and doped samples; an abundant pore structure had also been determined
from the NBACs which has a narrow size distribution of micropores (<2 nm) and favorable specific
surface area that presented superb adsorption performance. The fcarbon dioxide (CO2) adsorption
of the NBACs was measured at 0 ◦C and 25 ◦C at a pressure of 1 bar, whose capture capacities
reached 3.68–4.95 mmol/g and 2.49–3.52 mmol/g, respectively, and the maximum adsorption could
be observed for NBACs fabricated with an SA/BC ratio of 3:1 and activated at 500 ◦C. Further,
adsorption selectivity of CO2 over N2 was deduced with the ideal adsorbed solution theory ((IAST),
the selectivity was finally calculated which ranged from 15 to 17 for the NBACs fabricated at 500 ◦C).
The initial isosteric heat of adsorption (Qst) of NBACs was also determined at 30–40 kJ/mol, which
suggested that CO2 adsorption was a physical process. The results of ten-cycle adsorption-desorption
experimentally confirmed the regenerated NBACs of a steady CO2 adsorption performance, that is,
the as-synthesized versatile NBAC with superb reproducibility makes it a perspective candidate in
CO2 capture and separation application.

Keywords: bamboo charcoal; bamboo-based activated carbon; N-doping activation; CO2 adsorption;
capture capacity

1. Introduction

Carbon dioxide (CO2) emission is extensively known as the reason for climate change
and global warming [1]; international protocols and countermeasures have declared to
achieve carbon neutrality [2]. Vast work among the academic community has been taken
to alleviate the negative effect of the rapid growth of atmospheric CO2 concentration
at a global level, such as developing renewable and clean energies [3–5] and functional
porous materials [6,7], and decades of research and projects on carbon capture, utilization
and sequestration (CCUS) [8–10] have been conducted to reduce the influence of carbon
emission. And various solid absorbents, such like activated carbon (AC) [11–14], molecular
sieve [15,16], metal oxides [17] and MOF [18], Among these products, ACs have been widely
applied in carbon dioxide capture due to their special pore structure, specific surface area
and chemical stability, and simple processing; tremendous research efforts have focused on
the adsorption capacity, selectivity and renew-ability of activated carbon products [19–24].

Activated carbon can be synthesized from multiple bioresources by chemical activation.
Idrees et al. [25] reported that peanut shell-deprived AC by KOH activation featured
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micropores (<1 nm) and the results showed that the structure had a positive relationship
with CO2 adsorption. Modifications can further improve the adsorbing performance. For
example, various reports [7,26–28] have demonstrated that sodamide activation was a
useful approach to synthesize functionalized porous carbon materials for CO2 capture, and
the nitrogen-doping method has been reported to be a versatile route for enhancing CO2
adsorption. For example, nitrogen functionalized biochar has been applied as a renewable
adsorbent for efficient CO2 removal whose adsorption could reach up to 4.58 mmol/g
and it was also found that the adsorption mainly rested with a micropore smaller than
0.80 nm [29]. N-doped AC prepared by urea and KOH co-activation using sugarcane
waste [30] demonstrated a doubled CO2 capture capacity (4.8 mmol/g) as compared with
an untreated control trial sample. Other materials, such as chitosan [31], glucose [32], and
their derivatives are also employed as nitrogen sources for doping AC to obtain improved
CO2 adsorption. It is essential to develop a cost-effective, commercially available raw
material and an activation approach to prepare AC with high efficiency performance for a
specific purpose.

Fast-growing bamboo is extensively cultivated across tropical and temperate regions
which makes its value-added production sustainable around the world. Bamboo charcoal
(BC) is the solid product of the pyrolysis of bamboo materials in the absence of oxygen. It
is commercially available at any time in the market. The gaseous and liquid adsorption
performance of bamboo charcoal and bamboo activated carbon (BAC) have been widely
studied because the emerging BC/BAC has shown great potential in environmental purifi-
cation. Specially designed, synthesized, and modified BC or BAC are applied in air quality
improvement to remove formaldehyde [33], volatile organic compounds [34], carbon diox-
ide [35], sulfur dioxide, and nitrogen oxides [36], or in eradication of contaminants such
as heavy metals in water [37] and antibiotics [38,39] in the pharmaceutical industry, and
the wastes and leftovers of N-/P-modified bamboo charcoals are valid for soil ameliora-
tion [40] and carbon sequestration. Modified bamboo-based activated carbons prepared
from bamboo and its processing residue are also used as CO2 absorbents [41,42] for their
favorable adsorption performance.

