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Abstract: An efficient and original synthesis of various 3,5-disubstituted 7-(trifluoromethyl)pyrazolo
[1,5-a]pyrimidines is reported. A library of compounds diversely substituted in C-3 and C-5 positions
was easily prepared from a common starting material, 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]
pyrimidin-5-one. In C-5 position, a SNAr type reaction was achieved by first activating the C–O
bond of the lactam function with PyBroP (Bromotripyrrolidinophosphonium hexafluorophosphate),
followed by the addition of amine or thiol giving monosubstituted derivatives, whereas in C-3
position, arylation was performed via Suzuki–Miyaura cross-coupling using the commercially
available aromatic and heteroaromatic boronic acids. Moreover, trifluoromethylated analogues of
potent Pim1 kinase inhibitors were designed following our concise synthetic methodology.

Keywords: 3-amino-1H-pyrazole; ethyl 4,4,4-trifluoro-2-butynoate; 3-bromo-7-(trifluoromethyl)
pyrazolo[1,5-a]pyrimidin-5-one; C–O bond activation; Suzuki–Miyaura cross-coupling

1. Introduction

Pyrimidine fused heterocycles constitute an important class of heterocyclic compounds, having
various applications in many fields owing to their chemical and biological properties. In particular,
pyrazolo[1,5-a]pyrimidines are one of the most interesting pyrimidine derivatives displaying a wide
range of pharmacological activities, as antimicrobial [1,2], antitumor [3], anticancer [4–8], anxiolytic [9,10],
antidepressant [11–13], and antiepileptic agents [14]. Moreover, pyrazolo[1,5-a]pyrimidines are
also known as antagonists of serotonin 5-HT6 receptors [15], and also act as inhibitors of histone
lysine demethylase 4D (KDM4D) [16] as well as several kinases such as Pim kinase [17,18],
threonine tyrosine kinase (TTK) [19], and cyclin-dependent kinases (CDKs) [20]. In addition, some
pyrazolo[1,5-a]pyrimidine derivatives were found to have an antiviral effect against the respiratory
syncytial virus (RSV) [21] and hepatitis C virus [22], and are inhibitors of phosphodiesterase
(PDE) 2A [23] and 10A [24–26], promising new targets for the treatment of cognitive disorders
and schizophrenia, respectively.
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The incorporation of a fluorine atom into potential pharmaceutical substances has been successfully
used as a key strategy for enhancing the activity of drugs or drug candidates [27,28]. The introduction of
fluorine atoms leads to a change in the solubility and lipophilicity of compounds, thus increasing their
bioavailability and their cell membranes permeability. As a consequence, the combination between the
pyrazolo[1,5-a]pyrimidine scaffold and the interesting properties of the fluorine atom could give rise to
new heterocycles displaying potent biological activities. Synthetically, although many approaches have
been reported for the synthesis of non-fluorinated pyrazolo[1,5-a]pyrimidines, the incorporation of
fluorinated groups in this heterocycle remains limited [29–36]. Recently, we described the condensation
of 5-substituted 3-aminopyrazoles with ethyl 4,4,4-trifluoro-2-butynoate, affording regioselectively the
2-substituted 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-ones in fair to good yields [37]. Continuing
our research directed towards the development of new heterocyclic compounds containing the
fluorine atoms [38–41], we report herein an efficient approach for synthesizing 3,5-disubstituted
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines in good yields through SNAr and Suzuki–Miyaura
cross-coupling reactions, using 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one as a
starting material.

2. Results and Discussion

Our synthesis starts with the generation of 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one
core 3 following our reported procedure [41]. The reaction between 3-aminopyrazole 1 and ethyl
4,4,4-trifluoro-2-butynoate 2 in 1,4-dioxane at 110 ◦C under microwave irradiation for 2 h, followed
by the addition of NaOMe (2 equiv.) and stirring for 12 h at room temperature, gave the only
regioisomer 3 in 63% yield (Scheme 1). Selective bromination of 3 with N-bromosuccinimide in
dichloromethane afforded the bromo derivative 4 in 94% yield. The 3-bromo-7-(trifluoromethyl)
pyrazolo[1,5-a]pyrimidin-5-one 4 served as a building block for the synthesis of 3,5-disubstituted
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines having two new points of diversity.
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Scheme 1. Synthesis of 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one 4.

