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Abstract
Background: Sphingosine 1-phosphate (S1P), a lysophospholipid, is involved in various cellular processes
such as migration, proliferation, and survival. To date, the impact of S1P on human glioblastoma is not fully
understood. Particularly, the concerted role played by matrix metalloproteinases (MMP) and S1P in
aggressive tumor behavior and angiogenesis remains to be elucidated.

Results: To gain new insights in the effect of S1P on angiogenesis and invasion of this type of malignant
tumor, we used microarrays to investigate the gene expression in glioblastoma as a response to S1P
administration in vitro. We compared the expression profiles for the same cell lines under the influence of
epidermal growth factor (EGF), an important growth factor. We found a set of 72 genes that are
significantly differentially expressed as a unique response to S1P. Based on the result of mining full-text
articles from 20 scientific journals in the field of cancer research published over a period of five years, we
inferred gene-gene interaction networks for these 72 differentially expressed genes. Among the generated
networks, we identified a particularly interesting one. It describes a cascading event, triggered by S1P,
leading to the transactivation of MMP-9 via neuregulin-1 (NRG-1), vascular endothelial growth factor
(VEGF), and the urokinase-type plasminogen activator (uPA). This interaction network has the potential
to shed new light on our understanding of the role played by MMP-9 in invasive glioblastomas.

Conclusion: Automated extraction of information from biological literature promises to play an
increasingly important role in biological knowledge discovery. This is particularly true for high-throughput
approaches, such as microarrays, and for combining and integrating data from different sources. Text
mining may hold the key to unraveling previously unknown relationships between biological entities and
could develop into an indispensable instrument in the process of formulating novel and potentially
promising hypotheses.
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Background
The platelet-derived lipid mediator sphingosine-1-phos-
phate (S1P) is an endogenous ligand of the endothelial
differentiation gene (EDG) family of G protein-coupled
receptors [1]. S1P is involved in various cellular responses
such as apoptosis, proliferation, and cell migration [2,3].
The specific effects of S1P on glioblastoma cells have
begun to be explored. S1P is mitogenic and stimulates
motility and invasiveness of glioblastoma cell lines in vitro
[4,5]. Moreover, high levels of expression of the enzyme
that forms S1P, sphingosine kinase-1, correlate with
shorter survival of glioblastoma patients [6]. However, the
mechanisms behind the effects of S1P on glioblastoma
cells in vitro and on the malignancy of glioblastomas in
vivo remain largely undetermined.

Glioblastoma multiforme (GBM) is the most frequent
and most malignant brain tumor accounting for approxi-
mately 12–15% of all intracranial neoplasms and 50–
60% of all astrocytic tumors [7]. Glioblastomas are com-
posed of poorly differentiated neoplastic astrocytes and
affect predominantly adults [7]. The progression of gli-
oma to malignant glioblastoma usually involves neovas-
cularization [8]. We have investigated the roles played by
S1P in regulating the malignant behavior of human glio-
mas. Using a panel of human glioma cell lines we deter-
mined that S1P was mitogenic for approximately 50% of
the cell lines tested [4]. In addition, S1P stimulated motil-
ity and invasiveness through Matrigel of 60% of human
glioma cell lines tested [5]. S1P is known to have different
effects on cell migration depending upon which of its
receptors are expressed. S1P signaling through S1P1 and
S1P3 receptors enhances cell migration, while S1P2 signal-
ing blocks migration [9]. Thus, whether a glioma cell line
responds to S1P with proliferation or motility, or both or
neither, is due to the profile of S1P receptor expression.
The cell line used in this study, U-373 MG, expresses all
three of these S1P receptors at similar levels and responds
to S1P both mitogenically and with enhanced motility
and invasiveness. Cell lines that do not respond mitogen-
ically to S1P express extremely low levels of the receptor
S1P1 [5], suggesting that this receptor is crucial for medi-
ating S1P-stimulated glioma cell proliferation. Con-
versely, glioma cells in which S1P stimulates motility
express high proportions of S1P1 and S1P3, relative to
S1P2 [5]. By overexpressing or knocking down S1P recep-
tor expression in glioma cells, Lepley et al. showed that the
S1P2 receptor mediates inhibition of migration, while
S1P1 mediates enhanced glioma cell migration in
response to S1P [3]. Malchinkhuu et al. confirmed that
S1P inhibits migration of some glioma cell lines through
S1P2 signaling [10]. They also suggested that S1P2 is up-
regulated in astrocytoma cells in comparison to normal
astrocytes based upon receptor expression in glioma cell
lines and GBM tissue [10]. However, their analysis of

GBM tissue utilized only two cases. We recently examined
expression levels of S1P1, S1P2, and S1P3 by real time PCR
analysis in 48 cases of GBM in comparison to 20 cases of
the relatively benign pilocytic astrocytoma [6]. We found
no significant difference in expression of S1P1, S1P2, or
S1P3 between these two tumor types. However, S1P2
expression in GBMs was consistently lower than that of
S1P1 or S1P3. Thus, although its expression level is high in
some long term glioma cell lines, S1P2 is not likely to be a
dominant S1P receptor in gliomas in vivo. This suggests
that the pro-migratory effect of S1P may be dominant in
glioma cells in vivo.

To date, the impact of S1P on human glioblastoma is not
fully understood. To gain new insights in the effects of S1P
on this type of malignant tumor, we used gene expression
analysis to investigate the response of a glioblastoma cell
line (U373MG) to S1P administration in culture. Seventy-
two genes were found to be differentially expressed (six
genes are down-, whereas 66 are upregulated as response
to S1P).

It has been estimated that only 20% of biological infor-
mation and data are available in structured format or
database systems. The remaining 80% are coded in natu-
ral language in technical reports, web sites, research pub-
lications and other text documents [11]. To elucidate the
possible relationships and pathways of the genes that we
found to be differentially expressed uniquely as a
response to S1P, we have developed a system that facili-
tates the discovery of such relationships from the scientific
literature. As manual information extraction (i.e., exhaus-
tive reading of papers by humans) is very time-consuming
and costly, many text mining and information extraction
methods have been developed for automatic extraction of
interaction and pathway information from the scientific
literature [12,13]. By processing only the abstracts of
papers, most of these systems were developed and tested
on small portions of the available data. Some of the com-
mercially available software packages such as Pathway
Central® (Ariadne Genomics, Inc.) are based on Medline
abstracts.

