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A B S T R A C T   

A group sequential design allows investigators to sequentially monitor efficacy and safety as part of interim 
testing in phase III trials. Literature is well developed in the case of continuous and binary outcomes, however, in 
case of trials with a time-to-event outcome, popular methods of sample size calculation often assume propor
tional hazards. In situations where the proportional hazards assumption is inappropriate as indicated by his
torical data, these popular methods are very restrictive. In this paper, a novel simulation-based group sequential 
design is proposed for a two-arm randomized phase III clinical trial with a survival endpoint for the non- 
proportional hazards scenario. By assuming that the survival times for each treatment arm follow two 
different Weibull distributions, the proposed method utilizes the concept of Relative Time to calculate the ef
ficacy and safety boundaries at selected interim testing points. The test statistic used to generate these boundaries 
is asymptotically normal, allowing p-value calculation at each boundary. Many design features specific to time- 
to-event data can be incorporated with ease. Additionally, the proposed method allows the flexibility of having 
the accelerated failure time model and the proportional hazards model as constrained special cases. Real life 
applications are discussed demonstrating the practicality of the proposed method.   

1. Introduction 

A group sequential design (GSD) aims to incorporate interim testing 
at prespecified time points called ‘looks’ to collect early evidence for 
efficacy and/or safety and is often conducted as a phase III randomized 
clinical trial (RCT). That is, at each interim look, the decision to stop or 
continue the RCT is taken based on whether a test statistic (or p-value) 
exceeds or does not exceed a well-defined boundary value. Such GSDs 
enjoy a rich history starting with the works of Wald [26] and Armitage 
[1] with a vast literature available on the subject in books by Whitehead 
[29], Jennison and Turnbull [6], Proschan et al. [20], Dmitrienko et al. 
[2], Wassner and Brannath [28]. Likewise, many articles provide an 
excellent overview (see Whitehead [30], Todd [25], Mazumdar and 
Bang [11]) and stress the importance of considering ethical, financial 
and administrative requirements in designing such GSDs (see Enas et al. 
[4], Jennison and Turnbull [5], Ellenberg et al. [3]). Historically, GSDs 
are well developed in the case of continuous and binary endpoints and 
are available in popular statistics software using the Repeated Signifi
cance Testing (RST) approach. This method incorporates a rich family of 

designs proposed by Pocock [19], O’Brien and Fleming [13], Wang and 
Tsiatis [27] while also allowing flexible data monitoring strategies using 
the error spending method of Lan and DeMets [10]. In the case of a 
time-to-event outcome, however, the available literature only discusses 
scenarios where the survival times in the two treatment arms of an RCT 
are exponentially distributed or when the proportional hazards (PH) 
assumption is satisfied. For example, Jennison and Turnbull [6] have 
discussed examples of using the log-rank and stratified log-rank tests, 
and separately, using the PH assumption. The same assumptions are 
made by popular statistics software such as PASS [14] in using the 
method proposed by Reboussin et al. [21] – Fortran 77 program using 
the framework of Lan and DeMets [10], and Kim and DeMets [8] – to 
implement GSDs by deploying the weighted and unweighted variations 
of the log-rank test. More recently, Wu and Xiong [32] have proposed a 
GSD using a Weibull model that satisfies the PH property but provides 
better results than the usual log-rank test at very early look points where 
the available data could be small. Likewise, Jiang et al. [7] has proposed 
a simulation-based SAS macro for a GSD using the exponential and 
Weibull distributions. While such methods do incorporate many design 
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features specific to time-to-event outcomes such as loss to follow-up, 
limited accrual and follow-up times, myriad accrual patterns, equal/
unequal allocation to groups, equally or unequally spaced looks, ad
justments for non-compliance, and the fact that a patient surviving till 
the end of study contributes to the test statistic computed at each of the 
interim looks, they are based on the restrictive PH assumption or on the 
assumption of exponentially distributed survival times. 

In scenarios where results from previously conducted historical 
studies or earlier phase II trials are used to guide the design of a current 
phase III trial, the choice of PH assumption may not be appropriate. For 
example, a previously conducted moderately sized phase II trial may 
have indicated that a new investigative treatment outperformed a 
standard control by improving the median survival time by 50 % (say, 
18 months vs 12 months) but that the assumption of proportional haz
ards was not appropriate. In this situation, it would not be correct to 
design a phase III trial with the PH assumption or by assuming that 
survival times in both treatment arms follow the exponential distribu
tion (constant hazards in each arm leading to a constant hazard ratio). 
The situation would further get compromised in the case of a GSD where 
the decision for early evidence of efficacy or futility is based on the 
construction of decision boundaries which themselves are calculated 
utilizing a test statistic based on the PH assumption. Secondly, re
searchers working in specific disease areas may find it more comfortable 
to define an effect size using the paradigm of ‘improvement in longevity’ 
instead of a ‘reduction in hazard’. That is, an effect size defined as – 
‘improvement in 25th, 50th (median) and 75th percentile of survival 
time’ – may be more informative for patients while consenting to take 
part in a RCT compared to, say, a 25 % or 50 % reduction in hazard. 
Here, it is important to note that only in the case of exponentially 
distributed survival times, a halving of hazard automatically implies 
doubling of longevity whereas for other survival distributions explicit 
calculations need to be done to relate the two effect size definitions. 
Thirdly, a GSD incorporates multiple looks and hence it is important to 
correctly represent the number of events occurring at each interim look 
to best encapsulate the underlying biological phenomenon of a disease 
more accurately. 

To counter the limitations mentioned above, Phadnis and Mayo [16] 
developed a parametric GSD using a generalized gamma (GG) distri
bution after extending the work on two-arm fixed RCT design of Phadnis 
et al. [18]. Their recommended method based on the proportional time 
(PT) assumption provides flexibility of modeling various hazard shapes 
in the treatment arms and does not require the PH assumption. The PT 
assumption implies that for all quantiles of survival time, the life course 
of a disease (or event of interest) in one group is accelerated (or decel
erated) by a constant factor compared to another group and is therefore 
essentially an Accelerated Failure Time (AFT) model. While it offers the 
practical benefit of an easily interpretable treatment effect in terms of a 
percent improvement in longevity, it also has two notable limitations. First, 
although the point estimates of the GG shape parameters to be used as 
input values in the current study GSD can be obtained from previous 
studies, their accuracy cannot be ascertained in all situations (the most 
general case of the GG) if the previous studies were small or moderately 
sized. This may lead to a situation where the decision boundaries are 
sensitive to the choice of the GG shape parameters. Second, when the 
early interim looks for the phase II trial involve relatively small samples 
sizes (say in the 30–50 range) the recommended method may sometimes 
run into convergence problems. Authors like Klein and Moeschberger 
[9] have noted that the three-parameter GG distribution is often used to 
choose a simpler two-parameter distribution (special case of the GG 
family such as Weibull, lognormal, and gamma) while modeling 
time-to-event data except when dealing with large sample sizes thereby 
restricting the method of Phadnis and Mayo [16] to only large size phase 
III RCTs. Third, it is possible that in a real-life biomedical application 
neither the PH nor the PT assumption is appropriate and to the best of 
our knowledge there is no method available in the literature for this 
general scenario. In our paper, we aim to fill in this gap in the literature. 

Two motivating examples discussed in Section 2 elucidate the need 
for developing a GSD where neither the PH nor the PT assumption is 
appropriate. Section 3 discusses the proposed GSD by extending the 
recent work of Phadnis and Mayo [17] using the concept of Relative 
Time (RT). The derivations by Phadnis and Mayo [17] are discussed 
briefly in the online Appendix A with Section 3 detailing the main GSD 
method by means of a combination of analytical formulas and simula
tions. Results are presented in Section 4 for various scenarios of the input 
parameters of the GSD. The discussion in the final Section 5 provides 
practical insights for the proposed method and deliberates about its 
advantages and limitations. 

2. Motivating examples 

We discuss two motivating examples representing two different 
scenarios pertaining to the construction of a GSD using our proposed 
method. Many variations of these two scenarios are possible and some of 
them are discussed in the Results section showing how the sample size 
changes depending on varying user inputs. 