Recently, we reported one pot SNAr reaction strategy to functionalize the pyrazolo[1,5-a]pyrimidine
moiety at C-5 position through C-O activation of the lactam function with PyBroP
(bromotripyrrolidinophosphonium hexafluorophosphate) as the activating reagent [41]. We extended
this approach to the brominated compound 4 in order to substitute the pyrazolo[1,5-a]pyrimidine
ring differently at C-3 and C-5 positions. The C–O bond activation was carried out with PyBroP
(Bromotripyrrolidinophosphonium hexafluorophosphate) (1.3 equiv.) in the presence of Et3N (3 equiv.)
in 1,4-dioxane at room temperature for 2 h. Then, the addition of various amines (1.5 equiv.) in
1,4-dioxane at 110 ◦C for 12 h led to the desired 5-amino-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines
5a–f in 74–98% yields (Scheme 2). A one-pot reaction using benzylamine and 4-methoxybenzylamine
as the nucleophilic reagents provided the corresponding trifluoromethylated 5-aminopyrazolo[1,5-a]
pyrimidines 5a and 5b in the same 90% yield. Under the same conditions, aliphatic amines bearing
protected or unprotected functions such as NHBoc, free hydroxyl group and triple bond, reacted well
and afforded the expected heterocycles 5c–e in 74%, 84%, and 96% yields, respectively (Scheme 2).
When morpholine was used as a secondary amine, this SNAr reaction was also efficiently performed
and the compound 5f was isolated in 98%. In view of the success of amine addition, this reaction was
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extended to sulfur compounds such as p-methoxythiophenol (PMPSH) giving successfully the desired
product 5g in 73% yield (Scheme 2).
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In order to prepare a library of new 3,5-disubstituted 7-(trifluoromethyl)pyrazolo[1,5-a] pyrimidines,
bromine in C-3 position of 5a–f was subjected to a Suzuki–Miyaura cross-coupling. To optimize the
coupling conditions, the reaction between compound 5f and 4-methoxyphenylboronic acid was studied
as a model (Table 1). First, this coupling was carried out with p-methoxyphenylboronic acid (2 equiv.)
in the presence of PdCl2(PPh3)2 (10 mol%) as the catalyst and sodium carbonate (2 equiv.) as the base in
a mixture of dioxane/water (4/1) at 110 ◦C. Under these conditions, the starting material was completely
consumed after 12 h, and the analysis of the crude 1H NMR spectrum (see Supplementary Materials)
showed 10% of the coupled product 6a along with 90% of debrominated compound 7 as a byproduct
(Table 1, entry 1). As a proper combination between catalyst, base, and solvent is very important for
the success of the reaction, the influence of these parameters was then examined. Using PdCl2dppf
instead of PdCl2(PPh3)2 improved slightly the 6a/7 ratio from (10:90) to (20:80) (Table 1, entries 1–2).
Under the same conditions, replacing Na2CO3 by K2CO3 resulted in a similar 6a/7 ratio (Table 1, entry
3). The replacement of PdCl2dppf with XPhosPdG2/XPhos tandem at 135 ◦C affected slightly the
formation of byproduct 7 since its yield decreased to 70% and the yield of the desired product 6a
increased to 30% (Table 1, entry 4). To reduce the reaction time and to improve the yield of 6a at the
expense of 7, conventional thermal heating was replaced by microwave irradiation (MW) to promote
the reaction. This heating mode seems beneficial for the reaction since the time was reduced to only 40
min and the percentage of 6a in the mixture increased to 45% (Table 1, entry 5). Gratifyingly, when
adding ethanol as an organic solvent instead of dioxane, the starting material was fully converted to the
desired compound 6a which was obtained in excellent 93% isolated yield, after purification by silica-gel
column chromatography (Table 1, entry 6). A significant effect of the base on the formation of the
undesired product 7 was observed when Na2CO3 was used instead of K2CO3 (Table 1, entry 7). When
the reaction was conducted without ligand, both products 6a and 7 were formed equally, indicating
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that the Xphos ligand plays a critical role in avoiding the formation of byproduct 7 (Table 1, entry 8).
By reducing the amounts of catalyst and ligand to 5 mol%, a decrease in the yield of coupling product
6a was observed (Table 1, entry 9).