Text mining of biomedical literature has already been
applied successfully to various biological problems
including the discovery and characterization of molecular
interactions (protein-protein [14-18], gene-protein [12],
gene-drug [19]), protein sorting [20,21], and molecular
binding [22]). Most of these examples, however, have
been based on the abstracts of research articles. The pri-
mary reason for this focus is the easy availability through
MEDLINE and because they provide a highly concentrated
source of information. There are currently more than 15
million abstracts in MEDLINE and more than 40 000
abstracts are added monthly. Full-text articles, on the
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other hand, are more comprehensive, more specific and
detailed to address questions in biomedical research and
development. Little research is available on text mining of
full-text biological literature as opposed to article
abstracts. The literature on mining of full-text documents
in biology and medicine is much more limited than that
on abstracts. For example, Shah et al. performed a system-
atic comparison of full-text and abstracts with respect to
the information pertaining at keywords [23]. Shah et al.
conclude that information extraction should be per-
formed using full text articles. Yu et al. used full text arti-
cles to find synonyms of gene names that are not
mentioned in abstracts [24]. Friedman et al. explored the
distribution of molecular pathways in abstracts versus full
text in single review papers [18]. Full-text documents
often contain novel and important information not con-
tained in the article's abstract [25]. Recently, Schuemie et
al. applied information retrieval based approaches and
compared the distribution of information in full-text ver-
sus abstracts [26]. The results of their study showed that
the highest information coverage is located in the results
section, while abstracts have the highest information den-
sity. Schuemie et al. argue for using full-text articles instead
of abstracts.

This study presents an actual attempt to apply text mining
in the context of a real biological research setting. The goal
of this study is to decipher the impact of S1P on glioblas-
toma cell lines U373 MG. We are particularly interested in
the effect of S1P on invasivity and downstream cascading
events that could result from differential gene expression

as a response to the stimulus. These events are described
in gene-gene interaction networks, which we constructed
based on pair-wise interaction patterns derived from text
mining. Motivated by the results by Schuemie et al. [26],
we decided to mine full-text biomedical articles. This
study demonstrates that based on the text mining results
involving full-texts of 20 peer-reviewed journals publish-
ing cancer research papers, in combination with a novel
approach for constructing interaction networks, it is pos-
sible to detect interesting gene relationships that might
shed new light on our understanding of the cascading
events triggered by S1P. Particularly, our study links S1P
to the activation of MMP-9, a major culprit in tumor inva-
sion. Matrix metalloproteinases (MMPs) are believed to
play a crucial role in the malignant behavior of cancer
cells such as rapid tumor growth, invasion, and metastasis
by degrading extracellular matrix [27]. MMP-9 appears to
be a key player in glioma invasion and angiogenesis [8],
and has been shown to play an important role in aggres-
sive behavior in a wide range of tumors [28].

Results
Extraction of gene relationships based on text mining
Motivated by the results from [23,24,26], we collected
full-text articles published in 20 peer-reviewed journals in
the field of molecular biology and biomedicine related to
cancer research over a five-year period (1999 to 2003).
The selection criteria of these journals were based on our
research interest in brain tumors, journal impact factors,
publisher representation and availability of electronic
forms. The articles were downloaded from the journal
sites using the automatic download agent GetItRight (CTH
Technologies, Oakbrook, IL), as previously described
[25]. All articles were downloaded as HTML text without
images and then converted into XML documents. The
resulting corpus of documents comprises 119 332 full-text
articles. Table 1 provides a list of the selected journal arti-
cles and the total number of articles from each journal.

The interactions between the genes and proteins were
extracted by text mining and natural language processing
(NLP) methods as described in [25]. To summarize, our
NLP methods comprise the following steps:

1. Tokenizing the text into sentences;

2. Parsing the sentences to identify noun phrases and verb
phrases;

3. Selecting sentences that contain gene annotations using
provided gene/protein name, relation, and synonym dic-
tionaries;

4. Extracting gene annotations using pattern matching
rules.

Table 1: Journals and number of downloaded articles.

Journal Name # of Articles

1 Journal of Biological Chemistry 24 846
2 Science 11 440
3 PNAS 11 345
4 Journal of Neuroscience 10 758
5 Biochemical and Biophysical Research Communications 7 529
6 Biochemistry 6 205
7 Nature 5 825
8 FEBS Letters 4 725
9 Brain Research 4 648
10 Neurology 4 612
11 Cancer Research 4 550
12 Oncogene 3 910
13 Nucleic Acid Research 3 492
14 Cancer 3 059
15 International Journal of Cancer 2 906
16 EMBO Journal 2 729
17 Journal of Cell Biology 2 625
18 Neuron 1 573
19 Cell 1 553
20 Genes and Development 1 002

TOTAL 119 332
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The text mining and further extraction of gene relations
were performed using LexiQuest Mine® (SPSS, Chicago,
IL) with in-house developed dictionaries of gene/protein
names, synonyms, and gene relationship information
[25]. We performed a full-text parsing of individual article
sections (abstracts, introduction, materials and methods,
results and discussion, figure legends, and table captions)
followed by extraction of pair-wise relationships between
genes and proteins at a sentence level. For example, in the
following sentence the gene/protein names and their rela-
tionship, identified by the verb, are flagged as follows.

Example 1:

Nevertheless, <*beta-catenin*> elicited a further
<*increase*> in <*arf protein*> (2.5-fold after normali-
zation for alpha-tubulin, figure b).

The extracted pattern from this sentence is hence 'beta-cat-
enin | increases | arf protein.' Full pattern extraction was
not possible for all sentences because the verb could not
always be identified, as shown in the following example:

Example 2:

The extreme n terminus of aky2p has the ability to target
cytoplasmic passengers, i.e. murine <*dihydrofolate
reductase*> or <*ura6p*> from yeast, to mitochondrial
locations ().

