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Introduction
Embryonic development is a complex process during which 
pluripotent cells differentiate into specialized cells of various 
lineages. The mechanisms underlying developmental compe-
tence are highly complex and are dependent on the tissue type 
and precise timing of signaling cues.1 Lineage specification is 
dependent on the interactions of transcription factors (TFs) 
and chromatin states at enhancers. Enhancers and the TFs 
regulating their formation have been shown to play an impor-
tant role in cell type–specific activation of gene expression.2,3 
Although thousands of potential enhancers have been identi-
fied in cell types derived from various lineages and tissues, 
identification of the enhancers that are active (versus inactive 
or poised) remains a major challenge.4 In addition, the ability 
to identify the TFs acting at numerous enhancers in each cell 
type is challenging.5,6

Enhancers have been shown to share several common fea-
tures, such as increased chromatin accessibility (as measured by 
DNase-seq or ATAC-seq)7-9 and enrichment of posttransla-
tional modification of the amino-terminal tails of core histone 
proteins (as assessed by ChIP-seq), including histone H3 lysine 
4 monomethyl (H3K4me1) and histone H3 lysine 27 acetyl 
(H3K27ac).10-12 While these epigenomic features can reveal 

the location of many enhancers across the genome, they cannot 
readily differentiate between active and inactive enhancers.13,14 
Recent genomic assays have shown that active enhancers are 
bound by RNA polymerase II (Pol II) and are transcribed, pro-
ducing noncoding RNAs known as enhancer RNAs 
(eRNAs).14-16 While the full breadth of functions of eRNAs 
are unknown, we and others have shown that enhancer tran-
scription (as measured by total RNA-seq, GRO-seq, or PRO-
seq) can be used in the absence of any other genomic 
information to predict enhancer activity.3,15-23

In recent years, advances in technology have facilitated the 
large-scale functional characterization of enhancer activ-
ity22,24-26 and the annotation of TF-binding sites (TFBSs) 
genome-wide in various cell types and tissues.5,27 However, due 
to the large number of cell types, TFs, and experimental condi-
tions,28 integration of these independent data sets to achieve a 
comprehensive analysis of gene expression and actionable pre-
dictions of TFs driving cell type–specific gene expression is 
challenging. Analyses that predict TFBSs, which are usually 4 
to 12 nucleotides in length,29 using TF-binding profile data-
bases29-31 fail to consider that such sequences occur frequently 
by chance throughout the genome and that TF binding is cell 
type specific.32 To overcome these limitations, we previously 
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established a computational pipeline and tool called Total 
Functional Score of Enhancer Elements (TFSEE), which can 
be used to identify location and activity of enhancers in any cell 
or tissue type together with their cognate TFs.33

In this study, we aimed to (1) evaluate TFSEE as an 
enhancer-calling algorithm and (2) understand the TF-driven 
transcriptional programs differentiating human embryonic 
stem cells (hESCs) into pancreatic cells.1,34 This developmen-
tal model allowed us to explore spatiotemporal gene regulation 
during development by enhancers and TFs. In the studies pre-
sented herein, we provide a detailed characterization of TFSEE 
and demonstrate the broader use of TFSEE to identify enhanc-
ers and TFs during the differentiation of embryonic stem cells 
into pancreatic progenitor cells to uncover cell type–specific 
TFs that control lineage-specific enhancers (Figure 1).

Materials and Methods
Genomic data curation

We used previously published GRO-seq, ChIP-seq, and RNA-
seq data from1,34 time course differentiation of hESCs to pan-
creatic endoderm (PE). All data sets are available from NCBI’s 
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) or EMBL-EBI’s ArrayExpress (http://www.ebi.ac.uk/

arrayexpress/) repositories using the accession numbers listed 
in Table S1.

Analysis of ChIP-seq data

The raw reads were aligned to the human reference genome 
(GRCh37/hg19) using default parameters in Bowtie version 
1.0.0.35 The aligned reads were subsequently filtered for quality 
and uniquely mappable reads were retained for further analysis 
using Samtools version 0.1.1936 and Picard version 1.127 
(http://broadinstitute.github.io/picard/). Library complexity 
was measured using BEDTools version 2.17.037 and meets 
ENCODE data quality standards.38 Relaxed peaks were called 
using MACS version 2.1.039 with a P value of 1 × 10−2 for each 
replicate, pooled replicates’ reads, and pseudoreplicates. Peak 
calls from the pooled replicates that were observed in either 
both replicates or in both pseudoreplicates were used for subse-
quent analysis.

Analysis of RNA-seq data

The raw reads were aligned to the human reference genome 
(GRCh37/hg19) using default parameters in STAR version 
2.4.2a.40 Quantification of genes against Gencode version 1941 

Figure 1. Flowchart of data analysis and inputs into TFSEE. Flowchart describing the preprocessing steps, methods, and subsequent analysis described 

in this article. TFSEE accepts enhancer calls from different inputs: Method 1, enhancers called using enhancer transcription based on GRO-seq data. 

