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Abstract 

Background:  2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-
11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through 
modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer 
metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of 
the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this 
study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated 
kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells.

Methods:  Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells 
following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular 
apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration 
was determined using wound-healing assay and Boyden’s chamber assay. Zymography assay was performed for 
examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role 
of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells.

Results:  Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK 
proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The 
results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. 
The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ 
cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 
and -9, the motility index of cancer cells. Inhibition of ERK significantly enhances BPIQ-induced anti-migration of 
H1299 cells.
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Background
Lung cancer is a leading malignancy in the world, espe-
cially in the Taiwan area [1]. Human non-small cell lung 
cancer (NSCLC) accounts for around 80% of total lung 
cancer cases [2]. The primary treatments for NSCLC 
patient are chemotherapeutics; however, the chemore-
sistance of NSCLC cells is frequently reported, result-
ing in poor prognosis and low survival rate of NSCLC 
patients [3]. Therefore, novel and improved chemothera-
pies for NSCLC cells are still being developed [3–7].

Compounds with a quinoline backbone have been 
shown to exert many bioactivities such as anti-autoim-
mune [8], anti-inflammatory [9] and anti-carcinogenic 
modalities [9–13]. For example, camptothecin (CPT), 
isolated from Camptotheca acuminata, exerts potent 
inhibitory activities against cancer cells, and two CPT 
derivatives topotecan and irinotecan are used for treating 
cancers clinically [14–16]. Accordingly, CPT-based deriv-
atives are being developed for improving the anti-tumor 
activities [17, 18]. Our previous study demonstrated that

2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-
1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one 
(BPIQ), a synthetic quinoline, exerts anti-growth and apop-
tosis-inducing potential against cancer cell lines includ-
ing hepatocellular carcinoma cells [10, 12], non-small cell 
lung cancer (NSCLC) [19] and retinoblastoma cells [20]. 
Recently, our work further showed the BPIQ-induced apop-
tosis of cancer cells was mitochondrial-dependent [19].

Mitogen-activated protein kinase (MAPK) signal-
ing pathways are involved in mediating processes of cell 
growth, survival, and death. There are three members of 
MAPK, JNK, p38 and ERK. Among MAPK members, 
JNK and p38 are activated in response to various intrin-
sic and extrinsic stresses [21, 22]. Additionally, activated 
p38 MAPK may induce apoptosis by phosphorylating or 
indirectly down-regulating pro-survival Bcl-2 family pro-
teins under conditions such as cellular stress including 
ROS [23], DNA adducts [24] and starvation [25]. Previ-
ous studies indicate the mechanisms of many anti-can-
cer drugs are closely correlated with the stimulation of 
MAPK JNK and p38 [23, 26, 27].

On the contrary, the third member of MAPK, ERK 
is crucial for cell proliferation and survival and is acti-
vated by mitogenic stimuli, such as growth factors and 
cytokines [28]. Constitutive activation and overexpres-
sion of ERK are frequently observed in many cancer cells 

[29]. For example, more than 50% of acute myeloid leu-
kemias and acute lymphocytic leukemias exert activated 
ERK pathways [30]. Additionally, the activated ERK path-
way in lung cancer cells has also been reported [31].

Therefore, ERK targeting strategies against cancer have 
been used for treating cancer cells in vivo [32] and clini-
cally [29].

On the contrary, ERK activation is not always corre-
lated with pro-cellular survival. A recent study showed 
the interplays of ERK signaling and cell death, including 
apoptosis, autophagy, and senescence [33]. In a compari-
son of ERK targeting strategies, accumulating evidence 
demonstrated that activating ERK could take effect in 
cancer treatments [34–36]. Additionally, ERK signaling 
has also been involved in cell death induced by anti-can-
cer compounds including quercetin [37], betulinic acid 
[38] and miltefosine [39]. Besides, apoptosis induced by 
SU11274, a small molecule inhibitor of c-Met in NSCLC 
A549, has been associated with ERK-dependent p53 acti-
vation and Bcl-2 inactivation [36].