Here the extracted pattern is 'dihydrofolate reductase |
NULL | ura6p', where NULL indicates that the type of rela-
tionship could not be specified ('NULL-pattern').

Gene synonym dictionary
A major problem in the interpretation of the extracted pat-
terns is the plethora of gene aliases. We created a synon-
ymy dictionary with a preferred (or canonical) name for
each gene or protein. This dictionary was compiled on the
basis of Entrez Gene (formally LocusLink) as primary
source and from other publicly available databases. The
gene dictionary currently comprises 282 882 unique gene
and protein names and 274 845 synonyms. We matched
the extracted patterns against this dictionary and replaced
each gene name by a canonical gene name to curate the
extracted patterns. This functionality is realized via a cura-
tor module that replaces each gene and protein name by its
canonical term. For instance, the curated pattern for
Example 1 is 'CTNNB1 | increases | ARF', because
CTNNB1 is the preferred expression for beta-catenin.

Data warehousing
We developed a data warehouse based on a relational
database management system (RDBMS) to store the total
of 455 222 patterns of extracted pair-wise interactions.
The organization of the pre-processed information in the
data warehouse facilitates efficient analysis and cross-ref-
erencing of the stored patterns with their source. The
number of unique gene or protein names is 30 538 with
TP53 accounting for the most frequent term that occurs in
16 431 patterns (3.6%). Among all patterns, 85 149
(18.7%) were complete, specifying both genes and the
type of the relationship. The majority of the remaining
relationships were missing the type of relationship. In
total, 54 distinct types of relationships were identified.
Figure 1 shows the distribution of the ten most frequent
types of relationships.

Frequency distribution of relationship typesFigure 1
Frequency distribution of relationship types. Relationships were identified from sentence level extraction using Lex-
iQuest Mine (SPSS, Chicago,IL) and patterns developed as previously described [25]. In total, 54 types of relationships were 
identified. The name and percentage occurrence of the top 10 relationships are shown. The most frequent type of relationship 
refers to 'interaction' (14.4%); the least frequent type refers to 'homo-oligomerization', featured in only two patterns.
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The data warehouse also contains the full-text sentence
from which the respective patterns were extracted. Figure
2 depicts a schematic summary of the pattern extraction
process and the data warehouse.

Deriving gene-gene interaction networks
One of the key results of gene expression studies based on
microarrays is a list of genes that are differentially
expressed under specific experimental conditions. Statisti-
cal methods are often used to identify these differently
expressed genes. These methods, however, are unable to
provide information on the biological implication or rela-
tionship among the genes on the list. The researcher often
faces the tedious task of establishing functional relation-
ships between the differentially expressed genes and ana-
lyzing potential downstream cascading events. To retrieve
networks of interactions between the genes of interest, the
data warehouse described above was matched against a
table comprising results from a gene expression analysis
after stimulation of a human glioma cell line (U373MG)
with S1P. We excluded incomplete patterns ('NULL-pat-
terns'), because they cannot be meaningfully included in
the network generation process. Some of the NULL-pat-

terns might describe interesting relationships and hence
could be relevant for our research question. However,
note that this does not affect the accuracy of the interac-
tion networks that are derived from complete patterns.

The S1P gene list was derived from Affymetrix Gene Chip
experiments. Differential gene expression was determined
by comparison of resting U373MG cells with those stimu-
lated with either S1P or EGF for 1 hour (see Methods).
Similarly to S1P, EGF stimulates proliferation and motil-
ity/invasivity of cultured U373MG cells. In this experi-
ment EGF stimulation served as a control to help identify
differential gene expression due to common cellular proc-
esses. We identified 88 differentially expressed genes com-
mon to stimulation with either EGF or S1P. Many of these
genes were related to the cell cycle suggesting a relation-
ship to the proliferation phenotype. In total, 84 genes
were identified as being unique to EGF stimulation. Sev-
enty-two genes were differentially expressed specifically in
response to S1P.

In the present study, we were interested in discovering
interaction networks involving the set of 72 differentially

Schematic diagram of the text mining analysis pipelineFigure 2
Schematic diagram of the text mining analysis pipeline. Full-text articles are downloaded and processed using the 
download agent GetItRight. The resulting HTML files are converted to XML. Biological entities (genes, proteins) and their rela-
tionships (activation, inhibition, etc.) are extracted from LexiQuest Mine (SPSS, Chicago, IL). The resulting patterns are stored 
in the text mining data warehouse. The text mining data is matched with results from a differential gene expression experi-
ment.
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expressed genes in response to S1P. Genes were consid-
ered differentially expressed if their p-value is smaller than
0.15. This relatively liberal choice for the cut-off relaxes
the inclusion criterion for genes in the text mining analy-
sis and is motivated by the assumption that even small
changes in expression might be biologically relevant. We
were particularly interested in the effect of S1P on invasiv-
ity. The S1P gene expression results can be thought of as
two interaction networks: A network of interactions that
links the differentially expressed genes to the stimulant,
S1P, and another interaction network that links the gene
list to the invasivity phenotype. The inclusion criteria to
select relationships from the data warehouse for the
former network were relationships that contained explic-
itly either 'S1P'or 'sphingosine-1-phosphate' in the sen-
tence field. Similarly, the key words from the sentence
field for the network linking the genes to invasion are:

'invasive', 'invasion', 'invasivity', and 'invasiveness'. Both
of these networks were represented as directed pseudog-
raphs (see Methods).

Gene interaction networks suggest S1P-mediated events 
leading to tumor invasivity
Figure 3 depicts an interaction network where the red ver-
tices are the differentially expressed genes. A similar net-
work related to invasion is shown in Figure 4. The blue
vertices and purple arcs are those gene names and rela-
tionships contained in both networks and show an inter-
secting sub-network. All red vertices represent genes that
are significantly up-regulated.