First, we consider the example where researchers intend to construct 
a two-arm phase III GSD for treating patients afflicted with chemo
therapy refractory advanced metastatic biliary cholangiocarcinoma – a 
rare but a very aggressive neoplasm. Such patients have metastatic 
disease and undergo an initial treatment followed by a second-line of 
treatment. Trialists are interested in comparing the performance of a 
new experimental (E) second-line treatment to a standard control (C) 
second-line treatment using progression-free survival (PFS) as the time- 
to-event endpoint of interest. In a previous phase II study, the PFS for the 
C arm has been reported using a Kaplan Meier (KM) curve with a median 
PFS of 4 months and an interquartile range (IQR) of 2–7 months. In the 
current phase III trial under consideration, researchers hypothesize that 
the E arm will show an improvement in median PFS compared to the C 
arm, but that this improvement measured as a metric of longevity will be 
gradual. That is, the nature of the disease is such that the improvement 
for 10th percentile (denoted p1 in later sections) of PFS will be by a 
factor of 1.5 and the improvement for 90th percentile (denoted p2 in 
later sections) of PFS will be by a factor of 2. Thus, the effect of treatment 
improves with the passage of time with improvement in median PFS 
being the target of the research. Both accrual and follow-up time is taken 
as 12 months (leading to a total study time of 24 months) with a type I 
error of 5 % for a one-sided test (acceptable as an option for rare cancers 
as discussed by Renfro et al. [22], and by Sposto and Stram [24]) and the 
target power is 80 %. This example represents a frequently occurring 
real-life scenario in cancer trials where researchers anticipate long-term 
survivors to get the maximum benefit from a new treatment but expect 
only a small realistic improvement for short-term survivors (see Fig. 1a). 
Therefore, the GSD sample size calculations should be done keeping in 
mind that the hypothesized treatment effect changes over time and 
cannot be expressed through a single constant number such as a simple 
ratio of mean or median survival time. Additionally, the researchers are 
not comfortable with the proportional hazards assumption because 
published results from some previous observational studies related to 
the current disease area suggested that this assumption was not valid. 
Thus, the effect size cannot be defined by a single number such as a 
constant hazard ratio (HR). Further, due to the high cost associated with 
the treatment regimens for this rare form of cancer, researchers would 
like to conduct a GSD with interim testing for evidence of early efficacy 
or futility at the equally spaced intervals of 8 months – two interim 
analyses at 8 and 16 months, followed by the final analysis at 24 months. 

The second example represented by Fig. 1b pertains to a real-life 
scenario with surgery as an experimental treatment whose perfor
mance is to be compared to a non-surgical standard-of-care control. 
Here, the trialists hypothesize that patients who receive surgery will 
experience a substantial benefit very soon after surgery compared to 
those who do not receive surgery, but that this benefit measured in terms 
of improvement in longevity will gradually wane with the passage of 
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time. Thus, the improvement for the 10th percentile (denoted p1 in later 
sections) of Overall Survival (OS) will be by a factor of 2 but as the effect 
of surgery diminishes over time, the improvement for the 90th percen
tile (denoted p2 in later sections) of OS will be by a factor of 1.5. 
Analogous to the first example, researchers would like to conduct the 
sample size calculations for a GSD with three look points (8, 16, and 24 
months) with the main research question targeted at improvement in 
median OS time. 

In both the examples described above, researchers would also like to 
conduct a sensitivity analysis by varying some of the input design 

parameters and assess how the sample size calculations change. That is, 
if the calculations suggest a very large sample size which is not realis
tically feasible, they would like to consider alternate design inputs such 
as longer values of accrual and/or follow-up time. They would also like 
to assess design efficiency by comparing the expected sample size ob
tained from a GSD to that of a regular two-arm fixed sample design. In 
such examples with non-constant effect size definitions, Phadnis and 
Mayo [17] have discussed the methodology for a fixed two-arm design 
and in the remainder of this paper we show how their method can be 
extended to conduct a GSD for the non-PH and non-PT scenarios. The 
reader is recommended to read this paper before proceeding to the next 
section and get acquainted with key notations used throughout the text. 
Appendix A discusses these notations in brief. 

3. Methods 

To implement a GSD in the case of non-PH and non-PT situations 
described in the examples discussed above, we propose a method using 
the concept of Relative Time (see online Appendix A before proceeding 
further). This method combines the analytical results obtained by 
Phadnis and Mayo [17] using an asymptotically normally distributed 
test statistic with a proposed simulation-based approach to conduct the 
sample size calculations. Phadnis and Mayo [17] have demonstrated 
maintenance of type I error, low average relative bias, and adequacy of 
power for a variety of scenarios and hence their method can be readily 
adopted to construct a GSD. 

3.1. Calculation of sample size 

Interim testing in a GSD may involve - testing for efficacy only, 
testing both efficacy and futility at all looks, testing for efficacy at all 
looks but testing for futility after skipping a few looks, binding or non- 
binding futility rules, and equally spaced or unequally spaced look 
times. The myriad variations of these input combinations can be incor
porated along with various aspects of time-to-event data and are sum
marized using a stepwise algorithm given in online Appendix B. SAS 
software [23] is used to evaluate the design characteristics using 10 000 
simulations by adopting the GSD algorithm discussed in Reboussin et al. 
[21] but with extra adjustments for parameter estimation using PROC 
LIFEREG (parametric regression procedure for time-to-event data in SAS 
software) with efficacy and futility boundaries determined by using the 
normally distributed test statistic (see online Appendix A) and corre
sponding p-values. 

A detailed ten-step procedure detailing the algorithms using a 
simulation-based procedure are explained in online Appendix B. In 
section 1 of this appendix, the main GSD algorithm incorporating both 
efficacy and futility testing (with or without skipping, binding or non- 
binding) with corresponding boundaries, is explained. In section 2 of 
this appendix, a much simpler GSD algorithm with interim testing for 
efficacy-only is outlined. Additionally, sample size calculations can also 
be conducted for a two-sided hypothesis with minor adjustments to the 
algorithms detailed in online Appendix B section 1 and 2 (by having two 
boundaries for an ‘efficacy-only GSD’). Analogously, simultaneous effi
cacy/futility testing with a two-sided HA would warrant two separate 
sets of two boundaries. For all scenarios mentioned above, efficacy and/ 
or futility boundaries can be constructed on the z-scale or equivalently 
on the p-value scale. 

3.2. Calculation of stop probabilities and expected number of events 

The calculation of stop probabilities (probability of ending a trial at a 
given look) under H0 and HA can be conducted using the simulation- 
based approach proposed by us (see online Appendix B section 1 and 
2). Consider a GSD with a one-sided hypothesis incorporating both ef
ficacy and futility boundaries. Here the stopping probability under H0 is 
the summation of the stopping probability for efficacy under H0 and 

Fig. 1a. Scenario #1 with effect size defined as RT(0.1) = 1.5 and RT(0.9) = 2. 
Reprinted from Sample size calculation for two-arm trials with time-to-event 
endpoint for non-proportional hazards using the concept of Relative Time when 
inference is built on comparing Weibull distributions, by M.A. Phadnis and M.S. 
Mayo, Biometrical Journal 63 (2021), Pg. 1409. Copyright [2021] by John 
Wiley & Sons, Inc. Reprinted with permission. 

Fig. 1b. Scenario #2 with effect size defined as RT(0.1) = 2 and RT(0.9) = 1.5. 
Reprinted from Sample size calculation for two-arm trials with time-to-event 
endpoint for non-proportional hazards using the concept of Relative Time when 
inference is built on comparing Weibull distributions, by M.A. Phadnis and M.S. 
Mayo, Biometrical Journal 63 (2021), Pg. 1409. Copyright [2021] by John 
Wiley & Sons, Inc. Reprinted with permission. 

M.A. Phadnis et al.                                                                                                                                                                                                                             



Contemporary Clinical Trials Communications 40 (2024) 101315

4

stopping probability for futility under H0. At look j, this can be calcu
lated as the proportion of samples under the null hypothesis that are 
above Q0j or are below Q1j. This in turn facilitates the calculation of the 
cumulative stopping probability under H0. Likewise, the stopping 
probability under HA is the summation of the stopping probability for 
efficacy under HA and stopping probability for futility under HA. At look 
j this can be calculated as the proportion of samples under the alternate 
hypothesis that are above Q0j or below Q1j. This in turn facilitates the 
calculation of the cumulative stopping probability under HA. At look m 
(the final look), both cumulative stopping probabilities should be equal 
to 1. However, due to the random nature of the simulations and the 
discrete nature of the sample size n, a tolerance of 0.001 is permitted in 
this calculation by us. 