However, either phosphoric acid or alkali activation to prepare activated carbon can
be harmful to the environment or cause corrosion to equipment [43]; therefore, identifying
activation materials of low pollution and corrosion is important to improve conventional
processes. Traditional modifications generally require tedious processing and skilled work
with high costs; therefore, developing a convenient synthesis of doped AC is beneficial
to both industrial and academic research. In this work, a new method is presented to
prepare N-doped BAC (NBAC) by a facile one-step in situ dry chemical process by simply
blending bamboo charcoal with sodamide (NaNH2) in a tubular furnace activated at
medium temperature (400–600 ◦C), which is much lower than that of conventional chemical
activation that generally goes to 800 ◦C or beyond. The study results also showed that
N-doped BACs had potential applications in CO2 capture and separation.

2. Results and Discussion
2.1. BET Characterization

N2 adsorption–desorption isotherm of NBAC was determined (Figure 1), which
showed the adsorption performance of NBAC synthesized under controlled activation
temperatures and NaNH2 (SA)/BC ratios. The achieved I type isotherm indicated that
the as-synthesized samples had an abundant micropore (<1 nm) structure. When SA/BC
were blended at a ratio of 3:1, it can be seen that, as the activation temperature increased
from 400 ◦C to 600 ◦C, the isotherm results gradually increased, proving the corresponding
increment of total pore volume and N2 adsorption capacity. When activated at 500 ◦C,
the isotherm of NBAC almost reached a plateau at a relative pressure of 0.05, although
no apparent hysteresis phenomenon appeared in that the dominated micropores were
distributed in the range from 0.4–0.9 to 1.0–3.0 nm, as shown in Figure 1c; the results also
implied that other NBACs obtained from different blend ratios had pores with a narrow
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pore size distribution. Notably, when activated at 600 ◦C, both the pore volume and size
distribution were relatively small, nonetheless it is slightly broader than its counterparts
obtained at 400 ◦C or 500 ◦C, respectively, which may have accounted for the visually
distinguishable hysteresis phenomenon that occurred to NBAC-600s, as shown in Figure 1a.
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synthesized by sodamide activation and its pore size distribution (c).

When activated at 500 ◦C, the BACs obtained from a low SA dosage presented that the
isotherm gradually augmented with an increase in the SA/BC ratio, as seen in Figure 1b.
The isotherm reached saturated adsorption at a fairly low relative pressure. When an
increased dosage of SA was used in activation, a sharp enhancement in the isotherm perfor-
mance occurred, most notably in the range of low relative pressure, however, it disclosed a
leveling off beyond a relative pressure (P/P0) of 0.2, which was also confirmed by the wide
pore size distribution of micropores, as seen Figure 1c. Therefore, we concluded that a high
SA dosage in activation may not be conducive to micropore-structured NBAC synthesis
because the fierce activation could jeopardize micropore forming, causing neighboring
micropores to breakdown or collapse into larger pores, and as a result, the synthesized
NBAC would be less active in adsorbing small molecules such as CO2.

The results of specific surface area (SBET), total pore volume (Vtot), micropore volume
(Vmic), and narrowly-distributed (0.33–1.0 nm) micropore volume (V0.33–1) are listed in
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Table 1. NBACs obtained from a low dosage of SA at 500 ◦C and below could be beneficial to
CO2 adsorption, although the micropore volume of NBACs obtained from a high dosage of
SA tended to decline at 600 ◦C, owing to the excessive temperature and activation overdose
that accelerated pore reaming. In fact, it jeopardized new pore structure formation, thus a
negative growth for micropores that ultimately unveiled in measurement results.

Table 1. Pore parameters of NBACs synthesized from N-doping activation.

Absorbent SBET (m2/g) Vtot (cm3/g) Vmic (cm3/g)
Vmic/Vtot

(%)
V(0.33–1 nm)

(cm3/g)

NBAC-400-1 756 0.300 0.271 90.33% 0.219
NBAC-400-2 927 0.370 0.322 87.03% 0.229
NBAC-400-3 1068 0.450 0.381 84.67% 0.241
NBAC-500-1 1025 0.420 0.369 87.86% 0.271
NBAC-500-2 1175 0.506 0.426 84.19% 0.285
NBAC-500-3 1286 0.631 0.508 80.51% 0.282
NBAC-600-1 1227 0.543 0.441 81.22% 0.276
NBAC-600-2 1458 0.675 0.500 74.07% 0.281
NBAC-600-3 1489 0.682 0.480 70.38% 0.233