We visually inspected both networks and verified the
extracted relationships by checking the respective full-text
sentences. As expected, the network in Figure 4 contains

S1P-NetworkFigure 3
S1P-Network. Interaction network for differentially expressed genes (sentences related to S1P). The directed pseudograph 
of relationships related to S1P was generated as described in materials and methods. Seed vertices (shown in red) are the gene 
names from the list of 72 differentially expressed genes. Blue vertices and bold purple arcs represent genes and relationships 
that were found in this interaction network and in the interaction network related to invasivity shown in Figure 4.
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several MMPs and uPA, which are believed to play a piv-
otal role in tumor invasivity by degrading extracellular
matrix [27]. Based on the blue vertices and purple arcs
that defined an intersecting sub-network, we manually
distilled those patterns that appeared to link S1P to inva-
sivity. The resulting sub-network graph is depicted in Fig-
ure 5. One of the genes on the S1P list, uPA, stood out as
an important hub in this sub-network. It could directly
(MMP-9) and indirectly (MMP-1) activate MMPs as well
as other extracellular matrix proteins. It could also be
related directly back to S1P through the transcription fac-
tor NF-κB [19]. Figure 5 also shows an interesting link
between S1P, neuregulin (NRG-1), and MMP-9. Our
microarray data show that NRG-1 is upregulated by S1P in

U-373 MG cells. In addition to being directly activated
and upregulated by S1P, NRG-1 directly activates MMP-9
and indirectly activates uPA through up-regulation of vas-
cular endothelial growth factor (VEGF). The specific rela-
tionship NRG-1 → MMP-9 was extracted in the present
study from an article by Yao et al. [28]. This study revealed
that NRG-1 activates MMP-9 via multiple signaling path-
ways (ERK-, PKC-, and p38 kinase-pathway) in human
breast cancer cell lines [28].

In addition, the network in Figure 5 contains several addi-
tional known pathways leading to the activation of uPA
and invasion. For instance, S1P is known to activate PI-3
kinase [29,30] in several cell types including glioma cells

nvasion-NetworkFigure 4
nvasion-Network. Gene interaction network of genes related to invasivity. The directed pseudograph of relationships 
related to invasivity was generated as described in materials and methods. Seed vertices (shown in red) are the gene names 
from the list of 72 differentially expressed genes. Blue vertices and bold purple arcs represent genes and relationships that 
were found in this interaction network and in the interaction network related to S1P shown in Figure 3. Genes directly related 
to matrix metalloproteinases (key components of invasivity) are highlighted by the mustard-colored ovals.
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[4]. PI-3 kinase signaling through AKT and NF-κB is
known to stimulate uPA expression and secretion [31].

Comparison to other systems based on text mining
We compared the results of our study with three other sys-
tems that rely on text mining results of abstracts only: (1)
iHop [32], (2) PathwayStudio Central® with its proprie-
tary ResNet® database 3.0 [33], and (3) PubGene [34].

iHop (Information Hyperlinked over Proteins) is a free
academic service that allows the user to retrieve sentences
from PubMed abstracts that match a specified gene/pro-
tein name. iHop uses gene/protein names as hyperlinks
between sentences in these abstracts, so that the abstracts
in PubMed can be converted into one navigable resource.
For a user-defined gene or protein name, iHop extracts
one key sentence from each PubMed abstract that con-
tains this specific name and a link to other genes or pro-
teins. We retrieved the abstract sentences for NRG-1 and
searched for sentences linking NRG-1 to either S1P or
MMP-9 and found the publication by Atlas et al. [44],
linking NRG-1 to up-regulation of MMP-9 in mouse
breast cancer cells in vivo. We then retrieved all sentences
related to the S1P receptors EDG-1, EDG-3, EDG-5, EDG-
6, and EDG-8. We checked each sentence for the co-occur-

rence of the terms 'NRG-1', 'neuregulin-1', 'heregulin-β1'
(synonym to NRG-1), and 'MMP-9'. The receptor EDG-8
was found in connection with the term 'NRG-1'. When we
checked the associated abstracts, however, it became clear
that this term refers to the G protein-coupled receptor
EDG-8 (synonym to NRG-1 [35]) and not to neuregulin-
1. In summary, we could not find any links between S1P
or its EDG receptors and neuregulin-1. iHop provides a
tool for constructing gene-gene interaction networks, but
based on sentences that need to be selected manually.
Thereby, it is possible to create an interaction network
linking NRG-1, MMP-9, uPA, and VEGF; however, the
user needs to sift through a large number of sentences to
retrieve the corresponding information.

ResNet 3.0 contains molecular interactions for human,
mouse, and rat, compiled on the basis of Medline
abstracts. The current version ResNet 3.0 was released in
August 2005, and the current number of Medline abstracts
is approximately 15 million. To our knowledge, this rep-
resents one of the most exhaustive databases of scientific
abstracts commercially available today. We used Pathway-
Studio Central and ResNet 3.0 to infer direct interaction
networks between NRG-1 (or heregulin-β1), S1P recep-
tors, uPA (a.k.a. PLAU), and MMP-9. For the interaction

Intersection-NetworkFigure 5
Intersection-Network. Gene interaction network derived from an intersection of the S1P- and invasion-network. This inter-
action network was hand drawn using gene names found in the S1P (Figure 3) and invasivity (Figure 4) networks as input verti-
ces. In addition to the direction of the relationship shown by the arrow, the type is also depicted as text superimposed onto 
the arrow. The resulting graph contains several genes differentially expressed in the presence of S1P. These are shown in the 
red ovals. Genes directly related to matrix metalloproteinases are highlighted by the mustard-colored ovals. Key relationships 
describing the most direct connections between S1P and invasivity are highlighted by the bold purple arrows. The red arrow 
indicates that S1P induced transcription of NRG-1 in the microarray experiments.
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between NRG-1 and MMP-9, PathwayStudio Central
depicts an inhibitory effect that is described by Puricelli et
al. [36]. PathwayStudio Central also retrieves the publica-
tion by Yao et al. [28], which describes the activation of
MMP-9 by NRG-1. PathwayStudio Central identifies a
relationship between PLAU (uPA) and NRG-1 that is not
contained in our data warehouse. This relationship was
extracted from the following sentence: 'A specific antago-
nist of uPA receptor completely blocked the formation of
these luminal glandular structures induced by PGE2 and
HRG.' [abstract from [37]]. The activation of MMP-9 via
PLAU (uPA) is extracted from [38-40]. Interestingly, the
network produced by PathwayStudio Central retrieves a
link between neuregulin-1 and EDG-5. The full sentence
from which the relation is extracted is: 'Chromosomal
mapping employing a rat somatic cell radiation hybrid
panel demonstrated that nrg-1 is linked to marker
D8Rat54 and tightly associated with H218 on chromo-
some 8.' In this context, 'nrg-1' refers to EDG-8, and H218
refers to EDG-5. However, the system assumes that NRG-
1 represents EDG-8 in the interaction NRG-1 → EDG-5,
but it assumes that NRG-1 represents neuregulin in the
interaction NRG-1 → MMP-9. This problem is due to the
polysemy of NRG-1.