Method 2, enhancers called using enrichment of histone modifications. TF indicates transcription factors; TFSEE, Total Functional Score of Enhancer 

Elements.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://broadinstitute.github.io/picard/
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annotations was done using default parameters in RSEM ver-
sion 1.2.31.42

Analysis of GRO-seq data

The GRO-seq reads were trimmed to the first 36 bases to trim 
adapter and low-quality sequence, using default parameters of 
fastx_trimer in fastx-toolkit version 0.0.13.2 (http://hannon-
lab.cshl.edu/fastx_toolkit/). The trimmed reads were aligned to 
the human reference genome (GRCh37/hg19) using default 
parameters in BWA version 0.7.12.36

Kernel density

Kernel density plot representations were used to express the 
univariate distribution of ChIP-seq reads under peaks, RNA-
seq reads for protein-coding genes, and GRO-seq reads for 
short paired and short unpaired eRNAs. The kernel density 
plots were calculated in Python (ver. 2.7.11) using the kdeplot 
function from seaborn version 0.7.1 (http://seaborn.pydata.
org/) with default parameters.

Defining transcription start sites and promoters

We made distinct transcription start sites (TSSs) for pro-
tein-coding genes from Gencode version 1941 annotations 
using MakeGencodeTSS (https://github.com/sdjebali/
MakeGencodeTSS). We identified active promoters using 
enrichment of H3K4me3.43 An RPKM cutoff of ⩾1 for 
H3K4me3 in at least one cell line was used to identify a 
peak as an active enhancer (Figure S1A).

Enhancer calling by GRO-seq

Calling a universe of transcripts from GRO-seq data. Transcript 
calling was performed using a 2-state hidden Markov model 
using the groHMM data analysis package version 3.416,21 
(https://bioconductor.org/packages/release/bioc/html/
groHMM.html) on each individual cell line. The negative log 
transition probability of the switch between transcribed state to 
nontranscribed state and the variance in read counts in the 
nontranscribed state that are used to predict the transcription 
units for the cell lines in this study are listed in Table S2. We 
then built a universe of transcripts by merging the groHMM-
called transcripts from individual cell lines and stratifying the 
boundaries to remove overlaps/redundancies occurring from 
the union of all transcripts.

Calling active enhancers using GRO-seq-defined enhancer tran-
scripts. We filtered and collected a subset of short intergenic 
transcripts <9 kb in length and >3 kb away from known TSSs 
of protein-coding genes from Gencode version 19 annota-
tions41 and H3K4me3 peaks. These were further classified into 
(1) short paired eRNAs and (2) short unpaired eRNAs as 
described previously.19 For the short paired eRNAs, the sum of 

the GRO-seq RPKM values for both strands of DNA was 
used to determine whether an enhancer transcript pair is 
expressed using a cutoff of RPKM ⩾ 0.5 (Figure S1B). An 
RPKM cutoff of ⩾ 1 was used to determine the universe of 
expressed short unpaired eRNAs (Figure S1C). The compre-
hensive universe of expressed eRNAs (short paired and short 
unpaired) assembled using the cutoffs noted above for each cell 
line was used for further analyses.

Motif analyses for GRO-seq-defined enhancers. De novo motif 
analyses was performed on a 1 kb region (±500 bp [base pairs]) 
surrounding the overlap center or the TSS for short paired and 
short unpaired eRNAs, respectively, using the command-line 
version of MEME from MEME Suite version 4.11.1.44 The 
following parameters were used for motif prediction: (1) zero 
or one occurrence per sequence (-mod zoops); (2) number of 
motifs (-nmotifs 15); (3) minimum, maximum width of the 
motif (-minw 8, -maxw 15); and (4) search for motif in given 
strand and reverse complement strand (-revcomp). The pre-
dicted motifs from MEME were matched to known motifs in 
the JASPAR database ( JASPAR_CORE_2016_vertebrates.
meme)30 using TOMTOM.31

Enhancer calling by ChIP-seq

Calling active enhancers using histone modification ChIP-seq 
data. We built a universe of peak calls by merging the peaks 
from individual cell lines for histone modifications (H3K4me1 
and H3K27ac) and stratifying the boundaries to remove over-
laps/redundancies occurring from the union of all peaks. Poten-
tial enhancers were defined as peaks that were >3 kb from 
known TSSs, protein-coding genes from Gencode version 19 
annotations,41 and H3K4me3 peaks. An RPKM cutoff of ⩾1 
for H3K4me1 and H3K27ac (Figure S1D and E) in at least one 
cell line was used to identify a peak as an active enhancer. The 
universe of active enhancers was assembled using the cutoffs 
noted above for each cell line and was used for further analyses.