In case of an efficacy-only GSD with a one-sided hypothesis, the stop 
probability under H0 at each look j is, by definition, equal to the amount 
of alpha spent αj. The cumulative stop probability under H0 is thus equal 
to α. Likewise, the stop probability under HA at each look j is the pro
portion of samples under HA that exceed Q0j. This in turn facilitates 
calculation of the cumulative stop probability under the alternate hy
pothesis HA. For the last look m, this should be equal to 1 − β, but due to 
n being a whole number, the power will slightly exceed 1 − β. 

The calculation of the expected number of events under H0 and HA is 
as follows. Let nc,j,H0 and ne,j,H0 be the simulated number of events at look 
j under H0 in the control arm and experimental treatment arm respec
tively. Let Pj,H0 be the stopping probability under H0 at look j. Then the 
expected number of events in the control arm and experimental arm 
under H0 is calculated as: 

E
(
nH0

)
=
∑m− 1

j=1

{(nc,j,H0 + ne,j,H0

2

)
Pj,H0

}
+
(nc,j,H0 + ne,j,H0

2

)
(

1 −
∑m− 1

j=1
Pj,H0

)

(1) 

Let nc,j,HA and ne,j,HA be the simulated number of events at look j under 
HA in the control arm and experimental treatment arm respectively. Let 
Pj,HA be the stopping probability under HA at look j. Then the expected 
number of events in the control arm under HA is calculated as: 

E
(
nc,HA

)
=
∑m− 1

j=1

(
nc,j,HA .Pj,HA

)
+ nc,j,HA

(

1 −
∑m− 1

j=1
Pj,HA

)

(2) 

Note that nc,j,HA = nc,j,H0 because under HA, the effect size definition of 
RT(pmid) > 1 affects only the number of events in the experimental 
treatment arm. 

The expected number of events in the experimental treatment arm 
under HA is calculated as: 

E
(
ne,HA

)
=
∑m− 1

j=1

(
ne,j,HA .Pj,HA

)
+ ne,j,HA

(

1 −
∑m− 1

j=1
Pj,HA

)

(3) 

Other important quantities of interest to the trialists such as the 
cumulative subject time under H0 and HA can also be computed using 
the simulated datasets. 

4. Results 

4.1. Model validation 

Before proceeding to discuss the two examples mentioned in Section 
2, we provide validation for a GSD deploying our method in the special 
case of exponentially distributed times as well as proportional hazards 
(β0 = β1 = 1) by comparing the obtained results to that of standard 
sample size software. We have chosen the PASS 20 statistical software 
[14] for this comparison as it is one of the specialized commercial soft
ware built for sample size and power calculations and provides an 
equivalent simulation-based approach for exponentially distributed data. 
The design features used for the purpose of validation are as given below:  

• Number of simulations B = 10 000  
• Type I error α = 0.025 (one-sided test),  
• Power 1 − ω = 0.80  
• Mean survival time in Control arm = 1 year  
• Effect size RT(p1) = RT(p2) = constant = 1.75 (Hence choice of p1,

p2 does not matter).  
• Control arm shape = β0 = Treatment arm shape = β1 = 1 (exponential 

distribution)  
• Allocation ratio r = 1  
• Proportion loss to follow-up = 0  
• Accrual time a = 1 (year),  
• Accrual pattern = Uniform,  
• Total time t = 4 (years)  
• Number of looks m = 4 (equally spaced at 1, 2, 3, and 4 years)  
• Number of skips for futility (binding) = 2  
• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = 1 i.e. Pocock 

type)  
• Beta spending function = Hwang-Shih-DeCani (with ρ1 = 1 i.e. Pocock 

type) 

Table 1A displays the output obtained using our proposed method 
and Table 1B displays the output using PASS 20 (note that the displayed 
output may change slightly owing to the choice of random seed used for 
data simulation). For example, Table 1B (PASS output) shows the total 
sample size as nc = 64, ne = 65 (see values mentioned below the tables). 
In reality with 10 000 simulations using different random seeds, we saw 
sample sizes ranging from nc = 63, ne = 63 to nc = 66, ne = 66 and we 
selected nc = 64, ne = 65 as a middle option. For the GSD using our 
proposed method, we get nc = 64, ne = 64 (see right-hand bottom corner 
of Table 1A). Comparing the results of Table 1A to Table 1B, we find that 
most of the column entries such as the amount of alpha and beta spent at 
each look, expected number of events under the null and alternate hy
potheses, stop probability under the null and alternate hypotheses, Z test 
statistic (and p-values) defining the efficacy and futility boundaries, and 
cumulative observation time under the null and alternate hypotheses 
match quite well with each other. It should be noted that although both 
methods have efficacy and futility boundaries defined using an asymp
totically normal distributed test statistic, the underlying methods are 
different. While PASS uses a logrank test in calculating the Z test sta
tistic, our proposed method uses a Z test statistic based on the concept of 
Relative Time RT(p). Thus, the Z test statistic from the proposed method 
is associated with a specific combination of R̂T(p) and SE{R̂T(p)} and 
therefore provides a practically meaningful interpretation of efficacy 
and futility boundaries as a measure of improvement in longevity for 
treatment arm relative to the control arm. On the other hand, the Z test 
statistic from the logrank test yields efficacy and futility boundary 
values for reduction in hazard (and consequently improvement in sur
vival) for treatment arm relative to control arm but does not provide a 
direct interpretation of its magnitude. We also tried many different 
design scenarios (such as those discussed in Sections in 4.2 and 4.3) and 
in all scenarios we found that the results from the two methods are 
consistent for exponentially distributed survival times, that is for the 
case where the proportional hazards assumption automatically holds. 

4.2. Clinical trial with cholangiocarcinoma with progression-free survival 
(PFS) as endpoint 

For the cholangiocarcinoma example of Section 2, we consider 
designing a GSD with the HSD error spending using ρ0 = − 4 for both 
type I and type II errors to approximate the O’Brien-Fleming approach. 
The Weibull shape parameter for the control arm β0 is varied from 0.25, 
0.5, 0.75, 1.0, 1.25 to 1.50 in Table 2A through 2F with all other design 
features remaining the same. As an example, the design features corre
sponding to Table 2A are: 
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• Number of simulations B = 10 000  
• Type I error α = 0.025 (one-sided test)  
• Power 1 − ω = 0.80  
• Median survival time in Control arm = 4 (months)  
• Quantiles at which the effect size is defined: p1 = 0.10, p2 = 0.90.  
• Effect size at p1 defined as: RT(p1) = 1.52.  
• Effect size at p2 defined as: RT(p2) = 1.98.  
• Control arm shape = β0 = 0.25.  
• Allocation ratio r = 1  
• Proportion loss to follow-up = 0.20  
• Accrual time a = 12 (months), Accrual pattern = Uniform  

• Total time t = 24 (months)  
• Number of looks m = 3 (equally spaced at 8, 16, and 24 months)  
• Number of skips for futility (binding) = 0  
• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = − 4 i.e. OBF 

type)  
• Beta spending function = Hwang-Shih-DeCani (with ρ1 = − 4 i.e. OBF 

type) 

Note that ‘RT(p1) = 1.52 and RT(p2) = 1.98’ have been adjusted 
from ‘RT(p1) = 1.5 and RT(p2) = 2’ following a discussion in Phadnis 
and Mayo [17]. 