Contrarily, ERK has been shown to play an important 
role in cancer metastasis [40–42]. Likewise, our previous 
work also demonstrated that cardiotoxin III (CTX III), a 
basic polypeptide isolated from the venom of the Taiwan 
cobra (Naja naja atra) inhibits ERK-dependent migra-
tion and invasion of breast cancer cells MDA-MB-231 
through down-regulating the signaling pathways of Src 
[43] and EGF/EGFR pathway [44].

In this study, we first examined whether the members 
of MAPK JNK, p38, and ERK involve in BPIQ-induced 
anti-NSCLC cells, and the dual roles of ERK in BPQI-
induced anti-proliferation and anti-migration in NSCLC 
H1299 cells are also demonstrated. Furthermore, the pos-
sible mechanisms underlying ERK-mediated apoptosis of 
NSCLC cells induced by BPIQ are also discussed.

Methods
Preparation of BPIQ
BPIQ was synthesized described as previously published 
[10, 12]. BPIQ was freshly dissolved in DMSO (<0.01% 
final concentration) before assays.

Reagents
DMEM and F12 medium, fetal bovine serum (FBS), 
trypan blue, penicillin G, and streptomycin were 
obtained from Invitrogen (Gaithersburg, MD, USA). 

Conclusions:  Our results suggest ERK may play dual roles in BPIQ-induced apoptosis and anti-migration, and it 
would be worthwhile further developing strategies for treating chemoresistant lung cancers through modulating ERK 
activity.
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Dimethyl sulphoxide (DMSO), ribonuclease A (RNase 
A), and propidium iodide (PI) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Primary antibod-
ies against JNK, p38 (sc-7149), p-p38 (Tyr182, sc-7973), 
ERK, p-ERK (Tyr204, sc-7976), COX-2, and β-actin (sc-
7963) were obtained from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). Antibody against SP-1 (5407-S) 
was purchased from Epitomics. Antibody against p-JNK 
(Thr183/Tyr185, #07-175) was purchased from Millipore. 
Anti-rabbit, anti-goat and anti-mouse IgG peroxidase-
conjugated secondary antibodies were purchased from 
Pierce (Rockford, IL, USA). Annexin V-FITC staining 
kit was purchased from Strong Biotech Co. Ltd. (Taipei, 
Taiwan).

Cell culture
Human non-small cell lung cancer (NSCLC) cell line 
H1299 was obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). Cells were 
maintained in 1:1 ratio of DMEM: F-12 supplemented 
with 8% FBS, 2  mM glutamine, and the antibiotics 
(100 μg/ml streptomycin and 100 units/ml penicillin) at 
37  °C in a humidified atmosphere of 5% CO2. All cells 
were tested to ensure the mycoplasma contamination-
free using a PCR-based assay [45].

Assessment of cell viability and morphological changes
Briefly, 1 × 105 cells were seeded and treated with vehi-
cle or various concentrations for 24 h. After incubation, 
the morphological changes of cells were observed by an 
inverted phase-contrast microscopy. For cell viability 
assessment, cells were trypsinized and stained with 0.2% 
trypan blue to count by Countess™ the automated cell 
counter (Invitrogen, Carlsbad, CA, USA).

Western Blot analysis
Western Blot assay was conducted according to a previ-
ously published article [46]. In brief, cells were harvested 
and lysed. A total of 20  μg protein lysate was resolved 
by 10% SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) and electro-transferred. The nitrocellulose mem-
brane was blocked with 5% non-fat milk and incubated 
with primary and secondary antibodies sequentially. The 
signals for specific proteins were detected using a chemi-
luminescence-based ECL™ detection kit (Amersham Pis-
cataway, NJ, USA).