Table 1. Optimization of Suzuki–Miyaura cross-coupling between 5f and p-methoxyphenylboronic acid.
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1 Dioxane Na2CO3 PdCl2(PPh3)2 - 110 12 h 10 90
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PdCl2(PPh3)2: Bis(triphenylphosphine)palladium(II) dichloride. PdCl2dppf: [1,1′-Bis(diphenylphosphino)ferrocene]
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On analyzing the synthesis of compound 6a, which involved a C–O bond activation reaction using
morpholine as amine at C-5 followed by the Suzuki–Miyaura cross-coupling at C-3 (Scheme 3, Path A),
the overall yield was found to be 91% over two steps. This sequence could be reversed by conducting
the Suzuki–Miyaura coupling first at C-3 followed by SNAr reaction at C-5 (Scheme 3, Path B).
Following the synthetic route B, the overall yield of 6a decreased to 77% and some problems were
encountered during the purification of the intermediate 8 because of the presence of unprotected lactam
function (Scheme 3, Path B). Therefore, the efficient, convergent, and interesting synthetic pathway A
was applied to generate several new 3,5-disubstituted 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines.
Encouraged by the good yield of 6a obtained in two sequential steps (path A), this synthesis was
attempted according to a one-pot strategy. In a sealed vial and reproducing the same conditions as
those of the first and second steps (Path A), without isolating intermediate 5f, the desired product 6a
was not observed since only 61% of debrominated by-product 7 was isolated. This debromination was
likely induced by the presence of triethylamine and morpholine in the reaction medium.

After establishing the best conditions to carry out the Suzuki coupling at C-3 of 5f, we extended this
coupling to monosubstituted substrates 5a–e using commercially available aromatic and heteroaromatic
boronic acids. In all cases, direct arylation at C-3 produced the corresponding 3,5-bifunctionnalized
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines 6a–m in good to excellent isolated yields whatever the
nature of the amine at C-5. The results are summarized in Scheme 4.
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As illustrated in Scheme 4, unsubstituted aryl such as phenyl, biphenyl, and naphthyl were
successfully coupled under optimized conditions, and the desired products 6b, 6d, 6f, 6k, and 6m were
isolated in yields ranging from 74% and 91%. A phenylboronic acid bearing a methoxy group, as an
electron-donating group, at the para position was easily coupled with 5f, giving the desired compound
6a in 93% yield. In addition, a free alcohol moiety was tolerated at the para position of phenylboronic
acid providing compound 6g in 82% yield. A phenylboronic acid with CF3, as an electron-withdrawing
group, was also tolerated, yielding the expected product 6l in 77% yield (Scheme 4).

After the good results obtained with different aryls, this coupling was extended to heteroaryl
boronic acids. Interestingly, using 2-thienyl as an heteroarylboronic acid in coupling reaction with
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines containing morpholino or benzylamino group at C-5
position, worked well and the desired heterocycles were isolated in good yields (6c (79%) and 6e (76%)).
Similarly, the cross-coupling between 3-pyridinylboronic acid or 4-dibenzothienylboronic acid and 5a,
provided the coupled products in excellent yields (6i (91%) and 6j (92%)). However, the isolated yield
obtained with the coupling of 1H-pyrazole-4-boronic acid and 5a did not exceed 50% which could be
explained by the presence of a free NH-pyrazole bond (Scheme 4).

To demonstrate the synthetic potential of our method, we turned our attention to the synthesis of
biologically active compounds. With the introduction of a suitable aryl at C-3 and amine group at C-5 of
the pyrazolo[1,5-a]pyrimidine core, we were able to design the fluorinated pyrazolo[1,5-a]pyrimidines
6k and 6l, analogues of compounds 10 and 11, which have a nanomolar activities against Pim1 kinase
(10, IC50 = 18 nM) and (11, IC50 = 27 nM), respectively (Scheme 5) [17,42]. In order to prepare the
trifluoromethylated analogue of the potent Pim1 kinase inhibitor 12 (IC50 = 1.5 nM), the Boc protected
amine 6m was treated with an excess of trifluoroacetic acid at room temperature, yielding the desired
diamine 9 in 95% (Scheme 5). It is noteworthy that there is a correlation between prostate cancer
disease and Pim-1 since the DNA microarray analyses showed that this kinase was overexpressed in
human prostate cancer [43].Molecules 2020, 25, x FOR PEER REVIEW 7 of 15 
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3. Materials and Methods

3.1. General Methods

All reagents were purchased from commercial suppliers and were used without further purification.
Triethylamine and DCM were distilled over calcium hydride. 1,4-Dioxane was distilled over sodium
and benzophenone. Reactions were monitored by thin-layer chromatography (TLC) analysis using
silica gel (60 F254) plates. The compounds were visualized by longwave (365 nm) or shortwave (254 nm)



Molecules 2020, 25, 2062 7 of 14

UV light. Column chromatography was performed using silica gel 60 (230–400 mesh, 0.040–0.063 mm)
to purify the product.