Motif analyses for ChIP-seq-defined enhancers. De novo motif 
analyses were performed on a 1 kb region (±500 bp) surround-
ing the peak summit for the top 10 000 enhancers, using the 
command-line version of MEME-ChIP from MEME Suite 
version 4.11.1.44,45 The following parameters were used for 
motif prediction: (1) zero or one occurrence per sequence 
(-mod zoops); (2) number of motifs (-nmotifs 15); (3) mini-
mum, maximum width of the motif (-minw 8, -maxw 15). All 
the other parameters were set at the default. The predicted 
motifs from MEME were matched to known motifs in the 
JASPAR database ( JASPAR_CORE_2016_vertebrates.
meme)30 using TOMTOM.31

Generating heatmaps and clusters

For each cell line, the functional scores were Z-score normal-
ized. To identify cognate TFs by cell type, we performed 

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
https://github.com/sdjebali/MakeGencodeTSS
https://github.com/sdjebali/MakeGencodeTSS
https://bioconductor.org/packages/release/bioc/html/groHMM.html
https://bioconductor.org/packages/release/bioc/html/groHMM.html
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hierarchical clustering by calculating the Euclidean distance 
using clustermap from seaborn version 0.7.1 (https://seaborn.
pydata.org/). For visualization of the multidimensional TFSEE 
scores, we performed t-distributed stochastic neighbor embed-
ding analysis (t-SNE)46 using the TSNE function and labeled 
the clusters by calculating K-means clustering using the 
KMeans function with the expectation-maximization algo-
rithm in scikit-learn version 0.17.1 (http://scikit-learn.org/).

Nearest neighboring gene analyses and box plots

The universe of expressed genes in each cell line was deter-
mined from the RNA-seq data using a FPKM cutoff of >0.4 
(Figure S1F). The set of nearest neighboring expressed genes 
for each enhancer defined by an expressed eRNA or the enrich-
ment of active histone marks was determined for each cell line. 
Box plot representations were used to express the levels of tran-
scription or enrichment for each called enhancer and transcrip-
tion of their nearest neighboring expressed genes. The read 
distribution (RPKM) for each enhancer or (FPKM) gene was 
calculated and plotted using the boxplot function from mat-
plotlib version 2.0.2 (https://matplotlib.org/). Wilcoxon rank 
sum tests were performed to determine the statistical signifi-
cance of all comparisons.

Overlapping enhancer analysis

Quantification of overlapping enhancers was assessed using a 
universe of enhancers for each identification method and 
counting the overlapping enhancers with other methods using 
BEDTools version 2.17.0.37 The percentage of overlapping 
enhancers was calculated in Python (ver. 2.7.11) and plotted 
using the barplot function from matplotlib version 2.0.2 
(https://matplotlib.org/). To visualize the intersection of 
enhancer marks, we used UpsetR version 1.4.47

Results
The TFSEE model

The TFSEE model integrates data from multiple genomic 
assays, such as GRO-seq, RNA-seq, and ChIP-seq, with TF 
expression and motif information to predict (1) TFs driving 
the formation of active enhancers in a particular cell type and 
(2) the locations of their cognate enhancers. Enhancer identifi-
cation methods using enrichment of enhancer histone modifi-
cations (eg, H3K4me1 and H3K27ac)10-12 or enhancer 
transcription16 are quite well established. To explore the utility 
of TFSEE, we have analyzed using both methods of enhancer 
identification as inputs for TFSEE (Figure 1). In step 1 (Figure 
2), a universe of active enhancers across the different constitu-
ent cell types was identified based on enhancer transcription as 
assessed by GRO-seq or total RNA-seq (method 1) (Figure 
S2A). One could also substitute this with the enhancers identi-
fied using the enrichment of epigenomic marks that are known 

to be enriched at enhancers, such as H3K4me1 and H3K27ac 
(method 2) (Figure S2B). After the enhancer calling step (by 
method 1 or method 2), the TFSEE model includes 5 key data 
processing steps (Figure 2), followed by data integration to cal-
culate the enrichment and activity profiles, that is, the TFSEE 
score (Figure 3).

Step 1—Method 1: enhancer calling based on enhancer transcripts 
defined by GRO-seq. In this approach, the active enhancers 
were identified based on enhancer transcripts (ie, eRNAs) 
called using GRO-seq data. The GRO-seq data were analyzed 
using groHMM version 3.416,21 and the transcript calling was 
performed as described in the methods section. The transcript 
calls were further filtered to identify a universe of short inter-
genic transcripts <9 kb in length and >3 kb away from the 
known TSSs of protein-coding genes and H3K4me3 peaks, 
which mark promoters. A final universe of expressed short 
paired eRNAs and short unpaired eRNAs for each cell type 
was identified with the cutoffs as mentioned in the methods 
section. Next, the expression profiles (using GRO-seq data) 
and histone mark enrichment profiles (using ChIP-seq data) 
were calculated at these active enhancers for each cell type to 
calculate the enhancer activity (A) (Figure 3).