Apoptosis assessment
The Annexin V/PI double staining assay recognizes the 
externalization of phosphatidylserine (PS) on the cell 
membrane, a hallmark of apoptotic cells. In brief, 5 × 105 
cells were seeded on a 100-mm petri dish and treated 
with BPIQ alone or 2 h pre-treatment of an ERK inhibitor 

PD98059 for 24 h respectively. Cells were suspended with 
trypsin, harvested and stained with Annexin V/PI. After-
ward, the cells were analyzed by a flow cytometer (FACS 
Calibur; Becton–Dickinson, Mountain View, CA, USA).

Assessment of cell migration
3  ×  105 H1299 cells were seeded into a 12-well plate, 
then treated with indicated concentrations of BPIQ and a 
1-mm wide wound area was created using a 200 µl plastic 
tip. After 16 h incubation, the wound areas were photo-
graphed and automatically calculated using the free soft-
ware tool “TScratch” [47].

Boyden’s chamber assay
The invasion of cancer cells was performed by a 24-well 
transwell unit with Matrigel™ (Greiner Bio-One, Frick-
enhausen, Germany) coated on the upper side of poly-
carbonate filters into 8  μm filter pore size transwell 
inserts. The lower well was injected with 800 µl medium 
containing 10% FBS, without or with indicated concen-
trations of BPIQ. 1 × 105 H1299 cells was resuspended 
in 200  µl of serum-free medium were seeded onto a 
transwell insert and allowed to invade for 16  h. Non-
invaded cells on the upper part of the membrane were 
removed. Cells on the bottom surface of the filters were 
fixed with 4% paraformaldehyde, stained with Giemsa 
(Merck), and counted under a microscope. Each experi-
ment was done in triplicate, and the results from three 
independent experiments were expressed as mean ± SD.

Assessment of MAPK inhibitors
To determine the effects of MAPK ERK, p38, and JNK 
on BPIQ-induced apoptosis, three specific inhibitors 
(50  μM), PD98059 (Sigma) for ERK, SB203580 (Sigma) 
for p38 and SP600125 (Sigma) for JNK, were dissolved in 
DMSO respectively. The assessment has been described 
previously [46]. In brief, seeded cells were pre-treated 
with MAPK inhibitors for 2  h respectively. Afterwards, 
cells were administrated with 24 h treatment of BPIQ for 
cell proliferation assay and annexin V staining, and 16 h 
for Boyden’s chamber assay.

Gelatin zymography
The gelatin zymography [48] was performed for detecting 
the gelatinases MMP-2 and -9 using 10% polyacrylamide 
gels contained 0.1% gelatin. After electrophoresis, SDS 
was replaced using 2.5% Triton X-100, followed by incu-
bation in a Tris-based buffer containing NaCl, CaCl2, and 
ZnCl2 at 37  °C overnight. The gel was then stained with 
Coomassie Brilliant Blue R-250, and gelatinase activity was 
detected as unstained gelatin-degradation zones within 
the gel. The signals were analyzed using Gel-Pro 3.0 soft-
ware (Media Cybernetics, Silver Spring, MD, USA).
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Statistical analysis
Differences between cells treated with vehicle were ana-
lyzed in at least triplicate. The statistical differences were 
analyzed by one-way analysis of variance (ANOVA) 
using SigmaPlot v12 (Systat Software Inc.) and *p < 0.05 
vehicle vs. BPIQ treatment was considered statistically 
significant.

Results
Cellular morphology assessment following BPIQ treatment
H1299 cells were treated with indicated concentration 
(from 1 to 10 μM) of BPIQ to assess the effect of BPIQ 
on cellular growth and cellular morphological changes. 
As shown in Fig.  1, the decrease of the cell population 
and the significant morphological changes, including the 
cell shrinkage, blebbing membrane and the formation of 
apoptotic bodies was observed at 24  h following BPIQ 
treatment (the results of 6 and 12 h treatment are shown 
in Additional file  1). A marked increase of population 
rounding cells and apoptotic bodies appeared when the 
used concentrations began at 5 μM BPIQ, suggesting the 
dose-dependent effect of BPIQ.