Like iHop, PathwayStudio Central converts the term 'S1P'
into membrane-bound transcription factor protease, site
1 (MBTPS1), since it is based on protein or gene names
and not lipid molecules. As an alternative approach, we
searched for interactions based on the S1P metabolic
enzymes, sphingosine kinase (SPHK), sphingosine-1-
phosphate lyase 1 (SGPL1) and sphingosine-1-phosphate
phosphatase 1 (SGPP1) with NRG-1, MMP-9, NF-κB, and
PLAU, but without any success.

PubGene comprises a database and analysis software for
detecting relationships between genes and proteins, dis-
eases, cell processes, cellular components, and drugs
based on their statistical co-occurrence in the abstracts of
scientific papers [34]. PubGene provides a network
browser for visualizing gene-gene interactions. Like Path-
wayStudio Central, PubGene is based on protein or gene
names and not lipid molecules; hence, it converts the term
'S1P' into membrane-bound transcription factor protease,
site 1 (MBTPS1). We constructed a network for the S1P
metabolic enzymes, sphingosine kinase (SPHK), sphingo-
sine-1-phosphate lyase 1 (SGPL1) and sphingosine-1-
phosphate phosphatase 1 (SGPP1) with NRG-1, MMP-9,
NF-κB, and PLAU. In the resulting network, NRG-1 is
linked to ERB2, ERB3, ERB4, EGFR, DSTN, and MMP-9.
The connection to MMP-9 is described in a single publica-
tion that links up-regulation of neuregulin and MMP-9 in
rat pancreatic carcinoma cell lines [41]. Importantly, Pub-
Gene is based on statistical co-occurrences of terms, which
is not limited by sentence boundaries. In fact, the terms

'neuregulin' and 'MMP-9' occur in different sentences in
the abstract from [41]. On the other hand, the arcs in the
PubGene network do not indicate the type of the interac-
tion; hence, the user needs to infer the particular relation-
ship between NRG-1 and MMP-9 from the abstract.
Interestingly, NRG-1 is not polysemic in PubGene as it
refers unambiguously to neuregulin and not to EDG-8.

Discussion
The overall utility of our text mining approach, including
the strategy for constructing interaction networks, is dem-
onstrated in the relationships discovered from the S1P
gene list. Importantly, our text mining approach extracts
and specifies the type of the interaction (e.g., 'activation',
'inhibition', etc.) explicitly. The experimental results indi-
cate that addition of S1P induced overexpression of NRG-
1 and uPA (and other genes) in a glioblastoma cell line
and increased motility/invasivity. The relationship
between NRG-1 and uPA leading to activation of MMP-9
was identified from both abstract-based text mining and
our full-text based mining.

As shown in [26], omitting sections of text can entail a
serious loss of information. Full-text, including figure and
table captions, might be more appropriate than abstracts
alone to infer patterns of pair-wise gene-gene interactions.
On the other hand, mining full-text necessarily increases
the noise, reflected by the huge number of NULL-patterns
that we needed to exclude from further analysis. It is note-
worthy that depending on the specific analysis task at
hand, abstracts might be the better choice, as demon-
strated in the study by Ehrler et al. who achieved a higher
accuracy in text categorization by using abstracts only
[42]. Gay et al. extracted key words for indexing from var-
ious sections of texts [43]. They obtained significantly bet-
ter indexing results based on the sections results, results
and discussion, conclusions, abstract and title, as com-
pared to abstract and title alone. However, they also
observed that the naïve use of complete manuscripts
reduces the precision. Therefore, we cannot generally rec-
ommend the use of full-text articles instead of abstracts
only.

The microarray data showed that NRG-1 is up-regulated
by S1P in U-373 MG cells. The role of NRG-1 in tumor
invasion and metastasis is still unclear [28]. A study by
Yao et al. revealed that NRG-1 activates MMP-9 via multi-
ple signaling pathways (ERK-, PKC-, and p38 kinase-path-
way) in human breast cancer cell lines [28]. From the
publication of Yao et al., the specific relationship NRG-1
→ MMP-9 was extracted in the present study. Yao et al.
proposed two models that might explain their observa-
tions. First, there is cross-talk between different signaling
pathways and the blockage of one pathway leads to the
activation of the other pathways. Alternatively, it might be
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possible that the transcriptional activation of MMP-9
requires the input of all three pathways. This input might
be merged to a common target complex that must exceed
a certain threshold value. This hypothesis explains why
blockage of a single pathway can counteract activation of
MMP-9, whereas increased signals from one single path-
way can activate MMP-9. Yao et al. conclude that by block-
ing NRG-1, it is possible to inhibit MMP-9 activation and
thereby inhibit cancer metastasis and angiogenesis. More
recently, Atlas et al. have shown that in the mouse model,
heregulin induces aggressive breast cancer behavior, via
up-regulation of MMP-9 and VEGF [44]. NRG-1 upregu-
lates VEGF in human breast cancer cell lines [45]. VEGF is
one of the numerous proangiogenic molecules that have
been identified to play an important role in the control of
brain angiogenesis [46].