Step 1—Method 2: enhancer calling based on histone modification 
defined by ChIP-seq. In this approach, the enhancers were iden-
tified based on histone modifications (H3K4me1 and H3K27ac) 
using ChIP-seq data. The enhancers called based on histone 
modification peak calls for each cell type were merged and the 
redundancies were removed as described in the methods sec-
tion. Next, the potential intergenic enhancers were defined as 
the merged peaks that are >3 kb from known TSSs, protein-
coding gene bodies, and H3K4me3 peaks. An RPKM cutoff of 
⩾1 for H3K4me1 and H3K27ac (Figure S1D and E) in at least 
one cell type was used to call a peak as an active enhancer. The 
universe of active enhancers was then assembled for each cell type.

Step 2: Calculating enrichment and activity profiles. For the uni-
verse of enhancers for each cell type (identified in step 1), the 
enhancer activity levels were assessed genome-wide by calcu-
lating the enrichment of histone modifications (ie, H3K4me1 
and H3K27ac) and enhancer transcription (GRO-seq or total 
RNA-seq) (Figure 2). Next, we generated an enhancer activity 
matrix ACxE for all cell types, C, for the universe of active 
enhancers, E. For this analysis, we assumed that the enhancer 
activity of each cell type is linearly correlated to the amount of 
enhancer transcription (GRO-seq or total RNA-seq, G) and to 
the epigenomic marks (H3K4me1, M, and H3K27ac, H). To 
reduce bias, the enrichment for each individual enhancer was 
scaled between 0 and 1. Enhancer activity, A, was calculated 
using the following formula:

A G M H= + +

https://seaborn.pydata.org/
https://seaborn.pydata.org/
http://scikit-learn.org/
https://matplotlib.org/
https://matplotlib.org/
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When using only histone modifications (step 1, method 2), 
enhancer activity can be calculated using the following formula:

A M H= +

Steps 3 to 5: De novo motif searching and TF expression. The 
TFSEE was designed primarily to detect enhancer activity 
changes and TF-enhancer relationships for each cell type. The 
steps in this section are common for both the methods of 
enhancer calling, which includes de novo motif searching and 
postprocessing of the motif search results. In steps 3 to 4, the 
TF-enhancer relationships were determined using a de novo 
motif search, and a matrix of probabilities of the TFs was cre-
ated by annotating every enhancer to TF relationships for each 
cell type (Figures 2 and 3). If a motif is represented multiple 
times for a given enhancer location, TFSEE combines the 
probability of that motif into a single P value using the Stouffer 
method.48 In step 5, the expression profile of all the TFs from 
step 4 (Figures 2 and 3) was calculated from GRO-seq or 
RNA-seq data across all the cell types.

Calculating the TFSEE score by data integration. The final stage 
integrates all of the data compiled in steps 1 to 5 (Figure 3) to 
determine the TFSEE score matrix and generate a heatmap of 
TFSEE scores. First, the enhancer activity matrix, ACxE, was 
combined with the motif prediction matrix, TExF, to generate a 
scaled motif prediction P value, T, for each enhancer, E, to form 
an intermediate matrix product. This matrix product is com-
bined entrywise with the TF expression matrix, R, from step 5, 
and the expression of each TF, F, for each cell type, C, into a 
resulting matrix, Z, composed of C cell types and F TFs. The 
TFSEE scores can be expressed as the following formula:

Z A T R= ×( ) ⋅

Using TFSEE for the unbiased identif ication of 
enhancers during pancreatic differentiation

To demonstrate the utility of TFSEE, we used it to define the 
enhancer landscape and identify TFs that maintain the multi-
potency of a subpopulation of endodermal stem cells during 

Figure 2. Data processing for Total Functional Score of Enhancer Elements (TFSEE) method. The TFSEE method has 5 data processing steps that are 

used to identify enhancer location and activity and their cognate transcription factors (TFs). In step 1, epigenomic (ChIP-seq) or the transcriptional 

(GRO-seq or total RNA-seq) profiles are used to generate a universe of active enhancers across the different constituent lineages. In step 2, TFSEE 

calculates the enrichment (H3K4me1 and H3K27ac) and enhancer transcription (GRO-seq and total RNA-seq) profiles under all identified active 

enhancers per lineage. Lineage-specific enhancers are used as input for step 3, where a de novo motif search is performed to identify potential TFs at 

each enhancer. If a motif is represented multiple times for a given enhancer location, TFSEE combines the probability of that motif into a single P value in 

step 4. Step 5 integrates the amount of enhancer transcription (GRO-seq or total RNA-seq) and the expression of the TFs whose motifs were predicted in 

step 3 and 4 for all cell types, to provide an output of TF expression profiles across every cell type.
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differentiation into pancreatic lineages. For these analyses, we 
mined previously published ChIP-seq data sets for 3 different 
histone modifications (ie, H3K4me1, H3K4me3, and 
H3K27ac), in addition to GRO-seq and RNA-seq data sets, at 
5 defined stages of endoderm lineage differentiation: hESCs, 
definitive endoderm (DE), primitive gut tube (GT), posterior 
foregut (FG), and PE (Figure 4A, Table S1).