BPIQ induces the activation of MAPK proteins in NSCLC 
cells
As shown in Fig. 2, the results of the Western Blot assay 
showed that the treatments with BPIQ dramatically 
increased the phosphorylation of ERK and JNK, whereas 

no significant changes in p38 activation were observed. 
Interestingly, total protein levels of both JNK and p38 
were dramatically decreased.

ERK blockade rescues BPIQ‑induced anti‑proliferation 
of NSCLC cells
To examine whether the MAPK family plays a role in 
BPIQ-induced anti-proliferation and growth of NSCLC 
H1299 cells, the specific inhibitors of the MAPK fam-
ily including PD98059 for ERK, SP600125 for JNK and 
SB200358 for p38 were pretreated prior to the BPIQ 
administration. As shown in Fig.  3a, the results of the 
proliferation assay demonstrated that the inhibition of 
ERK significantly rescues the proliferation inhibition of 
H1299 cells induced by BPIQ treatment. Likewise, ERK 
blockade partially rescues the morphological changes 
induced by BPIQ, including cell rounding and membrane 
blebbing compared to BPIQ treatment alone (Fig.  3b). 
These results suggest the anti-survival role of ERK in 
BPIQ-induced anti-proliferation in NSCLC cells.

ERK blockade rescues BPIQ‑induced apoptotic death 
of NSCLC cells
To further confirm the role of ERK in BPIQ-induced anti-
NSCLC effect, we determine the effects of ERK on BPIQ-
induced cell death. As shown in Fig.  4a, b, the result of 
Annexin V/PI double staining showed that inhibiting 
ERK activity rescued BPIQ-induced apoptosis of H1299, 

Fig. 1  Effect of BPIQ on cellular growth and morphological changes of lung cancer cells. H1299 cells were seeded and treated with indicated con‑
centrations of BPIQ for 24 h. The arrows indicate the blebbing membrane of cells, a hallmark of cellular apoptosis. Magnification: 100 and 200×
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especially in the early stage of apoptosis. The percent 
healthy cells were elevated from 31.9 to 54.6% following 
pre-treatment with ERK inhibitor (Fig. 4b). These results 
are consistent with the results of Fig. 3, indicating a pro-
apoptotic role of MAPK ERK in BPIQ-induced apoptosis 
in human NSCLC tumor cells.

BPIQ attenuates the migration of NSCLC cells
Figure 5 shows that the migration ability of H1299 lung 
cancer cells was dramatically inhibited by BPIQ, and 
reveals that the migration ability of H1299 cells treated 
with various BPIQ concentrations at 0, 1, 2, 5 and 10 μM 
was 100, 43.96  ±  1.78, 30.76  ±  4.01, 7.87  ±  3.58 and 
9.17 ± 1.84% (n = 3) respectively. These results indicate 
that BPIQ-induced anti-migration of NSCLC H1299 cells 
is dose-responsive.

BPIQ inhibits the cellular invasion of NSCLC cells
The invasion ability of H1299 cells was assessed by 
Boyden’s chamber migration assay. As shown in Fig.  6, 
BPIQ inhibits the mobility of H1299 cells in a non-
cytotoxic dose (less than 2  μM). Figure  6 revealed that 
the invasion ability of H1299 cells treated with various 
BPIQ concentrations at 0, 1, 2 and 5 μM was 100 ± 12.25, 

69.12 ±  11.01, 10.84 ±  3.75 and 7.36 ±  2.67% (n =  3) 
respectively. These results indicate that sub-IC50 dose 
(below 2  μM) of BPIQ is effective to suppress the inva-
sion of H1299 lung cancer cells.