Table 1A 
GSD validation output, exponential distn, (proposed method), RT(0.1) = RT(0.9) = 1.75, HSD(OBF) spending, 10 000 simulations, 2 futility skips).  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 1 23.51 23.51 0.00875 0.00875 2.259 0.0119 0.0088 0.0088 23.530 
2 2 49.09 49.09 0.00681 0.01556 2.236 0.0127 0.0003 0.0091 49.070 
3 3 58.51 58.51 0.00531 0.02087 2.238 0.0126 0.9777 0.9868 58.458 
4 4 61.96 61.96 0.00413 0.02500 2.089 0.0183 0.0131 0.9999 61.886  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 1 23.56 15.22 0.0000 0.0000 – – 0.2808 0.2808 26.690 
2 2 49.13 36.45 0.0000 0.0000 – – 0.3534 0.6342 63.855 
3 3 58.54 48.41 0.1646 0.1646 1.934 0.0265 0.2858 0.9200 84.852 
4 4 62.02 55.25 0.0326 0.1972 2.089 0.0183 0.0798 0.9998 96.695 

E(nH0 ) = 58.25 E
(
nc,HA

)
= 45.61 E

(
ne,HA

)
= 35.40 Sample Size: nc = ne = 64  

Table 1B 
GSD output for exponential distribution using PASS 2020, HSD (OBF) spending, Mean in control = 1 year, 10 000 simulations, 2 futility skips.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 1 23.59 23.96 0.00875 0.00875 2.371 0.0089 0.0087 0.0087 23.54 
2 2 49.14 49.91 0.00681 0.01556 2.330 0.0099 0.0068 0.0155 49.09 
3 3 58.53 59.44 0.00531 0.02087 2.259 0.0120 0.9703 0.9858 58.48 
4 4 62.00 62.97 0.00413 0.02500 2.119 0.0170 0.0051 0.9909 61.92  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 1 23.59 15.50 0.0000 0.0000 – – 0.2566 0.2566 27.10 
2 2 49.14 37.02 0.0000 0.0000 – – 0.3708 0.6274 64.81 
3 3 58.53 49.20 0.1525 0.1525 1.901 0.0287 0.2872 0.9146 86.12 
4 4 62.00 56.09 0.0302 0.1827 2.119 0.0170 0.0854 1.0000 98.14 

E(nH0 ) = 58.64 E
(
nc,HA

)
= 46.38 E

(
ne,HA

)
= 36.63 Sample Size: nc = 64; ne = 65  

Table 2A 
GSD – Weibull shape β = 0.25, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 412.18 412.18 0.00130 0.00130 3.041 0.0012 0.3896 0.3896 1811.58 
2 16 731.93 731.93 0.00494 0.00625 2.465 0.0069 0.4621 0.8517 5840.63 
3 24 796.21 796.21 0.01875 0.02500 1.944 0.0259 0.1482 0.9999 9295.89  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 412.28 375.42 0.01009 0.01009 − 0.276 0.6088 0.1604 0.1604 1981.79 
2 16 732.19 672.24 0.03828 0.04837 1.001 0.1585 0.4740 0.6344 6536.76 
3 24 796.54 735.66 0.14523 0.19360 1.944 0.0260 0.3652 0.9996 10596.85 

E(nH0 ) = 616.91 E
(
nc,HA

)
= 703.83 E

(
ne,HA

)
= 647.52 Sample Size: nc = ne = 1392  
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Table 2B 
GSD – Weibull shape β = 0.50, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 90.05 90.05 0.00130 0.00130 3.004 0.0013 0.3050 0.3050 450.17 
2 16 183.36 183.36 0.00494 0.00625 2.497 0.0063 0.5213 0.8263 1298.28 
3 24 209.62 209.62 0.01875 0.02500 1.962 0.0249 0.1736 0.9999 1813.40  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 89.92 74.85 0.01038 0.01038 − 0.497 0.6903 0.1217 0.1217 516.81 
2 16 183.25 157.15 0.03937 0.04975 0.921 0.1784 0.4671 0.5888 1583.80 
3 24 209.55 184.60 0.14935 0.19910 1.962 0.0249 0.4110 0.9998 2362.87 

E(nH0 ) = 159.39 E
(
nc,HA

)
= 182.77 E

(
ne,HA

)
= 158.38 Sample Size: nc = ne = 313  

Table 2C 
GSD – Weibull shape β = 0.75, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 36.73 36.73 0.00130 0.00130 2.906 0.0018 0.2558 0.2558 200.133 
2 16 83.05 83.05 0.00494 0.00625 2.530 0.0057 0.5583 0.8141 523.673 
3 24 96.26 96.26 0.01875 0.02500 1.969 0.0245 0.1858 0.9999 654.905  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 36.65 28.15 0.01036 0.01036 − 0.653 0.7431 0.1053 0.1053 236.318 
2 16 82.93 67.48 0.03931 0.04967 0.885 0.1881 0.4545 0.5598 691.786 
3 24 96.20 83.62 0.14913 0.19880 1.969 0.0245 0.4401 0.9999 965.703 

E(nH0 ) = 73.60 E
(
nc,HA

)
= 83.97 E

(
ne,HA

)
= 70.43 Sample Size: nc = ne = 130  

Table 2D 
GSD – Weibull shape β = 1.00, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 19.93 19.93 0.00130 0.00130 3.019 0.0013 0.2264 0.2264 114.626 
2 16 48.30 48.30 0.00494 0.00625 2.611 0.0045 0.5918 0.8182 278.808 
3 24 55.31 55.31 0.01875 0.02500 1.994 0.0231 0.1816 0.9998 319.278  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 19.82 14.10 0.01034 0.01034 − 0.752 0.7740 0.0694 0.0694 137.899 
2 16 48.25 38.00 0.03923 0.04957 0.906 0.1824 0.4551 0.5245 391.368 
3 24 55.28 48.78 0.14883 0.19840 1.994 0.0231 0.4754 0.9999 517.358 

E(nH0 ) = 43.11 E
(
nc,HA

)
= 49.66 E

(
ne,HA

)
= 41.47 Sample Size: nc = ne = 71  
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Using the general theory mentioned in online Appendix A and the 
algorithm for efficacy and futility testing mentioned in online 
Appendix B section 1, the calculations for sample size, expected number 
of events under H0 and HA, and the stop probabilities under H0 and HA 
can be performed. For example, in Table 2A, the efficacy boundary 
values on the Z scale are 3.041, 2.465 and 1.944 while the futility 
boundaries on the Z scale are − 0.276, 1.001 and 1.944 at the three 
equidistant look times of 8, 16, and 24 months respectively. These ef
ficacy and futility boundaries are also displayed in Fig. 2a and b. The 

HSD (OBF) function spends a type I error of 0.025 (one-sided) parti
tioned into 0.00130, 0.00494 and 0.01875 at the three looks and as both 
efficacy and futility are tested at each of the three looks, we get stop 
probabilities under H0 of 0.3896, 0.4621 and 0.1482. Likewise, the stop 
probabilities under HA are 0.1604, 0.4740 and 0.3652 respectively. The 
expected number of events in both arms under H0 are 616.1. Under HA, 
we expect to observe 703.83 events in the control arm and 647.52 in the 
treatment arm. The GSD suggests that with an anticipated dropout rate 
of 20 %, accrual time of 12 months and follow-up time of 12 months, we 
need to enroll 1392 subjects in each of the two arms maintaining a type 

Table 2E 
GSD – Weibull shape β = 1.25, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 12.56 12.56 0.00130 0.00130 2.784 0.0027 0.2272 0.2272 75.076 
2 16 31.96 31.96 0.00494 0.00625 2.500 0.0062 0.5818 0.8090 172.488 
3 24 35.80 35.80 0.01875 0.02500 1.945 0.0259 0.1909 0.9999 186.879  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 12.55 8.29 0.01011 0.01011 − 0.775 0.7809 0.0748 0.0748 91.243 
2 16 31.94 24.73 0.03836 0.04847 0.839 0.2008 0.4816 0.5564 253.616 
3 24 35.75 32.49 0.14553 0.19400 1.945 0.0259 0.4436 1.0000 320.519 

E(nH0 ) = 28.27 E
(
nc,HA

)
= 32.21 E

(
ne,HA

)
= 26.94 Sample Size: nc = ne = 45  

Table 2F 
GSD – Weibull shape β = 1.50, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 8.70 8.70 0.00130 0.00130 2.735 0.0031 0.1927 0.1927 52.919 
2 16 22.63 22.63 0.00494 0.00625 2.607 0.0046 0.6206 0.8133 116.976 
3 24 24.78 24.78 0.01875 0.02500 1.965 0.0247 0.1866 0.9999 122.904  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 8.68 5.29 0.01010 0.01010 − 0.891 0.8134 0.0591 0.0591 65.079 
2 16 22.64 17.41 0.03830 0.04840 0.871 0.1919 0.4627 0.5218 178.448 
3 24 24.79 23.16 0.14530 0.19370 1.965 0.0247 0.4781 0.9999 217.834 

E(nH0 ) = 20.34 E
(
nc,HA

)
= 22.83 E

(
ne,HA

)
= 19.44 Sample Size: nc = ne = 31  

Fig. 2a. Efficacy and futility boundaries for Table 2A on the z-test statis
tic scale. 

Fig. 2b. Efficacy and futility boundaries for Table 2A on the p-value scale.  
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II error of 0.1936 that is split as 0.10009, 0.03828 and 0.14523 at the 
three looks. 