Calling enhancers by independent methods. Using differentiation 
of pancreatic stem cells as a biological model (Figure 4A), we 
identified the enhancer universe for the cell types by 2 methods: 
(1) enhancer transcription signatures from GRO-seq data (Fig-
ure S2A) and (2) enrichment of epigenomic marks (ie, 
H3K4me1 or H3K27ac) (Figure S2B). To avoid complications 
associated with overlaps between enhancer transcription and 
promoter transcription, we only considered candidate enhancers 
>3 kb away from the annotated TSSs of active protein-coding 
genes, as identified by the enrichment of H3K4me343 (using 
GENCODE version 19 annotations41) (Figure S2A and B).

We then predicted candidate enhancers using methods 1 
and 2. We identified a set of 4974 candidate enhancers (Figure 
4B) by method 1 using GRO-seq data, as described previ-
ously,19 with RPKM cutoffs of ⩾0.5 or ⩾1 (Figure S1B and C) 
in at least one cell lineage. We also identified a set of enhancers 
by method 2 using histone modifications, by filtering the 

enhancer universe based on the enrichment of H3K4me1 and 
H3K27ac (RPKM cutoff of ⩾ 1 [Figure S1D and E] for both 
marks in at least one cell line), and identified a set of 218 731 
candidate enhancers across all stages of pancreatic differentia-
tion (Figure 4B). This stringent filter is necessary to reduce the 
false-positive enhancers from method 2 that could easily be 
annotated as alternative chromatin states using ChromHMM.49 
In addition, the majority of histone called enhancers were 
marked by only H3K4me1 (Figure 4B). These results confirm 
the enhancer landscape across pancreatic differentiation 
reported by Wang et al.1

Comparison of enhancer calls by methods 1 and 2. Next, we com-
pared the enhancer universes called by enhancer transcription 
(method 1) and histone modifications (method 2). We found 
that 12% of enhancers called based on enhancer transcription 
using GRO-seq data were also identified based on enrichment 
of H3K4me1, H3K27ac, or both marks combined (Figure 4C, 
Figure S3A). Interestingly, greater than 84% of the enhancers 
identified based solely on enhancer transcription were not 
called based on enrichment of H3K27ac or H3K4me1 (Figure 
4C and D, Figure S3B). This is likely due to the fact that these 
may not be the primary or only chromatin marks denoting 
active enhancers in these systems, and other marks (ie, H4K8ac 
or H3K9ac) or combinations of marks might serve as better 

Figure 3. Overview of Total Functional Score of Enhancer Elements (TFSEE) method. TFSEE combines diverse data sets to identify enhancer location 

and activity and their cognate transcription factors (TFs). An illustration of TFSEE data integration stage, taking the outputs generated at each step to 

identify the location, activity level, and predicted TFs at each enhancer across all cell types. (Top) All matrices represent scaled enhancer activity for each 

cell type in each enhancer prediction method (G, H, and M). All matrices are linearly combined into a resulting matrix A, to provide a total enhancer 

activity score. (Bottom) Enhancer activity matrix A, combined with motif prediction matrix T, represents scaled motif prediction P values for each enhancer, 

to form an intermediate matrix product. This matrix product is entrywise combined with TF expression matrix R (scaled TF expression for each cell type), 

into a resulting matrix Z, on which TFSEE clustering is performed.
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identifiers.50 In contrast, less than 1% of enhancers called based 
on the enrichment of H3K4me1 and H3K27ac overlapped 
with the enhancers identified based on enhancer transcription 
or both H3K4me1 and H3K27ac combined (Figure 4C). This 
may be due, in part, to the fact that enhancer calling based on 
H3K4me1 or H3K27ac enrichment yields much larger num-
bers of putative enhancers (Figure 4D), many of which may be 
false positives or inactive as true regulatory elements (Figure 
S3C and D). Based on these findings, we decided to focus on 
the enhancers identified based on enhancer transcription using 
GRO-seq data (method 1), which had the highest percentage 

of enhancers that were called by all 3 methods, as an input to 
TFSEE for the subsequent analysis.