BPIQ down‑regulates the expression 
of migration‑associated proteins
The transcription factor specificity protein 1 (SP-1) 
has been shown to play a critical role in both prolifera-
tion and migration of cells [49]. The overexpression or 
constitutive activation of SP-1 has shown to be involved 
in tumor development and metastasis of cancer cells, 
including brain tumor astroglioma and gastric cancer and 
lung cancer [50–52]. SP-1 was also reported to promote 
invasion and migration of cancer cells by upregulating 
expression of the metastasis-associated proteins integrin 
α5 and cadherin-11[53]. Regarding the migration, the tar-
get genes of SP-1 including cyclooxygenase-2 (COX-2), 
MMP-2 and MMP-9 were closely correlated with cellu-
lar migration [54–56]. As shown in Fig.  7a, after treat-
ments with vehicle or indicated concentrations of BPIQ, 
the phosphorylation of SP-1 and the protein level of SP-1 
downstream target COX-2 was significantly decreased at 
a sub-IC50 dose of BPIQ treatment. Likewise, the results 
of gelatin zymography assay showed that BPIQ attenuates 
the activities of MMP-2 and -9, especially MMP-2 in a 
dose-dependent manner (Fig. 7b, c). These above results 
suggested that sub-IC50 dose of BPIQ significantly inhib-
its the migration of H1299 cells through modulating the 
expression and activation of a panel of migration-associ-
ated proteins such as SP-1 and COX and the downregula-
tion of MMP-2 and -9 activities

The role of ERK in sub‑IC50 BPIO‑induced anti‑migration 
of H1299 cells
Besides cell survival, ERK also has been shown to play 
a major role in cellular migration. For example, ERK 
expression promotes the migration of melanoma cells. 
Otherwise, the attenuation of ERK signaling by depleting 
epidermal growth factor (EGF) inhibits anti-migration 
of cancer cells [57, 58]. Figure 8 shows that the invasion 
ability of H1299 cells treated with vehicle, BPIQ alone 
and the BPIQ with ERK inhibitor pretreatment was 
100 ± 5.18, 57.98 ± 7.36, 61.64 ± 3.65% (n = 3) respec-
tively. This result shows that ERK inhibitor additively 
enhances 20% of BPIQ-induced anti-invasion in NSCLC 
H1299 cells, suggesting the pro-migration role of ERK in 
H1299 cells.

Discussion
Mitogen-activated protein kinase (MAPK) signaling 
pathways are involved in mediating processes of cell 
growth, survival and death [21, 22]. MAPK members p38 

Fig. 2  Activation of MAPK family in BPIQ-treated lung cancer cells. 
The inhibitor assay was performed to determine the role of MAPK 
family in BPIQ-induced apoptosis of lung cancer cells. Briefly, cells 
were seeded and treated with indicated concentrations of BPIQ for 
24 h respectively. 20 μg protein lysates were resolved by 10% SDS-
PAGE and Western Blot assay for detecting the activation of MAKP 
members JNK, p38, and ERK. β-actin, an internal control for equal 
loading. Each experiment blot is representative of three independent 
experiments
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and JNK pathways have been reported to induce apop-
tosis under various cellular stresses [59, 60]. Therefore, 
many anti-cancer drugs are designed for stimulating JNK 
and p38-mediated apoptosis of cancer cells such as breast 
cancer [26], colon cancer [23] and lung cancer cells [27]. 
However, the role of MAPK members in anti-cancer 
drugs-induced apoptosis may depend on cell types and 
the stimuli, and studies suggesting the pro-survival role 
of p38 MAPK in cancer cells toward anti-cancer drugs 
were also reported [61, 62]. For example, Bruzzese’s work 
reported that the activation of p38 MAPK was associated 
with the resistance of prostate cancer (PCa) and multiple 
myeloma (MM) cells towards zoledronic acid (ZOL), a 
nitrogen-containing bisphosphonate. In addition, pan-
obinostat, a histone deacetylase inhibitor, was shown to 
render both PCa and MM sensitive to ZOL by inhibiting 
the activity of p38 MAPK [61]. Furthermore, DU145R80, 
a ZOL-resistant prostate cancer cell line, expresses p38 
MAPK-dependent survival pathway accompanied with 

an enhanced potential for epithelial-mesenchymal tran-
sition (EMT) and the increased expression of metallo-
proteases MMP-2/-9 compared to its parental cell line, 
suggesting the essential role of p38 MAPK in acquiring 
chemoresistance of prostate cancer cells [62].