Comparing across Table 2A through 2F, we see that the sample size 
in each arm expectedly decreases from 1392 to 313 to 130 to 71 to 45 to 
31. This is consistent with the results of fixed single-arm (Wu [31]; 
Phadnis [15]), fixed two-arm trial results (Phadnis and Mayo [17]; 
Phadnis et al. [18]) and GSD with common Weibull shape (Wu and 
Xiong [32]) reported in literature specific to the Weibull distribution. 
For each of these tables, the type II error is split exactly equally using the 
HSD (OBF) spending function in the first iteration of the algorithm 
mentioned in online Appendix B section 1, however, owing to the last 
step of the algorithm (the ‘Search ω’ step), the final iteration shows small 
differences in the cumulative type II error used by the GSD. 

4.3. Clinical trial with surgical intervention with overall survival (OS) as 
endpoint 

For the surgery versus standard-of-care example of Section 2, we 
consider designing a GSD with the HSD error spending using ρ0 = 1 for 
both type I and type II errors to approximate the Pocock approach (equal 
alpha and beta spending at each look). Again, the Weibull shape 
parameter for the control arm β0 is varied from 0.25, 0.5, 0.75, 1.0, 1.25 
to 1.50 in Table 3A through 3F with all other design features remaining 
the same, but with RT(p1) = 2 and RT(p2) = 1.5 implying that the early 
two-fold improvement in longevity due to surgical intervention di
minishes gradually over time towards a 50 % improvement in longevity. 
As an example, the design features corresponding to Table 3A (with β0 =

0.25) are as follows: 

Table 3A 
GSD – Weibull shape β = 0.25, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 559.12 559.12 0.00833 0.00833 2.357 0.0092 0.7265 0.7265 2457.36 
2 16 993.21 993.21 0.00833 0.01667 2.238 0.0126 0.2315 0.9579 7926.07 
3 24 1080.54 1080.54 0.00833 0.02500 2.056 0.0199 0.0420 0.9999 12616.96  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 558.91 512.50 0.06613 0.06613 0.596 0.2757 0.4781 0.4781 2687.58 
2 16 993.30 923.17 0.06613 0.13227 1.604 0.0544 0.3604 0.8385 8802.56 
3 24 1080.67 1013.44 0.06613 0.19840 2.057 0.0199 0.1616 1.0001 14181.72 

E(nH0 ) = 681.35 E
(
nc,HA

)
= 799.87 E

(
ne,HA

)
= 741.51 Sample Size: nc = ne = 1889  

Table 3B 
GSD – Weibull shape β = 0.50, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 114.99 114.99 0.00833 0.00833 2.391 0.0084 0.6699 0.6699 575.25 
2 16 234.26 234.26 0.00833 0.01667 2.285 0.0112 0.2768 0.9467 1650.74 
3 24 267.80 267.80 0.00833 0.02500 2.021 0.0216 0.0532 0.9999 2316.39  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 114.93 95.92 0.06633 0.06633 0.407 0.3421 0.3892 0.3892 665.32 
2 16 234.39 205.84 0.06633 0.13267 1.495 0.0674 0.4026 0.7918 2005.78 
3 24 267.86 243.89 0.06633 0.19900 2.022 0.0216 0.2082 1.0000 2933.52 

E(nH0 ) = 156.12 E
(
nc,HA

)
= 194.83 E

(
ne,HA

)
= 170.98 Sample Size: nc = ne = 400  

Table 3C 
GSD – Weibull shape β = 0.75, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 46.35 46.35 0.00833 0.00833 2.372 0.0088 0.6332 0.6332 252.499 
2 16 104.68 104.68 0.00833 0.01667 2.314 0.0103 0.3097 0.9429 660.640 
3 24 121.39 121.39 0.00833 0.02500 2.079 0.0188 0.0573 1.0002 826.640  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 46.34 35.20 0.06623 0.06623 0.329 0.3711 0.3502 0.3502 303.16 
2 16 104.70 88.73 0.06623 0.13246 1.503 0.0665 0.4317 0.7819 864.24 
3 24 121.40 111.03 0.06623 0.19870 2.079 0.0188 0.2182 1.0001 1161.45 

E(nH0 ) = 68.72 E
(
nc,HA

)
= 87.91 E

(
ne,HA

)
= 74.86 Sample Size: nc = ne = 164  
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• Number of simulations B = 10 000  
• Type I error α = 0.025 (one-sided test)  
• Power 1 − ω = 0.80  
• Median survival time in Control arm = 4 (months)  
• Quantiles at which the effect size is defined: p1 = 0.10,p2 = 0.90.  
• Effect size at p1 defined as : RT(p1) = 2.0.  
• Effect size at p2 defined as: RT(p2) = 1.5.  
• Control arm shape = β0 = 0.25.  
• Allocation ratio r = 1  
• Proportion loss to follow-up = 0.20  
• Accrual time a = 12 (months)  
• Accrual pattern = Uniform  
• Total time t = 24 (months)  
• Number of looks m = 3 (equally spaced at 8, 16, and 24 months)  

• Number of skips for futility (binding) = 0  
• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = 1 i.e. Pocock 

type)  
• Beta spending function = Hwang-Shih-DeCani (with ρ1 = 1 i.e. Pocock 

type) 

From the results displayed in Table 3A through 3F, we see that the 
sample size in each arm decreases from 1889 to 400 to 164 to 86 to 53 to 
36 for different values of β0. The Pocock spending for type I and type II 
error results in higher stop probability under H0 and HA at the first look 
in Table 3A compared to Table 2A. Also, the Z statistic for the efficacy 
boundary in Table 3A is more equally spread (2.357, 2.238, and 2.056) 
compared to analogous values in Table 2A (3.041, 2.465 and 1.944). The 
Z statistic for the futility boundary is tighter at the three looks in 

Table 3D 
GSD – Weibull shape β = 1.00, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 24.08 24.08 0.00833 0.00833 2.422 0.0077 0.5948 0.5948 138.861 
2 16 58.46 58.46 0.00833 0.01667 2.281 0.0113 0.3441 0.9389 337.227 
3 24 66.94 66.94 0.00833 0.02500 2.105 0.0176 0.0610 0.9999 386.111  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 24.18 16.70 0.06633 0.06633 0.210 0.4169 0.3076 0.3076 171.012 
2 16 58.53 48.66 0.06633 0.13267 1.470 0.0707 0.4879 0.7955 468.697 
3 24 67.02 62.73 0.06633 0.19900 2.105 0.0177 0.2041 0.9996 586.726 

E(nH0 ) = 38.57 E
(
nc,HA

)
= 49.59 E

(
ne,HA

)
= 41.68 Sample Size: nc = ne = 86  

Table 3E 
GSD – Weibull shape β = 1.25, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 14.78 14.78 0.00833 0.00833 2.321 0.0101 0.5572 0.5572 88.429 
2 16 37.60 37.60 0.00833 0.01667 2.294 0.0109 0.3797 0.9369 203.231 
3 24 42.09 42.09 0.00833 0.02500 2.064 0.0195 0.0630 0.9999 220.106  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 14.85 9.45 0.06163 0.06163 0.103 0.4589 0.3141 0.3141 111.019 
2 16 37.67 31.17 0.06163 0.12327 1.450 0.0735 0.4813 0.7954 295.243 
3 24 42.15 40.54 0.06163 0.18490 2.066 0.0194 0.2047 1.0001 349.622 

E(nH0 ) = 25.20 E
(
nc,HA

)
= 31.36 E

(
ne,HA

)
= 26.27 Sample Size: nc = ne = 53  

Table 3F 
GSD – Weibull shape β = 1.50, equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) spending for type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 10.06 10.06 0.00833 0.00833 2.346 0.0095 0.5387 0.5387 61.744 
2 16 26.28 26.28 0.00833 0.01667 2.311 0.0104 0.4093 0.9480 136.052 
3 24 28.79 28.79 0.00833 0.02500 2.086 0.0185 0.0519 0.9999 142.894  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 10.05 5.96 0.06333 0.06333 0.090 0.4643 0.2813 0.2813 78.134 
2 16 26.28 21.82 0.06333 0.12667 1.503 0.0664 0.5223 0.8036 203.570 
3 24 28.76 28.26 0.06333 0.19000 2.086 0.0185 0.1964 1.0000 231.546 

E(nH0 ) = 17.67 E
(
nc,HA

)
= 22.21 E

(
ne,HA

)
= 18.62 Sample Size: nc = ne = 36  
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Table 3A (0.596, 1.604, 2.057) compared to Table 2A (− 0.276, 1.001 
and 1.944). Corresponding to the stop probabilities under H0 and HA, we 
see higher expected sample sizes under H0 and HA in Table 3Acompared 
to Table 2A. Similar trends are seen when comparing Table 3B vs 2B, 3C 
versus 2C and so on. The efficacy and futility boundaries corresponding 
to these tables can be plotted similar to Fig. 2 (but not shown here for 
brevity). 