TFSEE identif ies lineage-specif ic enhancers and 
their cognate TFs during pancreatic differentiation

TFSEE scores determined by using inputs from method 1. After 
determining the TFSEE scores globally across the lineage of 
pancreatic differentiation, we performed unsupervised hier-
archical clustering on the enhancers predicted by method 1 
based on enhancer transcription, which grouped the 

A C

B D

Figure 4. Comparison of approaches for genome-wide prediction of enhancers during pancreatic differentiation. (A) (Top) Schematic diagram of 

pancreatic differentiation starting from human embryonic stem cells (hESCs) to pancreatic endoderm (PE). (Bottom) Depiction of epigenomic (ChIP-seq) 

and transcriptional (GRO-seq and RNA-seq) profiles for each cell line used for analysis. (B) Stacked bar chart comparing the predicted activity of 

candidate enhancers categorized by (Top) H3K4me1 and H3K27ac enrichment or (bottom) enhancer transcription (GRO-seq). (C) Stacked bar chart 

comparing enhancer prediction methods in pancreatic differentiation. Enhancers were called using enhancer transcription (GRO-seq) or using H3K4me1 

enrichment, H3K27ac enrichment, or a combination of both histone marks. The percentage of called enhancers from one prediction method that overlap 

with enhancers called using other methods is shown. (D) UpSet plot showing the set intersection of enhancer identification methods shown in panel (C). 

DE indicates definitive endoderm; FG, posterior foregut; GT, primitive gut tube; hESCs, human embryonic stem cells; PE, pancreatic endoderm; TF, 

transcription factors; TFSEE, Total Functional Score of Enhancer Elements.
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lineage-specific cell types into 2 major clades: (1) FG and 
PE and (2) hESC, DE, and GT (Figure 5A). To better 
understand the TF-enhancer dynamics across the 4 repre-
sented cell types in pancreatic differentiation, we clustered 
the TFSEE scores across all the differentiation stages, 
revealing 4 major clusters (Figure 5B). We then examined 
the enrichment of putative enhancers and their associated 
TFs across stages by quantifying their normalized TFSEE 
scores. This analysis revealed 4 major enhancer clusters: (1) 
those driving early (hESC, DE) and late pancreatic differ-
entiation (FG and PE), (2) those enriched in GT, (3) those 
driving early pancreatic endodermal lineage formation 

(hESC, DE and GT), and (4) those driving late pancreatic 
differentiation (FG and PE) (Figure 5C).

To investigate the distinct roles of lineage-specific enhancers 
and their cognate TFs, focusing on those that provide a clear 
demarcation of enrichment between early and late pancreatic 
differentiation, we first examined the expression levels of the 
messenger RNAs encoding the predicted TFs for each cluster 
in each of the stages. Our analysis revealed that TFs identified 
in early pancreatic differentiation show similar expression across 
the later stages of development, whereas TFs identified in late 
pancreatic differentiation are expressed most predominantly in 
the FG and PE stages (Figure 6A) coinciding with pancreatic 

Figure 5. TFSEE identifies cell type–specific enhancers and their cognate TFs that drive gene expression during pancreatic differentiation. (A) 

Unsupervised hierarchical clustering of cell type–normalized TFSEE scores shown in a heatmap representation. hESC (human embryonic stem cell); DE 

(definitive endoderm); GT (primitive gut tube); FG (posterior foregut); PE (pancreatic endoderm). (B) Biaxial t-SNE clustering plot of cell type–normalized 

TFSEE scores showing evidence of 4 distinct clusters, each point represents an individual TF. (C) Box plots of normalized TFSEE score for clusters 

identified in pancreatic differentiation (panel B), number of TFs are indicated in each cluster. Bars marked with different letters are significantly different 

(Wilcoxon rank sum test, P < × −1 10 4 ). Cluster 1, TFs associated with early (hESC, DE) and late pancreatic differentiation (FG and PE). Cluster 2, TFs 

associated with GT pluripotency. Cluster 3, TFs associated with pre-pancreatic lineage induction (hESC, DE, and GT). Cluster 4, TFs associated with late 

pancreatic differentiation (FG and PE). TF, transcription factors; TFSEE, Total Functional Score of Enhancer Elements.
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induction at the FG stage (Figure 4A). In addition, we observed 
an enrichment of TFs in a stage-specific manner for TFs 
enriched early (hESC, DE) and late (FG and PE), but not for 
those maintaining GT pluripotency (Figure S4A).

Next, we determined whether enhancer transcription cor-
responding to the enriched TFs in each cluster, using the 
TFSEE scores, correlates with the regulation of nearby genes. 
To do so, we identified the enhancers corresponding to the pre-
dicted TFs using motif enrichment and binding site prediction. 
We then determined the level of transcription for each enhancer 
using GRO-seq (Figure 6B, Figure S4B) and the level of 
expression for the nearest neighboring gene (upstream or 
downstream) using RNA-seq (Figure 6C, Figure S4C). 
Interestingly, transcribed enhancers exhibited stage-specific 
enrichment, which did not correspond to the patterns observed 

based on TFSEE scores (Figure 6B, Figure S4B). This result 
likely reflects the fact that 1364 of the enhancers are shared 
between clusters (55%, n = 2465, for cluster 3; 99%, n = 1371, for 
cluster 4), and the variation between clusters is due to differ-
ences in TF expression and their affinity for motifs. Likewise, 
the expression of the nearest neighboring gene for each tran-
scribed enhancer did not exhibit stage-specific enrichment 
(Figure 6C, Figure S4C) due to the vast abundance of enhanc-
ers with neighboring genes shared between the clusters. 
However, without further high-throughput data to study 
enhancer-promoter interactions (as measured by 4C, ChIA-
PET, or Hi-C),51-53 it is difficult to discern the logic of the 
stage-specific regulatory network.