Despite the potential of BPIQ on anti-proliferation of 
cancer cells, the role of MAPK in BPIQ-induced growth 
inhibition is not clear. To further clarify the mechanism 
underlying MAPK-induced apoptosis and anti-prolifera-
tion induced by BPIQ. The cellular and molecular param-
eters about BPIQ-induced apoptosis were studied using 
three NSCLC tumor cells H1299. The results of Western 
Blot showed the activation of two MAPK members JNK 
and ERK was detected after BPIQ treatment (Fig. 2).

Therefore, we determined whether JNK or ERK plays 
a role in BPIQ-induced apoptosis and anti-proliferation 
and performed the MAPK inhibitor assays. The inhibi-
tor assay showed that blockade of ERK activity signifi-
cantly rescued BPIQ-induced anti-proliferation (Fig.  3) 

Fig. 3  The effect of MAPK inhibitors on BPIQ-induced anti-proliferation of lung cancer cells. H1299 cells were subject to treatment with BPIQ alone 
or MAPK specific inhibitors for 2 h prior to BPIQ administration for 24 h. The result of cellular survival assay is represented. Specific MAPK inhibitors, 
PD98059 for ERK, SP600125 for JNK, and SB203580 for p38 before BPIQ administration respectively. a Data were statistically analyzed with Student’s 
t test (*p < 0.05 BPIQ vs. BPIQ with inhibitor pre-treatments). b The ERK inhibitor rescues the decrease in cell number and morphological changes 
induced by BPIQ in H1299 cells. Magnification: 100×



Page 7 of 13Fong et al. Cancer Cell Int  (2017) 17:37 

and apoptotic cell death (Fig.  4) of NSCLC tumor cells. 
Regarding the correlation between ERK signaling and 
the process of cell death, ERK is thought to be critical 
for cell survival and mediating a survival response that 
counteracts with cell death and its activation being fre-
quently observed in cancer cells [29]. For example, Cara-
glia’s work demonstrated that the combination of ZOL 
and R115777, a non-peptidomimetic farnesyl transferase 
inhibitor, exerted a synergistic effect on apoptosis induc-
tion in cell lines of prostate adenocarcinoma through 
dramatically attenuating Ras signaling and its down-
stream targets, namely the ERK and Akt survival path-
ways [63]. Likewise, the combination of Simvastatin, an 
HMG–coenzyme A reductase inhibitor, and R115777 
(Tipifarnib) exerted a cooperative effect on anti-prolif-
eration and apoptosis induction of two NSCLC cell lines 
GLC-82 (adenocarcinoma) and CALU-1 (squamous-car-
cinoma) by inhibiting Ras/Raf/MEK/ERK signaling [64].

On the contrary, many studies also showed the cor-
relations of ERK signaling and stimulating the process 
of cell deaths [33, 65, 66]. ERK pathways may induce 
apoptosis through promoting caspase-8 signaling and 

the activation, or potentiating the activation of death 
receptors by increasing the level of death ligands such 
as TNFα or FasL, or death receptors such as Fas, DR4 or 
DR5. For example, llimaquinone, an anti-cancer agent, 
was found to upregulate the expression of death receptor 
DR-4/-5 through ERK activation in colon cancer cell lines 
HCT116 and HT-29 [67].

Additionally, ERK activity was reported to promote the 
induction of FADD, an adaptor of caspase-8 for death 
receptors. Furthermore, an antibiotic fluoroquinolone 
was reported to induce the apoptosis of pancreatic can-
cer through ERK-dependent mitochondrial pathways, 
including the proteolytic activation of caspase-9, the loss 
of mitochondrial membrane potential, and the up-regu-
lated expression of pro-apoptotic Bax and Bak [68].