2.2. Morphological Analysis

The microstructure patterns of NBACs were observed using a scanning electron
microscope and are shown in Figure 2. Original porous bamboo morphologies were
observed from the charcoal, under same low magnification (Figure 2b,c); there was no
obvious surface difference between BC and BAC. Further enlargement completely exposed
that the smooth surface of BAC was suffused with massive trenches and holes. The chemical
etching by sodamide was effective and efficient in porosity generation. Especially, the
occurrence of deep activation was observed through the hole structure that originated from
the pits distributed on the vessel of bamboo, and provided a fair approach to augment
surface area, therefore, making adsorption technically feasible.
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2.3. Elemental Analysis

An elemental analysis was employed to explore the composition change before and
after the dry chemical processing. As shown in Table 2, the nitrogen (N) content of untreated
BC is approximately 0.26%, meanwhile, the activated/doped samples average N content is
10 times more than that of the untreated BC. Simply put, an increase in the nitrogen content
of BAC signaled the successful modification of samples.

Table 2. Elemental content of NBACs synthesized by N-doping activation.

Absorbent N (wt%) C (wt%) H (wt%)

BC 0.26 83.5 3.12
NBAC-400-1 3.25 71.2 2.98
NBAC-400-2 3.89 72.6 3.05
NBAC-400-3 4.12 72.9 2.79
NBAC-500-1 2.51 73.2 2.43
NBAC-500-2 2.85 75.1 2.34
NBAC-500-3 3.21 74.6 2.05
NBAC-600-1 1.98 76.2 1.78
NBAC-600-2 2.15 77.3 1.81
NBAC-600-3 2.35 78.5 1.69

2.4. XPS Analysis

The XPS spectra of BC and NBAC, as shown in Figure 3a, exhibited characteristic
peaks (binding energy) at 285, 399, and 532 eV, attributed to C1s, N1s, and O1s, respectively;
nevertheless, a comparative strong intensity of N1s peak of NBAC-500-3 stood out.
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Accordingly, peak-differentiating and imitating of the raw XPS spectra of nitrogen
atoms was successfully analyzed. The peaks at 398.3 and 400.1 eV can be assigned to
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the binding energy of pyrrolic N (N-5) and pyridinic N (N-6), respectively, as shown
in Figure 3b–d. As shown in Figure 3d, an additional quaternary N (N-Q) at 401.5 eV
emerged when samples were synthesized at 600 ◦C, supporting that the partial N-5 and N-6
phases were transforming toward the more thermodynamically stable N-Q phase, which
coincided with that reported by [30]. Notably, N-5 had a favorable interaction with CO2
molecules [44] and, based on the XPS data, doping activation at 500 ◦C or below can better
induce functional groups that facilitate CO2 capture. Thus, NBAC synthesized at 500 ◦C
was, hereinafter, chosen as the object of study to explore the CO2 capture performance.

2.5. CO2 Adsorption Analysis

The isotherm adsorption of CO2 and N2 of NBACs are shown in Figure 4a,b, respec-
tively. It can be seen that, one the one hand, the adsorption capacity was prone to decline as
the temperature increased, which was a remarkable feature of a physical adsorption. On the
other hand, the capacity rose constantly, even when the pressure went beyond 1 bar, which
demonstrated that the BAC would continue to adsorb CO2 or N2 at a higher pressure.
In addition, the CO2 adsorption capacity was far higher than that of N2, based on the
collected data. For that matter, the NBAC samples also outperformed the CO2 adsorption
of three typical commercial BACs whose capacity varied from 1.43 mmol/g to 2.21 mmol/g,
according to the authors’ laboratory measurements at an ambient temperature (25 ◦C), as
indicated in Table 3.
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Table 3. CO2 and N2 adsorption capacity for NBACs at 1 bar, at 0 ◦C and 25 ◦C.

Absorbent
CO2 Uptake (mmol/g) N2 Uptake (mmol/g)

0 ◦C 25 ◦C 25 ◦C

NBAC-400-1 3.68 2.49 0.33
NBAC-400-2 3.78 2.68 0.35
NBAC-400-3 3.85 2.91 0.36
NBAC-500-1 4.41 3.16 0.45
NBAC-500-2 4.71 3.41 0.40
NBAC-500-3 4.95 3.52 0.41
NBAC-600-1 4.48 3.05 0.49
NBAC-600-2 4.31 3.21 0.45
NBAC-600-3 3.76 2.78 0.46

Commercial BAC#1 / 1.43 /
Commercial BAC#2 / 1.87 /
Commercial BAC#3 / 2.21 /

The CO2 and N2 uptakes of BAC with pressure at 1 bar and temperature at 0 ◦C and
25 ◦C, respectively, are shown in Table 3. The uptake ranged from 3.68 to 4.95 mmol/g at
0 ◦C, and from 2.49 to 3.52 mmol/g at 25 ◦C, among which the maximum uptake occurred
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for the sample obtained with high SA activent dosage (BAC-500-3). The N2 uptake of all
samples ranged from 0.33 to 0.49 mmol/g at 25 ◦C, which was much lower than that of
CO2 uptake with the same conditions. It also found that with more dosage of activent at
500 ◦C or below the CO2 uptake of corresponding BAC were improved. It decreased as
activent dosage went higher when activated at 600 ◦C.