4.4. Other variations of design features 

Table 4A through 4D display GSDs with variations in design features 
with β0 = 0.75 using the HSD (OBF) error spending function with 
RT(p1) = 1.52, RT(p2) = 1.98. For example, Table 4A displays a GSD 
with 1 futility skip for three equally spaced looks at 8, 16, and 24 

months. Likewise, Table 4B has 2 futility skips for four equally spaced 
looks at 6, 12, 18, and 24 months. Comparing these to Table 2C we see 
that the stop probabilities under H0 and HA are considerably reduced at 
the look times with futility skips since the only reason for stopping the 
trial at these look times is having overwhelming evidence of early effi
cacy. Next, Table 4C represents the results of a GSD with user-defined 
type I and type II error spending whereas Table 4D represents a GSD 
where the sample size calculations are done at the user defined quantile 
value of puser = 0.25 instead of the default pmid =

p1+p2
2 = 0.1+0.9

2 = 0.5. 
That is, without extra user input, the sample size calculations assume 
that pmid is always the midpoint of p1 and p2. However, this need not 
always be the case and any user defined quantile value between p1 and 
p2 can be used to perform the sample size calculations. Since the value of 
RT(0.25) = 1.6567 is smaller than RT(0.5) = 1.7864 we require 168 

Table 4A 
GSD – Weibull shape β = 0.75, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending, 1 futility skip, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 36.73 36.73 0.00130 0.00130 2.906 0.0018 0.0014 0.0014 200.133 
2 16 83.05 83.05 0.00494 0.00625 2.530 0.0057 0.8243 0.8257 523.673 
3 24 96.26 96.26 0.01875 0.02500 1.969 0.0245 0.1745 1.0002 654.905  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 36.65 28.15 0.00000 0.00000 – – 0.0949 0.0949 236.318 
2 16 82.93 67.48 0.04925 0.04925 0.930 0.1762 0.4696 0.5645 691.786 
3 24 96.20 83.62 0.14785 0.19710 1.970 0.0244 0.4355 1.0000 956.703 

E(nH0 ) = 85.25 E
(
nc,HA

)
= 84.41 E

(
ne,HA

)
= 70.78 Sample Size: nc = ne = 130  

Table 4B 
GSD – Weibull shape β = 0.75, 4 equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) spending, 2 futility skips, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 6 24.55 24.55 0.00080 0.00080 3.191 0.0007 0.0008 0.0008 127.293 
2 12 66.60 66.60 0.00218 0.00298 2.903 0.0018 0.0014 0.0022 389.501 
3 18 89.94 89.94 0.00592 0.00890 2.438 0.0074 0.8931 0.8953 582.879 
4 24 98.42 98.42 0.01610 0.02500 1.989 0.0234 0.1047 1.0000 670.121  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 6 24.60 18.57 0.00000 0.00000 – – 0.0248 0.0248 145.242 
2 12 66.69 52.25 0.00000 0.00000 – – 0.2422 0.2670 483.542 
3 18 90.02 74.40 0.06783 0.06783 1.216 0.1119 0.4071 0.6741 794.129 
4 24 98.46 85.44 0.12267 0.19050 1.989 0.0234 0.3259 1.0000 988.607 

E(nH0 ) = 90.78 E
(
nc,HA

)
= 85.42 E

(
ne,HA

)
= 71.26 Sample Size: nc = ne = 133  

Table 4C 
GSD – Weibull shape β = 0.75, equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, User defined type I and II errors, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Test Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 8 40.11 40.11 0.00500 0.00500 2.593 0.0048 0.5146 0.5146 218.714 
2 16 90.67 90.67 0.00750 0.01250 2.313 0.0103 0.3811 0.8957 571.414 
3 24 105.13 105.13 0.01250 0.02500 1.989 0.0233 0.1041 0.9998 714.539  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 8 40.19 30.63 0.04518 0.04518 0.025 0.4901 0.2385 0.2385 257.710 
2 16 90.68 73.70 0.04518 0.09035 1.202 0.1146 0.4753 0.7138 755.900 
3 24 105.12 91.28 0.09035 0.18070 1.989 0.0233 0.2861 0.9999 1055.910 

E(nH0 ) = 66.16 E
(
nc,HA

)
= 82.75 E

(
ne,HA

)
= 68.46 Sample Size: nc = ne = 142  
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subjects in each of the two arms for the GSD in Table 4D compared to 
130 obtained in Table 2C. 

4.5. Efficacy only design 

In some situations, researchers may only be interested in testing for 
superior efficacy of treatment over control. That is, owing to practical 
constraints or ethical considerations, they may not want to terminate a 
trial at an interim look point for futility. Such an ‘efficacy only’ GSD can 
also be planned with some modifications to the code. See online 
Appendix B section 2 for the changes that need to be made to the main 
algorithm of online Appendix B section 1 to design such trials. Table 5A 
displays the results (nc = ne = 114) of an efficacy only design for the 
following combination of inputs:  

• Number of simulations B = 10 000  
• Type I error α = 0.025 (one-sided test)  
• Power 1 − ω = 0.80  
• Mean survival time in Control arm = 4 (months)  
• Quantiles at which the effect size is defined: p1 = 0.10,p2 = 0.90.  
• Effect size at p1 defined as : RT(p1) = 1.52.  

• Effect size at p2 defined as: RT(p2) = 1.98.  
• Control arm shape = β0 = 0.75.  
• Allocation ratio r = 1  
• Proportion loss to follow-up = 0  
• Accrual time a = 12 (months)  
• Accrual pattern = Uniform  
• Total time t = 24 (months)  
• Number of looks m = 3 (equally spaced at 8, 16, and 24 months)  
• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = − 4 i.e. OBF 

type) 

Table 5B shows the results (nc = ne = 136) when RT(p1) = 2, 
RT(p2) = 1.5 and when using the Pocock-type alpha spending function 
for a GSD with 4 looks. All other inputs are kept the same as mentioned 
above. Table 5C shows results (nc = ne = 127) for another scenario 
when a user-defined alpha spending function is used keeping all other 
inputs the same. The values for E

(
nc,H0

)
, E
(
nc,HA

)
and E

(
ne,HA

)
are also 

displayed below each table. The ‘efficacy only’ GSD calculations were 
also validated using PASS 2020 for the special case of the exponential 
distribution (β0 = 1) with RT(p1) = RT(p2) = 1.75 and yielded very 
closely matching sample sizes (but not shown here). 

Table 4D 
GSD – Weibull shape β = 0.75, unequally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, p_user = 0.25, HSD (OBF) spending, 10000 simulations.  

Look 
# 

Look 
Times 

# Events–H0 

Control 
Arm 

# Events–H0 

Treatment Arm 
Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper Significance 
Boundary 
(Efficacy) 
Z Statistic 

Upper Significance 
Boundary(Efficacy) p-value 

Stop 
Probability 
Under H0 

Cumul. Stop 
Probability 
Under H0 

Cumul. 
Subject time 
Under H0 

1 12 84.20 84.20 0.00130 0.00130 2.841 0.0023 0.4396 0.4396 491.787 
2 20 118.29 118.29 0.00494 0.00625 2.461 0.0069 0.4050 0.8446 782.535 
3 24 124.38 124.38 0.01875 0.02500 1.902 0.0286 0.1554 1.0000 846.849  

Look 
# 

Look 
Times 

# Events–HA 

Control 
Arm 

# Events–HA 

Treatment 
Arm 

Beta 
Spent 

Cumul. 
Beta 
Spent 

Lower Significance 
Boundary(Futility) 
Z Test Statistic 

Lower Significance 
Boundary(Futility) p-value 

Stop 
Probability 
Under HA 

Cumul. Stop 
Probability 
Under HA 

Cumul. 
Subject time 
Under HA 

1 12 84.12 66.11 0.00986 0.00986 − 0.141 0.5561 0.2730 0.2730 610.790 
2 20 118.23 99.65 0.03741 0.04727 0.990 0.1612 0.3674 0.6404 1096.640 
3 24 124.31 108.08 0.14193 0.18920 1.902 0.0286 0.3596 1.0000 1248.230 

E(nH0 ) = 104.22 E
(
nc,HA

)
= 111.18 E

(
ne,HA

)
= 93.52 Sample Size: nc = ne = 168  

Table 5A 
GSD – Weibull shape β = 0.75, three equally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, HSD (OBF) for type I, Efficacy Only, 10000 simulations.  