Wang’s work suggested that ERK activation may 
contribute to activin A-induced apoptosis of NSCLC 
cells A549 [69]. Similarly, piperlongumine, a bioactive 
compound isolated from large peppers, was reported 
to induce the cell death of colon cancer HT-29 cells 
through MEK-ERK signaling [70]. Furthermore, recent 
studies also showed that antitumor compounds, such 

Fig. 4  ERK blockade rescues BPIQ-induced apoptosis of NSCLC cells. Cells were pre-incubated for 2 h with the following specific MAPK ERK 
inhibitors, PD98059 prior to BPIQ administration (see “Methods” section). Subsequently, the apoptotic populations induced by BPIQ were deter‑
mined using flow cytometer-based Annexin V/PI staining. a Results of Annexin V/PI staining and b the quantitative analysis. Data are presented as 
mean ± SD. of at least three experiments independently. The results were analyzed with the statistical approach Student’s t-test (*p < 0.05 BPIQ vs. 
BPIQ with inhibitors pre-treated)
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as quercetin [37], betulinic acid [38], miltefosine [39] 
induce ERK-dependent apoptosis. Besides, a cytotoxin 
VacA secreted by Helicobacter pylori, a Gram-negative 

bacterium, was reported to induce apoptosis of gastric 
cancer cells. [34]. Likewise, SU11274, a small molecule 
inhibitor of c-Met was reported to induce apoptosis 

Fig. 5  The effect of BPIQ on the cellular migration of NSCLC cells. a 5 × 105 H1299 cells (confluent culture) were seeded in a 12-well plate, and cells 
were scraped to create a 1-mm wide wound area. Cells were treated with indicated concentrations (from 0 to 10 μM) of BPIQ for 16 h. Afterward, 
the wound areas were photographed using an inverted phase-contrast microscopy. b Quantitative analysis of a. **p < 0.05 and **p < 0.001 against 
the vehicle respectively. Magnification: 100×

Fig. 6  The effect of BPIQ on the invasion of NSCLC cells. The Boyden’s chamber assay was performed to examine the effect of BPIQ on cellular inva‑
sion, a cells were treated with indicated concentrations of BPIQ for 16 h and invaded cells were analyzed using a modified Boyden’s chamber. Cells 
in serum-free DMEM-F12 were added to the upper chamber and allowed to migrate through 8-μm porous membrane toward a lower chamber in 
medium with serum. b The cellular motility was quantified by counting the number of cells that invaded to the undersides of the membrane under 
a microscopy (magnification: 100×). The results are presented as mean ± SD of triplicate experiments, *p < 0.05 and **p < 0.01 against vehicle 
respectively
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of lung cancer cells A549 through ERK-p53 and ERK-
mediated Bcl-2 phosphorylation [36], indicating the 
pro-apoptotic role of ERK and its applications in cancer 
treatment. Accordingly, the activation of ERK-depend-
ent apoptotic signaling may be a promising treatment for 
chemoresistant cancer cells especially those that overex-
press ERK.

Many anti-cancer drugs have been shown to exert 
multi-effects against cancer cells. For example, cur-
cumin, a diferuloylmethane, induces both apoptosis and 
anti-migration of human medulloblastoma cells [71]. We 
therefore examined whether BPIQ exerts anti-cancer 
activities beyond anti-growth and the induction of apop-
tosis. Both the wound healing and Boyden’s chamber 
assays demonstrate that sub-IC50 of BPIQ (below 2 μM) 
significantly inhibits the cellular mobility of H1299 
cells. We next tried to depict the mechanism underly-
ing BPIQ-induced anti-migration in lung cancer. The 
upregulation of pro-inflammatory COX-2 expression, 
MMP-2 and -9 have been reported to be associated with 
the progression of malignant tumors [72, 73]. Moreover, 
the expressions of MMP-2 and MMP-9 are regulated by 
SP-1 [54, 74].