It has been reported that CO2 uptake of N-doped porous carbon can be simultaneously
influenced by a narrow pore size distribution of micropores and N content [45]. In this
work, it was also found that it had an above-average level upon further investigation of the
data in Tables 1–3. The maximum CO2 uptake reached 4.95 mmol/g and 3.52 mmol/g at
1 bar, at 0 ◦C and 25 ◦C, respectively, and NBAC-500-2 presented maximum narrow size
distributed pores.

2.6. Analysis for Selectivity of CO2 over N2

The NBAC-500 samples were selected to explore their adsorption selectivity for CO2
capture in order to assess the dynamic adsorption behavior of mixture gas containing
15 vol.% CO2 and 85 vol.% N2, which is a representative proportion of flue gas. The
isotherm was obtained by the Langmuir–Freundlich equation (Equation (1)) from the
isotherm value of CO2 and N2 at 1 bar and 25 ◦C, and adsorption selectivity could be
finally deduced in accordance with the ideal adsorbed solution theory (IAST, Equation
(3)). The coefficient R2 values achieved 0.99 which showed good fitting; all detailed data
and selectivity are summarized in Table 4. The selectivity of CO2 over N2 for NBACs was
calculated to be between 15 and 17 at 25 ◦C, respectively. It seemed that the N content of
NBAC (see Table 2) had a slightly positive effect on adsorption selectivity, which might be
optimized in future works.

Table 4. Fitting results and adsorption selectivity for NBACs synthesized at 500 ◦C.

Absorbent Adsorbate qm b n R2 Selectivity

NBAC-500-1
CO2 8.02 0.65 0.772 0.99

15.03N2 2.51 0.219 0.943 0.99

NBAC-500-2
CO2 7.47 0.84 0.865 0.99

16.87N2 2.23 0.218 0.946 0.99

NBAC-500-3
CO2 7.76 0.83 0.85 0.99

16.97N2 1.35 0.436 0.936 0.99

The selectivity of NBAC is shown in Figure 5. It showed that optimal performance could
be reached at a low pressure in that there were adequate adsorptive spots for CO2 capture,
whereas higher pressure made the N-doped BAC relatively less selective to separate CO2.
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2.7. Analysis for Isosteric Heat of Adsorption

An analysis of isosteric heat of adsorption is important to evaluate the adsorption
performance of an absorbent; it provides the interaction information between absorbent
and adsorptive. In this paper, the isosteric heat of adsorption (Qst) at 0 ◦C and 25 ◦C was
determined in accordance with the Clausius–Clapeyron equation (Equation (2)). The values
are illustrated in Figure 6. Should The initial CO2 adsorption approach “0” when epitaxy
method applied to the current isotherm, the initial Qst shall be 30–40 KJ/mol, a typical
value of physical adsorption that proved superior adsorptive performance of NBACs in this
work. A low Qst causes the NBACs to have less energy consumption during the process
of desorption, that is, it is more kinetically feasible to regenerate NBACs, which helps to
reduce recycling costs. As the CO2 capture continued, the Qst had a tendency to decrease
and stabilize, which may have been due to the topological non-uniformity and adsorption
saturation of the NBAC samples.
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2.8. Analysis for Reproducibility of CO2 Adsorption

An analysis of reproducibility and steadiness of CO2 adsorption is essential for prac-
tical use of activated carbons. Five experimental cycles of adsorption/desorption were
conducted to consider the usability at 1 bar and 25 ◦C. The results for those regenerated
NBACs are shown in Figure 7. Approximately 93% of the adsorption capacity (3.27 mmol/g
for the tenth cycle measurement as compared with 3.52 mmol/g for the virgin NBAC-500-3)
was retained even after the 10-cycle measurement which aligned with the Qst results,
suggesting that the dry chemically synthesized NBACs could be a perspective candidate
for industrial use in CO2 adsorption and separation.
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3. Experimental Section
3.1. Materials

Powder bamboo charcoal (40–60 mesh) was purchased from Zhejiang Wanlin Biotech
Co, Ltd., Hangzhou, China, with pyrolysis at 750 ◦C for 7 days, the charcoal was oven-dried
at 105 ◦C prior to use. Sodamide (SA, NaNH2) and hydrochloric acid (37%, HCl) were
purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. The
reagents were used as received.