All 1H NMR, 13C NMR, and 19F NMR spectra were recorded with a 300 MHz Bruker Avance
FT-NMR spectrometer (300 MHz, 75 MHz, or 282 MHz, respectively, (Billerica, MA, USA).

All chemical shifts are given in ppm and they are referenced to tetramethylsilane (TMS) as an
internal standard. 1H NMR assignment abbreviations are indicated as follows: singlet (s), doublet (d),
triplet (t), quartet (q), broad singlet (br s), doublet of doublets (dd), triplet of doublets (td), doublet
of a triplets (dt), and multiplet (m). Coupling constants (J) are reported in Hertz (Hz). Electrospray
ionization high-resolution mass spectrometry experiments were performed with a hybrid tandem
quadrupole/time-of flight (Q-TOF) instrument, equipped with a pneumatically assisted electrospray
(Zspray) ion source (Micromass, Manchester, UK) operated in positive mode. Melting points were
measured using banc Kofler.

Microwave Assisted Reactions

The microwave-assisted reactions were performed using a Monowave 300 (microwave synthesis
reactor: Anton Paar, 300 W maximum power, Graz, Austria). Microwave irradiation was carried out in
sealed 10–30 mL vessels (borosilicate glass) with a PTFE (polytetrafluoroethylene)-coated silicon septum
and closed with a snap cap made of PEEK (polyetheretherketone). The temperatures were measured
on the surface of the vial with an IR sensor (measuring range: 30 to 300 ◦C; uncertainty: ±5 ◦C) and
were measured with high precision in the reaction mixture with a ruby thermometer (measuring range:
30 to 300 ◦C; uncertainty: ±2 ◦C) that could be read directly from the instrument screen. The reaction
time was measured from when the reaction mixture reached the stated temperature for temperature
controlled experiments. The pressure was measured with a non-invasive pressure sensor located in
the swiveling cover of the Monowave 300 (measuring range: 0 to 30 bar; uncertainty: ±1.5 bar).

3.2. Synthesis of 3-Bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one 4: Bromination of
3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimdin-5-one 3

NBS (1.05 equiv.) was added to a solution of pyrazolo[1,5-a]pyrimdin-5-one 3 (1 equiv.) in 8 mL
of CH2Cl2 and the reaction was stirred under an argon atmosphere at room temperature for 12 h.
The progress of the reaction was monitored by TLC (PE/EtOAc, 7/3). After completion of the reaction,
evaporation of the solvent under reduced pressure provided the crude product, which was purified by
column chromatography (PE/EtOAc, 7.5/2.5) to afford the final product 4 as a white solid in 94% yield;
melting point: 209–211 ◦C. 1H NMR (300 MHz, DMSO-d6): δ 13.00 (s, 1H), 8.07 (s, 1H), 6.74 (s, 1H). 13C
NMR (75 MHz, DMSO-d6): δ 159.7, 144.8, 140.5, 135.7 (q, J = 36.8 Hz), 119.2 (q, J = 274.6 Hz), 108.0,
75.1. 19F NMR (282 MHz, DMSO-d6): δ −66.65. HRMS (ESI) m/z [M + H]+ calcd for C7H4BrF3N3O:
281.9484; found: 281.9474.

3.3. General Procedure for the Synthesis of 5-Amino (or Mercapto) 3-bromo-7-(trifluoromethyl)pyrazolo
[1,5-a]pyrimidines 5a–g by the Direct Amination or Thiolation via C-OH Bond Activation with PyBroP

In a sealed tube, PyBroP (1.44 mmol, 621 mg, 1.3 equiv.) and Et3N (3.33 mmol, 0.46 mL,
3 equiv.) were added successively to a solution of 4 (1.11 mmol, 150 mg, 1 equiv.) in 1.4-dioxane
(4 mL). The mixture was degassed by argon bubbling and then stirred at room temperature for 2 h.
The corresponding amine or thiol (1.5 equiv.) was then added, and the mixture was stirred for
12 h at 110 ◦C. After cooling, the solvents were evaporated under reduced pressure, and the crude
residue was purified by silica gel column chromatography to give desired 5-aminated (thiolated)
3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimdines 5a–g.