As shown in Fig. 7, the inactivation of migration-asso-
ciated factor SP-1 following BPIQ treatment was also 
observed. Furthermore, the protein level of COX-2 and 
the activity of MMP-9 and -2 were also decreased. In cell 
signal pathways, the phosphorylation of many signaling 
proteins is thought to be dynamic and transient [75]. Our 
previous work showed that magnolol, a compound iso-
lated from the herbal plant Magnolia induced apoptosis 
of NSCLC A549 cells through upregulating the activity 
of MAPK p38 and JNK. Both the phosphorylations of 
MAPK p38 and JNK were increased following magno-
lol treatment in a dose-responsive manner, whereas the 
dramatic decrease of phosphorylation was observed at 
the highest dose [76]. Likewise, metformin which exert 
anticancer activities, was reported to increase a dose-
responsive phosphorylation of ERK but decrease at the 
highest dosage in neuroendocrine tumor cells BON1 
and NCI-H727 [77]. Similarly, the results of Western 
Blot assay showed that the phosphorylation of ERK fol-
lowing BPIQ treatments (from 1 to 5 μM) for 24 h was 
dose-responsive. We therefore suggested that the highest 
concentration (10 μM) of BPIQ may cause the phospho-
rylation of ERK earlier than 24 h of treatment and return 

Fig. 7  The regulation of cellular migration-associated proteins by BPIQ treatment. H1299 cells were subject to the treatment with indicated 
concentrations of BPIQ for 24 h. a Western Blot showed that sub-IC50 of BPIQ inhibits the phosphorylation of SP-1 and decreases the protein level of 
COX-2. β-actin as an internal control. Each blot is representative of three independent experiments. b The zymography assay. These results showed 
that BPIQ attenuates the activities of MMP enzymes especially MMP-2 in a dose-responsive manner. c The quantitative analysis of b indicates that 
sub-IC50 of BPIQ (less than 2 μM) significant inhibits MMPs activities. *p < 0.05 and **p < 0.01 against vehicle respectively
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to the un-phosphorylated or hypo-phosphorylated status 
after 24 h.

These above observations suggest that the orchestrate 
signaling modulated by BPIQ eventually led to the inhibi-
tion of cellular migration.

Accumulating evidence showed that the cell migration 
was promoted by MPAK ERK, and the inhibition of cell 
migration was often accompanied by attenuated activi-
ties of ERK in cancer cells [57, 58]. Consistently, the 
results of our study indicate the pro-migration role of 
ERK and ERK blockade enhances the inhibitory effect of 
BPIQ on migration and invasion of H1299 cells (Fig. 8a, 
b). Accordingly, it will be an advantage to inhibit ERK 
activation combining BPIQ treatment against cancer 
cells in further study. A low- or non-cytotoxic dose of 

BPIQ combining the inhibitors of ERK such as PD98059 
may be anti-metastatic or chemopreventive strategies 
for NSCLC treatment in future.

Conclusions
Our present result suggests that the activation of ERK 
signaling, at least partially, was responsible for BPIQ-
induced anti-proliferation and apoptosis of NSCLC 
tumor cells. On the contrary, a sub-lethal dose of BPIQ 
attenuates cellular migration of NSCLC cells through 
inhibiting ERK activity, suggesting the dual roles of 
ERK in BPIQ-induced apoptosis and anti-migration of 
NSCLC cells. The results of our study may benefit apop-
tosis induction and chemoprevention of lung cancer cells 
through ERK signaling (Fig. 9).

Fig. 8  ERK blockade enhances BPIQ-induced anti-migration of NSCLC cells. a The cellular mobility was determined using the Boyden’s invasion 
assay. H1299 cells were treated with vehicle, 0.2 μM BPIQ alone or 0.2 μM BPIQ with 50 μM ERK inhibitor PD098059. b The quantitative results of (a). 
*p < 0.05 for BPIQ vs. BPIQ with pretreatment of ERK inhibitors
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