Many studies have implicated uPA in invasiveness of a
variety of cancers including brain tumors [47,48]. It is
tempting to hypothesize that in glioblastoma cell lines
U373 MG, S1P induces invasion via cross-talk between
pathways that include uPA, MMP-9, NRG-1, and VEGF.
Figure 5 implies a multi-level regulation of uPA by S1P.
S1P activates NF-κB to promote transcription of uPA [49].
Lysophosphatidic acid, which signals through receptors
closely related to S1P receptors, is known to use this path-
way to induce uPA transcription [50]. S1P activation of PI-
3 kinase signaling through AKT and NF-κB is known to
stimulate uPA expression and secretion [31]. Activation of
Rac signaling through MKK3, p38 and MAPKAPK2
enhances stability of uPA mRNA [51]. MAPKAPK2
enhancement of uPA mRNA stability has been shown to
be mediated by the RNA binding protein HuR [52]. S1P is
well known to activate Rac [3,53,54] and p38 [55-57] in a
variety of cell types. Further, it is known that S1P activates
the serine protease matriptase [58], which has been
shown to cleave and activate pro-uPA [59]. These data all
suggest that S1P has the potential to effect transcription,
message stability and activation of uPA.

We chose to extract gene-gene relationships from sen-
tence-level linguistic processing. It is being debated as to
what the best unit for text mining is. Advantages and dis-
advantages have been reported for all common text
processing units including abstracts, sentences, and
phrases. Ding et al. suggest that sophisticated text process-
ing techniques are likely to be more beneficial to smaller
text processing units because shorter lengths, simpler
structures, and higher proximity of relevant verbs and bio-
chemical nouns make their processing more tractable
[60]. For example, appropriate verbs such as bind, inhibit,
activate, in close proximity to biochemical terms are likely
to be better indicators of an interaction than more distant
verbs. Most of the patterns used in our linguistic extrac-
tion were designed with this in mind. The data warehouse

developed for this study contains patterns in the form of:
gene A | interaction verb | gene B.

The sentence-level processing approach, however, can
produce the same pattern for very different statements.
For example, both of the following sentences, S1 and S2,
produce the same pattern P.

S1: 'It is highly questionable that gene A activates gene B'

⇒ P: gene A | activates | gene B

S2: 'It is highly likely that gene A activates gene B'

⇒ P: gene A | activates | gene B

To address this we manually checked the full-text sen-
tences from which the patterns have been extracted and
discarded those interactions for Figure 5 that are judged to
be wrong or misleading. For instance, the interaction net-
work in Figure 3 contains the relationship 'EDG1 | acti-
vates | nf-kappab'; however, this pattern has been extracted
from the following sentence: "The inability of <*edg-1*>
to <*activate*> <*nf-kappab*> regardless of s1p cannot
be attributed to low expression levels of the receptor,
because edg-1 was expressed to a greater extent than both
edg-3 and edg-5." Currently, we do not see any way how
to solve this problem automatically. Future research will
have to address this issue.

In order to meaningfully visualize the interaction net-
works, we developed a pruning strategy for selecting
higher-level transitive dependencies that meet certain
inclusion criteria (see Methods). All red vertices represent
significantly up-regulated genes as response to S1P, which
facilitates the interpretation of cascading downstream
events in this study. Future work will need to focus on
how to interpret the complex interplay between up- and
downregulated genes in interaction networks.

A major problem in text mining of biological literature is
polysemy, where the same abbreviation or name can refer
to different biological entities. This problem has been
recently reviewed [61]. In the S1P example described in
the results section, the term NRG-1 can refer to neuregu-
lin-1 or EDG-8, which has led to misleading results (and
also caused some confusion to the authors). The synonym
dictionaries that were developed for the present study also
contain ambiguities. For example, 'Hsp90' is an alias for
'Hsp86' (heat shock 90 kDa protein 1, alpha) and
'HSPCB' (heat shock 90 kDa protein 1, beta). The name
'AR' is an alias for 'AREG' (amphiregulin, schwannoma-
derived growth factor) and 'AkR1B1' (aldo-keto reductase
family 1, member B1). Such examples of ambiguity can
also be found in other systems, e.g., iHop. Case-sensitivity
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is another problem in our dictionaries. For instance, the
canonical expression for 'Acc' is 'Acc', whereas the canon-
ical term for 'ACC' is 'ACACA'. Although 'Acc', ACC', and
'ACACA' are synonyms for acetyl-Coenzyme A carboxy-
lase alpha, there is a potential pitfall. If a pattern contains
the expression 'Acc', then the curator module identifies it
as canonical term and does not replace it. On the other
hand, 'ACC' is replaced by 'ACACA'. In gene symbol nam-
ing conventions, it is accepted that the case does matter
[62]. For example, 'PSA' refers to 'prostate specific anti-
gen', whereas 'psa' refers to 'pleiomorphic adenoma gene
1'. Statistics about the problem of case-sensitivity in this
context can be found in [62]. We consider gene name
ambiguity as one of the major pitfalls in text mining of
biological texts. Chen et al. recently invited the commu-
nity to use only official symbols in their publications and
to revise naming conventions [61], two essential goals
that we believe need to be achieved in order to exploit the
full potential of text mining. Future research will need to
focus on in silico approaches to tackle this ambiguity prob-
lem. Intelligent text mining tools are needed to under-
stand in which context NRG-1 refers to neuregulin-1 and
in which context it refers to EDG-8.

Recent advances in the areas of genomics and proteomics
have become increasingly dependent on high throughput
approaches. Analysis and data mining of these experi-
ments yield lists of genes or proteins that may not have a
readily apparent relationship. The research literature is an
obvious source to help uncover these relationships.
Abstracts (e.g., MEDLINE) and full-text articles are two
main sources of textual data in biology and biomedicine.
The processing and analysis of full-text is more demand-
ing and complex than mining abstracts only. First, it is
computationally expensive. Second, the access to full-text
documents can be limiting. Third, the more complex lan-
guage structures make extraction of relationships more
difficult. The approach described here and elsewhere
[25,63] automates the process of downloading articles
and concept extraction. Automation is a distinct advan-
tage in the ability to update and maintain the data ware-
house. With more and more articles becoming available
electronically through open access publishing and library
subscriptions it is becoming easier to obtain full-text arti-
cles.