Look 
# 

Look 
Times 

#Events 
–H0 

Control 
Arm 

#Events 
–H0 

Treatment 
Arm 

Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper 
Efficacy 
Boundary 
Z 
Statistic 

Upper 
Efficacy 
Boundary 
p-value 

#Events 
–HA 

Control 
Arm 

#Events 
–HA 

Treatment 
Arm 

Stop 
Probability 
Under HA 

Cumul. 
Stop 
Probability 
Under HA 

Cumul. 
Subject 
time 
Under 
H0 

Cumul. 
Subject 
time 
Under 
HA 

1 8 34.91 34.86 0.00130 0.00130 2.986 0.0014 34.91 26.02 0.0737 0.0737 194.277 223.277 
2 16 82.88 82.82 0.00494 0.00625 2.532 0.0057 82.88 64.91 0.4403 0.5140 538.451 682.668 
3 24 99.87 99.79 0.01875 0.02500 1.992 0.0232 99.87 83.11 0.2969 0.8109 708.996 994.389 

E(nH0 ) = 99.66 E
(
nc,HA

)
= 87.60 E

(
ne,HA

)
= 70.89 Sample Size: nc = ne = 114  

Table 5B 
GSD – Weibull shape β = 0.75, four equally spaced looks, RT(0.1) = 2, RT(0.9) = 1.5, JT (Pocock) for type I, Efficacy Only, 10000 simulations.  

Look 
# 

Look 
Times 

#Events 
–H0 

Control 
Arm 

#Events 
–H0 

Treatment 
Arm 

Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper 
Efficacy 
Boundary 
Z 
Statistic 

Upper 
Efficacy 
Boundary 
p-value 

#Events 
–HA 

Control 
Arm 

#Events 
–HA 

Treatment 
Arm 

Stop 
Probability 
Under HA 

Cumul. 
Stop 
Probability 
Under HA 

Cumul. 
Subject 
time 
Under 
H0 

Cumul. 
Subject 
time 
Under 
HA 

1 6 26.92 26.88 0.00625 0.00625 2.454 0.0071 26.92 19.42 0.1266 0.1266 141.428 160.59 
2 12 75.47 75.49 0.00625 0.01250 2.325 0.0100 75.47 58.74 0.3750 0.5016 452.633 544.99 
3 18 105.91 105.90 0.00625 0.01875 2.232 0.0128 105.91 89.13 0.2212 0.7228 709.029 906.37 
4 24 119.14 119.12 0.00625 0.02500 2.140 0.0162 119.14 105.70 0.0885 0.8113 845.288 1133.58 

E(nH0 ) = 118.20 E
(
nc,HA

)
= 88.16 E

(
ne,HA

)
= 73.50 Sample Size: nc = ne = 136  
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4.6. Comparison with fixed sample design 

One of the vital aspects of implementing a GSD is that it should be 
able to confer some benefits relative to a usual two-arm fixed design. In 
the case of a RCT involving a continuous outcome, the average sample 
size under the two designs can be compared for a given value of an effect 
size used to plan the trial. That is, for the various types of GSDs (with one 
or more futility skips) a statistician would be interested in knowing how 
much reduction (or gain) in sample size can be expected relative to a 
fixed ‘one-look only’ design if a treatment effect of a specific magnitude 
were used to design a study. In the case of a time-to-event endpoint, this 
comparison can be done in terms of average expected number of events 
in the control and treatment arms under the two designs. That is, if a 
GSD trial is stopped early or late (at the final look) for evidence of ef
ficacy or futility, it can be thought to have a desirable operation char
acteristic if, on an average, it leads to less subjects being enrolled 
compared to a fixed design. 

Fig. 3a (front view) and Fig. 3b (side view) illustrate the above- 
mentioned comparison for assessing reduction in expected sample size 
for a ‘fixed design’ versus a ‘3 looks efficacy & futility (with no skips) 
design’. Consider the following design settings for a fixed two-arm 
design.  

• Type I error α = 0.025 (one-sided test),  
• Power 1 − ω = 0.80,  
• Median survival time in Control arm = 4 (months),  
• Quantiles at which the effect size is defined p1 = 0.10,p2 = 0.90,  
• Effect size at p1 defined as : RT(p1) = 1.50,  
• Effect size at p2 defined as: RT(p2) = 2,  
• Control arm shape = β0 = 0.75,  
• Allocation ratio r = 1,  
• Proportion loss to follow-up = 0.20,  
• Accrual time a = 12 (months),  
• Accrual pattern = Uniform,  
• Total time t = 24 (months) 

Under a fixed two-arm trial, N = 139 subjects need to be recruited in 
each of the two arms for the above-mentioned inputs using the method 
of Phadnis and Mayo [17] to detect an effect size of RT(pmid) = 1.788 
with 80 % power resulting in n = 88.606 events (accounting for 
administrative censoring as well as 20 % loss to follow-up). The n =
88.606 events are indicated by the vertical black line (needle) in Fig. 3a 
and b. Once this fixed two-arm trial is started, the enrollment of N = 139 
subjects cannot be altered. However, the actual effect size observed in 
the trial can be different from the effect size used for planning the trial 
and this can affect the actual number of events observed in the trial. The 
green surface indicates the number of events that would be observed in 
this fixed two-arm trial as a function of the actual size of the treatment 
effect. Expectedly, this green surface peaks at the null hypothesis 
(RT(p1) = RT(p2) = 1) with n = 96.358 and is lowest at extreme values 
under the alternate hypothesis (RT(p1) = RT(p2) = 2.5) with n =
84.244. 

Now suppose that we decide to conduct a GSD with the same effect 
size specifications as earlier. We consider two scenarios of planning this 

Fig. 3a. Comparing Average Expected Events of Fixed Design vs GSD with no 
futility skips (Front view). 

Fig. 3b. Comparing Average Expected Events of Fixed Design vs GSD with no 
futility skips (Side view). 

Table 5C 
GSD – Weibull shape β = 0.75, unequally spaced looks, RT(0.1) = 1.52, RT(0.9) = 1.98, user defined type I, Efficacy Only, 10000 simulations.  

Look 
# 

Look 
Times 

#Events 
–H0 

Control 
Arm 

#Events 
–H0 

Treatment 
Arm 

Alpha 
Spent 

Cumul. 
Alpha 
Spent 

Upper 
Efficacy 
Boundary 
Z 
Statistic 

Upper 
Efficacy 
Boundary 
p-value 

#Events 
–HA 

Control 
Arm 

#Events 
–HA 

Treatment 
Arm 

Stop 
Probability 
Under HA 

Cumul. 
Stop 
Probability 
Under HA 

Cumul. 
Subject 
time 
Under 
H0 

Cumul. 
Subject 
time 
Under 
HA 

1 5 18.91 18.95 0.00500 0.00500 2.523 0.0058 18.91 13.92 0.0733 0.0733 95.954 105.45 
2 10 54.17 54.12 0.00750 0.01250 2.396 0.0083 54.17 40.81 0.2810 0.3543 314.083 369.27 
3 24 111.19 111.21 0.01250 0.02500 2.145 0.0160 111.19 92.62 0.4475 0.8018 789.281 1107.67 

E(nH0 ) = 110.31 E
(
nc,HA

)
= 88.40 E

(
ne,HA

)
= 72.29 Sample Size: nc = ne = 127  
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GSD with the design specifications.  