To further understand the potential regulators of each clus-
ter, we determined a rank order frequency distribution for all 

Figure 6. TFSEE-predicted TFs are enriched in pre- and late pancreatic differentiation. (A to C) Box plots of normalized TF expression (panel A), 

enhancer transcription (panel B), and gene expression for the nearest neighboring genes to active enhancers (panel C) in pre- (cluster 3) and late 

pancreatic (cluster 4) differentiation across the different cell types. Bars marked with different letters are significantly different from each other (Wilcoxon 

rank sum test). hESC (human embryonic stem cell); DE (definitive endoderm); GT (primitive gut tube); FG (posterior foregut); PE (pancreatic endoderm). 

(A) TFs identified in cluster 3 by TFSEE show equal expression across differentiation, whereas cluster 4 highlights TFs highly expressed in FG and PE. TF 

expression as measured by RNA-seq. The number of TFs in each cluster are in parenthesis ( )P < × −1 10 4 . (B) Enhancer transcription as measured by 

GRO-seq. The number of enhancers in each cluster are in parenthesis (P < × −1 10 4 ). (C) Gene expression as measured by RNA-seq. The number of 

genes in each cluster are in parenthesis ( . )P < 05 . (D and E) Rank order of TFs enriched in cluster 3 and cluster 4 identified using TFSEE. The top 10 TFs 

in each cluster are noted. TF, transcription factors; TFSEE, Total Functional Score of Enhancer Elements.
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TFs within each cluster (Figure 6D and E, Figure S4D and E). 
This analysis revealed enrichment of HINFP, RARG, ZIC3, 
and SP1-like family TFs (SP1 and SP8), which are important 
regulators of embryonic development54-57 (Figure 6D). In addi-
tion, the Onecut family (ONECUT2 and ONECUT3), 
EGR1, MITF, and FOXP1 TFs, which were enriched in clus-
ter 4, have been shown to function in pancreatic and islet cell 
development58-61 (Figure 6E).

TFSEE scores determined using inputs from method 2. To deter-
mine the robustness of the method, we calculated TFSEE 
scores using enhancers predicted based on histone enrichment 
alone. We performed unsupervised hierarchical clustering and 
retrieved only 3 clusters, in contrast to the 4 clusters from 
enhancers predicted based on enhancer transcription (Figure 
S5A and B). These results highlight the potential role of TF-
enhancer interactions driving the formation of the early pan-
creatic endodermal lineage (hESC, DE, and GT), as well as 
late pancreatic differentiation (FG and PE), but do not reveal 
any other stage-specific drivers (Figure S5C).

For comparable clusters from early and late pancreatic dif-
ferentiation, we determined whether enhancer “activity” based 
on H3K27ac enrichment correlates with the regulation of 
nearby genes. We monitored TF expression by RNA-seq 
(Figure S6A) and then calculated the level of activity for each 
enhancer using H3K27ac ChIP-seq data (Figure S6B) and the 
expression of the nearest neighboring gene (upstream or down-
stream) using RNA-seq (Figure S6C). We found that H3K27ac-
enriched enhancers exhibit stage-specific enrichment, as 
observed for method 1, which does not correspond to the pat-
terns found from TFSEE enrichment (Figure S6B). This result 
reflects the fact that 1017 of the enhancers are shared between 
clusters (74%, n = 1375 for cluster 2; 62%, n = 1640 for cluster 3), 
and the variation between clusters is due to differences in TF 
expression and their affinity for the motifs. Furthermore, similar 
to method 1, the nearest neighboring gene for each transcribed 
enhancer does not exhibit stage-specific enrichment (Figures 
S6C). The potential regulators of clusters 2 and 3 were deter-
mined using a rank order frequency distribution for all TFs 
within each cluster (Figure S6D and E).

Comparison of TF identif ication using inputs from method 1 or 
method 2. To determine the robustness of the approaches, we 
compared TFs identified by TFSEE using inputs from method 
1 or method 2 for pre- and late pancreatic differentiation. We 
found 9 and 12 TFs (out of the total of 44 and 46 unique TFs 
identified) enriched in common for early and late pancreatic 
differentiation, respectively (Figure S6F). These differences in 
the enriched TFs may be, in part, due to the much larger num-
bers of putative enhancers called using H3K4me1 and 
H3K27ac enrichment, many of which may be false positives or 
inactive as regulatory elements, producing a greater assortment 
of enriched TF motifs. Taken together, our results show that 

TFSEE can be used to identify cell type–specific TFs that con-
trol lineage-specific enhancers.