Conclusion
The famous quote by the biochemist Frank Westheimer,
'A couple of months in the laboratory can frequently save
a couple of hours in the library', is more than ever relevant
in modern research practice. In the present study, we dem-
onstrated how text mining could be a potential addition
to the toolbox helping to generate novel and promising
hypotheses. We found that regulation of uPA, NRG-1 and
MMP-9 by S1P could be a key player in the invasion of

glioblastoma cells. Our methodology could be applied in
similar studies investigating gene-gene relationships in
high-throughput transcriptomic research. The results of
the present study indicate that full-text articles from just a
few years of a limited number of journals can provide suf-
ficient information to obtain meaningful gene-gene rela-
tionships. However, is mining full-text to be preferred
over mining abstracts only? We believe that this question
cannot be answered in general but depends on the specific
study design and, of course, on the available computa-
tional resources. Much more research is necessary on how
to most effectively mine full-text articles and how to effi-
ciently generate and visualize interaction networks. Key
problems that need to be solved are ambiguities due to
gene name polysemy, and modalities and negations,
which can only be resolved by including contextual infor-
mation.

Methods
Cell culture preparation
The human glioma cell line U373 MG (American Type
Culture Collection, Rockville, MD, U.S.A.) were main-
tained in Eagle's minimum essential medium containing
10% fetal bovine serum (FBS), non-essential amino acids
and sodium pyruvate (all media from Mediatech, Hern-
don, VA). Cells were grown at 37°C in 95% air and 5%
CO2. Cultures were passaged once per week at a ratio of
1:12.

Probe preparation
U-373 MG cells were treated for 1 hour with 100 nM S1P,
10 nM EGF or vehicle. RNA was extracted using Trizol
(Invitrogen) according to manufacturer's instructions.
First and second strand cDNA was synthesized using
Superscript II reverse transcriptase and DNA polymerase I,
and cDNA was purified using phase lock gel (Eppendorf).
Synthesis and biotinylation of cRNA and hybridization
were performed using the Enzo Bioarray High Yield RNA
Transcript Labeling Kit in accordance with the manufac-
turer's instructions (Affymetrix, Santa Clara, California,
USA). Biotinylated cRNA was then purified using the RNe-
asy MiniKit (Qiagen) and a sample was separated on a 1%
agarose formaldehyde gel to verify RNA integrity.

An overnight ethanol precipitation was performed and
cRNA was resuspended in 15 µl of DEPC treated water
(Ambion, Inc.). cRNA was quantified. 20 µg of unadjusted
cRNA was fragmented according to Affymetrix's instruc-
tions. The 5× fragmentation buffer included 200 mM Tris-
acetate, pH 8.1, 500 mM KOAc, 150 mM MgOAc.

Hybridization
Quantification of cRNA was adjusted from total RNA to
reflect carryover of unlabeled total RNA with an equation
given by Affymetrix. Added 15 µg of adjusted fragmented
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cRNA to a 300 µl volume hybridization cocktail which
included final concentrations of 0.1 mg/mL of herring
sperm DNA, 0.5 mg/mL acetylated BSA, and 1× MES
hybridization buffer. The cocktail also contained hybridi-
zation controls: 50 pM of oligonucleotide B2 (Genset
Corp.) and 1.5, 5, 25, and 100 pM of cRNA BioB, BioC,
BioD, and Cre, respectively (ATCC). We hybridized 200 µl
of the target to the Human Genome HuGeneFL microar-
ray chip for 16 hours, according to Affymetrix's proce-
dures.

Washing, staining, and scanning
We washed the probe arrays with stringent (100 mM MES,
0.1 M [Na+], 0.01% Tween 20) and non-stringent (6×
SSPE, 0.01% Tween 20, 0.005% Antifoam) buffers in the
Affymetrix GeneChip Fluidics Station using pre-pro-
grammed Affymetrix protocols. We stained the probe
arrays with streptavidin phycoerythrin (SAPE) and ampli-
fied the signal using biotinylated antibody solution. The
SAPE stain contained 2× stain buffer (final 1× concentra-
tion: 100 mM MES, 1 M [Na+], 0.05% Tween 20, 0.005%
Antifoam), 2 µg/µL acetylated BSA, and 10 µg/mL SAPE
(Molecular Probes). The antibody amplification solution
contained 2× stain buffer, 2 mg/mL acetylated BSA, 0.1
mg/mL normal goat IgG, and 3 g/mL biotinylated anti-
body. Stained in the GeneChip Fluidics Station using pre-
programmed Affymetrix protocols. Scanned the probe
arrays in the Affymetrix GeneChip Scanner.

Microarray data analysis
The fluorescent intensity data from Affymetrix Microarray
Suite Version 5 (MAS 5.0) were exported as CEL files and
imported into Probe Profiler (Corimbia, Berkley, CA),
which uses a model-based approach for statistical analysis
of expression data.

Before any comparison, low or non-expressed genes, as
determined by a minimum expression value cut-off, were
excluded from any further analysis. The minimum expres-

sion cut-off value was determined from the p-value for
expression. At an expression value of 50 the p-value for
expression was greater than 0.05 for almost all genes indi-
cating that expression values less than 50 could not be
reliably distinguished from background. Thus, 50 was
chosen as the minimal value for expression. Three cell
lines stimulated by S1P and three unstimulated cell lines
were investigated. One microarray experiment was carried
out for each cell line and each condition. The expression
values of the three microarrays per condition were aver-
aged. Using the Probe Profiler software and unstimulated
cells as a baseline, the mean (n = 3) gene expression values
were used to identify transcripts significantly increased or
decreased in U373MG cells stimulated with either EGF or
S1P. In this comparison genes with a p-value (based on t-
test) of less than or equal to 0.15 were considered to be
differentially expressed.

Network construction
Assume that the database of experimental results contains
only the gene A, and the data warehouse contains the fol-
lowing patterns that can be graphically represented as a
directed graph (Figure 6):

In this example, gene A is involved in the inhibition of
gene C via activation of gene B. Higher-order transitive
dependencies include the regulation of gene E via the
pathway involving B, C, and D. Informally, we can refer to
the interaction A → B as direct interaction, whereas A → B
→ C → D → E represents a transitive dependency of degree
4, because this dependency involves a path length of 4.