• Number of looks m = 3 (equally spaced at 8, 16, 24 months),  
• Number of skips for futility = 0 

Scenario #1  

• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = − 4 i.e. OBF 
type)  

• Beta spending function = Hwang-Shih-DeCani (with ρ1 = − 4 i.e. OBF 
type) 

Scenario #2  

• Alpha spending function = Hwang-Shih-DeCani (with ρ0 = 1 i.e. Pocock 
type)  

• Beta spending function = Hwang-Shih-DeCani (with ρ1 = 1 i.e. Pocock 
type) 

Under the OBF design plan (Scenario #1), we need to enroll N = 130 
subjects (consistent with the sample size result shown in Section 4.2 for 
β = 0.75 and the OBF plan) resulting in n = 77.202 events using the 
previously mentioned design specifications. Again, once the trial starts 
after enrollment of N = 130 subjects, the expected number of events will 
depend on the actual effect sizes observed in the study. These expected 
number of events are represented by the curved blue surface in Fig. 3a 
and b. Under the null hypothesis (RT(p1) = RT(p2) = 1), the trial is 
likely to stop early for futility (note there are no futility skips) resulting 
in n = 73.922 events. In this case, the stop probabilities at the three looks 
are 0.2257, 0.5584 and 0.1858 respectively. Under the most extreme 
case of the alternative hypothesis (RT(p1) = RT(p2) = 2.5) also, the trial 
is likely to stop early for efficacy resulting in n = 56.822 events. In this 
case, the stop probabilities at the three looks are 0.3652, 0.5745 and 
0.0602 respectively. Thus, the trial has a higher chance of getting halted 
at the first look when RT(p1) = RT(p2) = 2.5 compared to when 
RT(p1) = RT(p2) = 1 thereby reducing the average expected sample 
size. Under other alternative hypothesis scenarios not as extreme as the 
above, average expected number of events depend on the corresponding 
stop probabilities and are well captured by the blue surface. For 

example, when RT(p1) = 1.75 and RT(p2) = 1.25, the average expected 
sample size is 84.687 resulting from stop probabilities of 0.0713, 0.3386 
and 0.5900 at the three looks respectively. The expected sample size 
reduction for the blue surface relative to the green surface ranges from 
7.94 % to 32.55 %. 

Under the Pocock design plan (Scenario #2), we need to enroll N =
152 subjects resulting in n = 75.201 events using the previously 
mentioned design specifications. The average expected sample size for 
this scenario is represented by the red colored surface. Here we see that 
the red surface is always below the blue surface despite enrolling more 
subjects (152 vs 130) in the study. This is a consequence of higher stop 
probabilities at the first look for the Pocock plan compared to the OBF 
plan. For example, in the Pocock plan, under the null hypothesis the stop 
probabilities at the three looks are 0.6510, 0.2880, and 0.0611 respec
tively resulting in an average expected sample size of 63.347. Likewise, 
under the alternate hypothesis represented by RT(p1) = RT(p2) = 2.5 
the stop probabilities at the three looks are 0.6388, 0.3471, and 0.0140 
respectively resulting in an average expected sample size of 52.421. 
Thus, the expected sample size reduction for the red surface relative to 
the green surface ranges from 9.79 % to 37.77 %. 

Fig. 3c (front view) and Fig. 3d (side view) illustrates comparison of a 
fixed design versus a GSD for the same design specifications with one 
notable change – futility is skipped at the first look. The green surface 
(fixed design) is the same as before but the blue (OBF) and red (Pocock) 
surfaces are different owing to there being no testing for futility at the 
first look. The blue and red surfaces are seen to cross each other, and this 
is a consequence of the stop probabilities under the various effect size 
combinations of RT(p1) and RT(p2). The number of subjects to be 
enrolled under the fixed design, GSD with OBF, and GSD with Pocock are 
N = 138, N = 130 and N = 148 respectively. However, under the null 
hypothesis, the stop probabilities for the OBF plan at the three looks are 
0.0013, 0.8244 and 0.1742 respectively resulting in an average expected 
sample size of 85.358. In contrast, under the null hypothesis, the stop 
probabilities for the Pocock plan at the three looks are 0.0092, 0.9535 
and 0.0374 respectively resulting in an average expected sample size of 
94.564. That is, both designs yield a very low stop probability at the first 
look (due to efficacy only as futility testing has been skipped) but the 
higher stop probability at the second look under the Pocock plan in 
combination with the number of events observed in the control and 
treatment arm results in a larger average expected sample size compared 
to the OBF plan. Conversely, under the alternate hypothesis represented Fig. 3c. Comparing Average Expected Events of Fixed Design vs GSD with 1 

futility skip (Front view). 

Fig. 3d. Comparing Average Expected Events of Fixed Design vs GSD with 1 
futility skip (Side view). 
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by RT(p1) = RT(p2) = 2.5, the stop probabilities for the Pocock plan at 
the three looks are 0.6604, 0.3242 and 0.0153 respectively resulting in 
an average expected sample size of 50.078. Corresponding values of stop 
probabilities under the OBF plan are 0.3649, 0.5750 and 0.0600 which 
when combined with the number of events observed in the two arms 
result in an average expected sample size of 56.831. This explains the 
crossing of the two surfaces owing to the manner in which type I and 
type II errors are spent at each of the three looks. 

Overall, both error-spending plans indicate a considerable savings in 
average expected number of events – OBF ranges from 7.94 % to 32.55 
% for no futility skips, Pocock ranges from 9.79 % to 37.77 % for no 
futility skips, OBF ranges from 6.41 % to 32.54 % for one futility skip, 
Pocock ranges from 1.74 % to 40.56 % for one futility skip. These results 
demonstrate the advantages of using the proposed GSD. 

5. Concluding remarks 

In this work, we have shown how a GSD can be implemented for a 
phase III trial in the case of a time-to-event endpoint under non- 
proportional hazards when survival times in the two arms come from 
two different Weibull distributions. The different shape and scale pa
rameters of the two Weibull distributions allow for handling both non- 
PH and non-PT designs, which is an advantage over the previously 
proposed GSD method of Phadnis and Mayo [16] that require the PT 
assumption (AFT model). The proposed method is well suited for a phase 
III trial as it requires a reasonably accurate estimate of the control arm 
Weibull shape parameter, and this can be obtained with ease from a 
previously conducted moderate-sized phase II trial (as discussed in Step 
2 of online Appendix B section 2). The proposed method relies on the 
error-spending approach and the asymptotically normal test statistic 
makes it easy to calculate the efficacy and futility boundaries both on the 
z-scale as well as the p-value scale. One of the main advantages of the 
proposed method is that it allows decision making at the interim looks 
on the very intuitive and patient-friendly interpretation of treatment 
benefit measured through the lens of improvement in longevity. The al
gorithm for implementing the GSD is straightforward and poses no 
computational difficulties since it is based on the Weibull distribution – 
which allows stable estimates even when there a smaller number of 
events at the first look. The method also allows crossing of two survival 
curves (see Step 1 in online Appendix B section 1) with some restrictions. 
It can be implemented for both scenarios – improving or diminishing 
treatment benefits – as indicated by the two examples discussed earlier. 

Many different methods of analyzing specific cases of time-to-event 
data with non-proportional hazards have been proposed in literature. 
However, when it comes to designing a clinical trial with the non- 
proportional hazards, only a few methods are available in popular 
software. Even when such methods are available, they are restricted to 
fixed two-arm trials, and it is not clear how they can be extended to the 
sequential testing framework. For example, popular commercial soft
ware like PASS [14], nQuery [12] and SAS [23] as well as free-to-use 
software like R allow construction of a GSD only under the PH 
assumption with an implicit assumption of exponentially distributed 
times that allow interchangeable inputs of constant hazard rate, median 
time, or proportion of surviving at a given time. Our proposed method 
for the non-PH as well as non-PT scenarios is therefore a timely addition 
to the limited methods available in literature for GSDs. Also, the 
incorporation of Weibull distribution allows more flexibility in modeling 
hazards that are increasing over time or decreasing over time with the 
exponential distribution acting as a special case of constant hazards. 

Although, the method in its current form requires the survival times 
to follow Weibull distributions – a limitation of our approach, it is a step 
in the right direction facilitating interim testing and therefore decision 
making when results from a previous trial indicate that the underlying 
biological process can be well modeled by a Weibull distribution. Our 
approach in using a simulation-based error-spending algorithm is to 
provide a platform for motivating future research in the field of complex 

sequential and adaptive designs with more advanced features. As an 
example, our method could be extended to the field of multi-arm clinical 
trials where it is unlikely that the PH assumption will hold between the 
different treatment arms. In such a case, a GSD based on the concept of 
Relative Time could prove very useful as it could potentially provide 
decision rules at the interim looks to implement arms dropping (worse 
performing arms could be dropped at an interim) and response adaptive 
randomization (new patients could be allocated to those arms which are 
seen to perform better at the interim). The combination of parametric 
approach along with a simulation-based approach could also potentially 
allow incorporation of multi-center (random) effects, delayed entry 
(left-truncation), non-uniform accrual patterns and many such features. 
Overall, we anticipate that researchers and statisticians will find our 
proposed method as useful in making decisions when working with 
phase III trials with time-to-event endpoints in the case of non- 
proportional hazards. 
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