Discussion
The carefully choreographed mechanisms involved in driving 
the lineage-specific transcriptional responses during develop-
ment remain poorly understood. In this study, we integrated a 
variety of publicly available high-throughput sequencing data 
from pancreatic lineage development to identify the potential 
regulators driving the early or late pancreatic lineage develop-
ment. Our analysis revealed the enrichment of the Onecut 
family (ONECUT2 and ONECUT3), EGR1, MITF, and 
FOXP1 TFs in the late pancreatic differentiation phase (FG, 
PE), which have been shown to function in pancreatic and islet 
cell development.58-61 All but the Onecut family were identi-
fied as top-ranked TFs by both methods. Our analyses provide 
a detailed operational description of TFSEE, a previously pub-
lished computational method33 for identification of active 
enhancers and associated cognate TFs, during differentiation 
of hESCs toward pancreatic cell type. TFSEE employs a mul-
tiview clustering of multiple genomic assays that directly mod-
els changes in the transcriptional and epigenetic states across 
cell types. This approach allowed us to directly integrate dispa-
rate data while encoding assumptions and dependencies 
between data types in an interpretable and extendable model.

Evaluation and use of TFSEE

The TFSEE model gains power by both explicitly modeling 
the enhancer landscape for each cell type and detecting the 
enhancer activity changes and TF-enhancer relationships 
across all cell types. To date, we have applied TFSEE to tran-
scriptional and epigenomic data from hESC differentiation 
time course experiments1,34 (analyses described herein) and a 
variety of breast cancer cell lines.33,62 Our results show that this 
method can identify cell type–specific TFs and their cognate 
enhancers that are biologically relevant and are good candi-
dates for further biological validation. In particular, this method 
identifies TFs bound at active enhancers, which regulate gene 
expression, supporting the biological relevance of TFSEE pre-
dictions. In this study, we identified enrichment of HINFP, 
RARG, ZIC3, and SP1-like family TFs (SP1 and SP8), which 
are known important regulators of embryonic development,54-57 
3 of which (ie, ZIC3, SP1, and SP8) were identified as the top 
TFs by both methods.

In addition, TFSEE enables analysis of driver TFs using a 
limited amount of data. The model was able to identify line-
age-specific TFs with as little as 5 cell types and with only 2 
data types, RNA-seq and ChIP-seq (for H3K4me3, H3K4me1, 
and H3K27ac) (Figure S5A and B). A limitation of the TFSEE 
method is that while the model can be used with a reduced 
number of data types for enhancer identification, it fails to 
identify additional subtype- or stage-specific drivers with 
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reduced data input (Figure S5C). In this case, the overlapping 
clusters identified only a subset of TFs that are jointly enriched 
(Figure S6F).

Integrating additional genomic data into TFSEE

TFSEE could potentially be applied to any cell type with lim-
ited data, either GRO-seq or total RNA-seq (for enhancer 
calling by method 1), or histone modifications (for enhancer 
calling using H3K27ac and H3K4me1 by method 2). The inte-
gration of additional data into TFSEE could allow extension of 
the model, providing greater granularity about subtype-specific 
TFs and a better understanding of gene regulatory networks. 
Genomic data indicating open regions of chromatin (eg, 
ATAC-seq,63 DNase-seq,7 or MNase-seq64) could extend the 
dynamic range of “enhancer activity” (Figure 3) and help elimi-
nate false-positive enhancers in each cell type. Likewise, adding 
enrichment of transcriptional co-regulator p30065 could serve 
the same role. Furthermore, integrating additional histone 
modifications, which could be used to annotate alternate chro-
matin states by ChromHMM,49 may provide a finer filter for 
enhancer identification by method 2 than achieved here when 
limiting the analysis to the histone modifications used herein. 
Finally, to better understand the cluster-specific regulatory net-
works, the addition of chromatin looping data for enhancer-
promoter interactions (as measured by 4C, ChIA-PET, or 
Hi-C)51-53 may provide some advantages. The looping data 
would provide a better understanding of how enhancers shared 
between clusters determine cell type–specific expression pro-
files. We believe that including any or all of data described 
above into TFSEE would improve the model and help to dis-
cern cell type–specific regulatory networks and can easily be 
added due to the flexibility of the model.

Conclusions
The increasing availability of different types of genomic data 
sets provides an opportunity to perform data integration to 
uncover cell type–specific TF drivers. To facilitate identifica-
tion of these drivers, we developed and further evaluated 
TFSEE, which systemically identifies active enhancers and 
their cognate TFs. We showed that TFSEE can identify stage-
specific TFs during differentiation of hESCs into pancreatic 
lineages. Collectively, our results show how TFSEE can be 
used to predict molecular drivers maintaining cell type–specific 
function and biology.
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