Informally speaking, a graph is a set of nodes (or vertices)
that are connected by links (or edges). A multigraph is
defined as a set V of vertices, a set E of edges, and a func-
tion f: E → {{u, v}|{u, v} ∈ V, u ≠ v}, specifying which ver-
tices are connected by which edge. If u = v, then the graph
is considered a pseudograph, i.e. it contains a loop connect-
ing a vertex with itself. If the edges have a direction then

Example of transitive dependenciesFigure 6
Example of transitive dependencies.

(1) Gene A activates gene B.

(2) Gene B inhibits gene C.

(3) Gene C activates gene D.

(4) Gene D regulates gene E.

activates inhibits
A B C

D

activates

E
regulates
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the graph is referred to as directed graph or digraph. In the
network structure in the present study the genes/proteins
are represented as vertices and the relationships as
directed edges. The network is a directed pseudograph,
because it may contain multiple edges and loops between
the same vertices.

Definition 1: Transitive Dependencies of Degree 1

Let vi denote a vertex (i.e., a gene/protein) and eij denote
an edge between vi and vj. Let W denote the set of all n pat-
terns in the data warehouse, W = {{vi, eij, vj}}; | i,j = 1..n}.
Let V1 be the set of vertices that represent canonical gene
names contained in the database of experimental results,
V1 = {{v1i} | i = 1..|V1|}. The set of patterns that contain a
vertex from V1 is P = {{vi, eij, vj}} | vi ∈ V1 ∨ vj ∈ V1}. Then
the edges in P are defined as transitive dependencies of degree
1 or as direct dependencies.

Definition 2: Transitive Dependencies of Degree 2

Let V2 = {{v2i} | i = 1..|V2|, v2i ∧ P ∧ v2i ∧ V1} and Q = {{vi,
eij, vj}} | {vi, eij, vj} ∈ W, (vi ∈ V2 ∧ vj ∧ V1) ∨ (vj ∧ V1 ∧ vj ∈
V2)}. Then the edges in Q are defined as transitive depend-
encies of degree 2.

Definition 3: Transitive Dependencies of Degree 3

Let V3 = {{v3i} | i = 1..|V3|, v3i ∈ Q ∧ v3i ∉ V2} and R = {{vi,
eij, vj}} | {vi, eij, vj} ∈ W, (vi ∈ V3 ∧ vj ∉ V1 ∪ V2) ∨ (vj ∉ V1

∪ V2 ∧ vj ∈ V3)}. Then the edges in R are defined as transi-
tive dependencies of degree 3.

Our previous empirical results have shown that the infer-
ence of transitive dependencies of degree > 3 are computa-
tionally very expensive. Furthermore, it is nearly
impossible to visually inspect the inferred networks of
higher-order degrees. For example, for the 72 differen-
tially expressed genes, the data warehouse contains 418
unique direct interactions with other genes, which in turn
are in a relationship with 21 882 other genes. For the lat-
ter, there exist 30 995 unique patterns of interaction with
other genes, so that the network of transitive dependen-
cies of degree 1, 2, and 3 would comprise a total of 53 295
vertices. Although it is possible to retrieve transitive
dependencies of higher-order from the data warehouse,
the resulting networks cannot be meaningfully visualized,
which makes the interpretation of the extracted patterns
both difficult and time-consuming. More importantly,
many selected transitive dependencies may be irrelevant
for the phenomenon under investigation. Therefore, we
decided to implement a 'pruning' strategy as follows
(illustrated in Figure 7 and 8):

1. Retrieve all patterns that specify transitive dependencies
of degree 1, 2, and 3 for the set of differentially expressed
genes.

2. Retrieve the sentences from which the patterns in (1)
have been extracted.

Example of interaction networkFigure 7
Example of interaction network.

BA

DC

FE G

Example:

Pattern: ‘A stimulates B’

Sentence:
‘Also, in smooth muscle cells, <*A*> has been 
shown to <*stimulate*> <*B*>, ceramidases, and 
sphingosine kinase, leading to the production of 
sphingosine-1-phosphate, which these authors 
suggested promotes the proliferation of these 
cells.’ 
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3. Based on these sentences, identify all interactions that
meet a specific inclusion criterion (an example for such a
criterion is given below).

4. Retain only those patterns that meet the inclusion crite-
rion.

5. Each pattern from (4) contains a pair of entities (i.e.,
canonical gene/protein names). Use each entity as seed
vertex in the network.

6. For each seed vertex, find all transitive dependencies of
degree 1, 2, and 3 that lead back to a differentially
expressed gene. If a link exists between vertices that are
involved in this path, then connect the vertices accord-
ingly.

7. Find and display all interactions between the vertices
from (6).

In the present study, we are interested in two types of net-
works: The network that links the differentially expressed
genes to S1P and the network that links the genes to
tumor invasivity. Hence, the inclusion criterion for the
former network is that the sentences contain explicitly
either 'S1P'or 'sphingosine-1-phosphate'. The key words
for the network linking the genes to invasion are: 'inva-
sive', 'invasion', 'invasivity', and 'invasiveness'. For visual-
izing the networks, we used the program Pajek [64].

The following figure illustrates the pruning strategy for the
network linking the genes to S1P. In this example, assume
that only gene A is differentially expressed. Figure 4

Pruning strategy for network constructionFigure 8
Pruning strategy for network construction.
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depicts a contrived network of interactions. Note that
although multiple transitive dependencies of degree 1, 2,
and 3 can be retrieved from the data warehouse, a visual
representation as shown in this example is not possible
due to complexity.

The highlighted patterns in Figure 7 are extracted from
sentences containing one of the key words of the inclu-
sion criterion. Many transitive dependencies comprise
patterns that do not meet the inclusion criterion; these are
represented by the grey vertices.

The vertices A, B, C, D, F and G are the seed vertices of the
network as shown in Figure 8a. For each seed vertex, we
find the transitive dependencies of degree 2 that lead back
to A (Figure 8b, B → C). Then, for each seed vertex we find
the transitive dependencies of degree 3 that lead back to A
(Figure 8c, A → E → F). Finally, we retrieve all remaining
interactions between the vertices (Figure 8d, C → E). The
network in Figure 8d is the resulting 'pruned' network.
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