3.2. Synthesis of N-Doped Bamboo-Based Activated Carbon (NBAC)

The blended SA/BC samples (the blend ratio was set at 1:1, 2:1, and 3:1, respectively)
were placed under an N2 atmosphere by applying a tube furnace (LTKC-8-16, Hangzhou
Lantian Instrument Co., Ltd., Hangzhou, China), and the temperature was set at 400, 500,
and 600 ◦C, for 2 h, respectively. Then, the raw N-doped bamboo-based activated carbon
(NBAC) powders were obtained after cooling down to an ambient temperature. The NBAC
samples were further rinsed using diluted hydrochloric acid (10%) to neutralize the residue
and resultant of the activation and remove possible ash in the bamboo charcoal samples.
The samples were termed as NBAC-x-y, where x refers to the activation temperature and y
the blend ratio of NaNH2/BC.

3.3. Characterization

The surface morphologies of the samples were observed by field emission scanning
electron microscopy (SEM, Hitachi SU 8010, Tokyo, Japan) at the emission voltage of 5 KV.
The synthesized samples were sprayed with gold prior to observation. The elements (C, H
and N) were measured by elemental analyzer (EA, Vario EL cube, Germany Elementary,
Hesse, Germany) applying CHN mode. The specific surface area (SSA), as well as pore
volume and pore size distribution were determined by an automated adsorption system
(ASAP 2020, Micromeritics, Norcross, GA, USA) using the Brunauer–Emmett–Teller (BET)
equations with nitrogen gas physisorption at 77 K. The surface elemental compositions were
analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Waltham,
MA, USA) with primary photon energies of 1486.6 eV.

3.4. CO2 Adsorption Measurement and Calculation

All NBAC samples were vacuum degassed at 300 ◦C for 6 h prior to adsorption
measurement, followed by CO2 adsorption isotherm measurements at a pressure of 1.0 bar
and temperatures of 0 ◦C and 25 ◦C. To evaluate the gas adsorption selectivity, the N2
adsorption isotherm of samples was also measured at 25 ◦C and pressure at 1 bar.

Adsorption heat and adsorption selectivity was calculated by the single site Langmuir–
Freundlich equation (Equation (1)):

q =
qmbpn

1 + bpn (1)

where p refers to the balancing pressure of gas expressed in MPa, q is the unit adsorption
capacity of NBAC expressed in mmol, qm is the saturated adsorption capacity expressed in
mmol, b is the affinity constant, and n is the index of heterogeneity.

Isosteric heat of adsorption was calculated using the Clausius–Clapeyron equation
(Equation (2)):

ln
P2

P1
= −∆H

R

(
1
T2

− 1
T1

)
(2)

where P1 and P2 refer to the relative pressure of the gas at T1 and T2, respectively, expressed
in MPa; T1 and T2 refer to the temperature of 273 K (0 ◦C) and 295 K (25 ◦C), respectively;
R is the ideal gas constant whose value is 8.314 J/(mol K); and ∆H is the enthalpy change
of gas expressed in KJ/mol.
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The adsorption selectivity of samples was calculated with the ideal adsorbed solution
theory (IAST, Equation (3)):

S =
x1/x2

y1/y2
(3)

where S refers to the adsorption selectivity of binary gas mixture; x1 and x2 are the molar
fractions of adsorbed CO2 and N2 in the NBAC sample, respectively; and y1 and y2 are the
molar fractions of CO2 and N2 in the binary gas phase, respectively.

4. Conclusions

In summary, in this work, an in situ dry chemical synthesis was employed to fabricate
N-doped bamboo-based activated carbon (NBAC) from conventional bamboo charcoal
applying sodamide as an activation material and nitrogen source with nitrogen protection
at a medium temperature (400–600 ◦C) in this work. The as-synthesized NBAC with high
nitrogen content and narrowly distributed micropores presented a specific surface area
with 756–1489 m2/g, excellent CO2 adsorption performance, Among all the synthesized
samples, NBACs obtained at 500 ◦C with a sodamide/bamboo charcoal blend ratio of 3:1,
demonstrated the highest CO2 adsorption of 4.95 mmol/g at 0 ◦C and 1 bar, fairly good
CO2/N2 adsorption selectivity, low isosteric heat of adsorption, and good recycling and
regeneration performance, which made the NBAC a candidate absorbent in CO2 capture
and utilization.
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