3-Bromo-5-[N-(4-methoxybenzyl)amino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5a). The purification
of the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 9/1) to afford 5a
as a yellow solid in 90% yield. m.p. 149–151 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.97 (s, 1H), 7.35 (d,
J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.44 (s, 1H), 5.36 (br s, 1H), 4.66 (q, J = 5.3 Hz, 2H), 3.83 (s, 3H);
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13C NMR (75 MHz, Acétone-d6): δ 159.2, 154.9, 146.5, 144.4, 133.9 (q, J = 36.5 Hz), 130.3, 129.5 (2C),
119.4 (q, J = 273.3 Hz), 113.8 (2C), 100.9, 79.3, 54.6, 44.3; 19F NMR (282 MHz, CDCl3): δ −68.47; HRMS
(ESI) m/z [M + H]+ calcd for C15H13BrF3N4O: 401.0219; found: 104.0224.

5-(N-Benzylamino)-3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5b). The purification of the crude
product by chromatography on silica gel is carried out using (PE/EtOAc: 9/1) to afford 5b as a yellow
solid in 90% yield. m.p. 147–149 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.97 (s, 1H), 7.42–7.35 (m, 5H),
6.46 (s, 1H), 5.43 (br s, 1H), 4.75 (d, J = 5.3 Hz, 2 H); 13C NMR (75 MHz, Acetone-d6): δ 155.0, 146.5,
144.4, 138.5, 133.9 (q, J = 36.8 Hz), 128.4, 128.1, 127.3, 119.4 (q, J = 273.3 Hz), 100.8, 79.3, 44.7. 19F
NMR (282 MHz, CDCl3): δ −68.46; HRMS (ESI) m/z [M + H]+ calcd for C14H11BrF3N4: 371.0114;
found: 371.0119.

3-Bromo-5-[2-(tert-butoxycarboxylamino)-N-ethylamino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5c).
The purification of the crude product by chromatography on silica gel is carried out using (PE/EtOAc:
8/2) to afford 5c as a yellow solid in 74% yield. m.p. 155–157 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.93 (s,
1H), 6.48 (s, 1H), 6.43 (br s, 1H), 5.12 (br s, 1H), 3.73–3.63 (m, 2H), 3.51–3.41 (m, 2H), 1.45 (s, 9H); 13C
NMR (75 MHz, Acetone-d6): δ 156.2, 165.4, 146.5, 144.4, 133.8 (q, J = 37.4 Hz), 119.4 (q, J = 273.3 Hz),
101.0, 79.2, 78.0, 41.5, 39.4, 27.7 (3C); 19F NMR (282 MHz, CDCl3): δ −68.41; HRMS (ESI) m/z [M + H]+

calcd for C14H18BrF3N5O2: 424.0590; found: 424.0593.

3-Bromo-5-N-[4-(hydroxycyclohexyl)amino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5d). The purification
of the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 6/4) to afford
5d as a yellow solid in 84% yield. m.p. 195–197 ◦C; 1H NMR (300 MHz, Acetone-d6): δ 7.93 (s, 1H),
7.21 (d, J = 6.32 Hz, 1H), 4.07–4.03 (m, 1H), 3.82 (d, J = 4.5 Hz, 1H), 3.63–3.57 (m, 1H), 2.96–2.93 (m,
2H), 2.10–2.05 (m, 2H), 1.46–1.37 (m, 4H); 13C NMR (75 MHz, Acetone-d6): δ 154.5, 146.6, 144.4, 133.7
(q, J = 37.1 Hz), 119.4 (q, J = 273.3 Hz), 101.0, 79.0, 68.8, 49.3, 33.8 (2C), 29.8 (2C); 19F NMR (282 MHz,
Acetone-d6): δ −68.97; HRMS (ESI) m/z [M + H]+ calcd for C13H15BrF3N4O: 379.0376; found: 379.0378.

3-Bromo-N-[(prop-2-ynyl)amino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5e). The purification of the
crude product by chromatography on silica gel is carried out using (PE/EtOAc: 8.5/1.5) to afford 5e as a
yellow solid in 96% yield. m.p. 149–151 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.99 (s, 1H), 6.51 (s, 1H), 5.33
(br s, 1H), 4.39 (dd, J = 5.2, 2.5 Hz, 2H), 2.34 (t, J = 2.5 Hz, 1H); 13C NMR (75 MHz, Acetone-d6): δ 154.5,
146.2, 144.6, 134.1 (q, J = 36.9 Hz), 119.4 (q, J = 273.4 Hz), 100.5, 79.7, 79.6, 72.1, 30.2; 19F NMR (282 MHz,
CDCl3): δ −68.49; HRMS (ESI) m/z [M + H]+ calcd for C10H7BrF3N4: 318.9801; found: 318.9802.

3-Bromo-5-morpholino-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5f). The purification of the crude
product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2) to afford 5f as a yellow
solid in 98% yield. m.p. 182–184 ◦C; 1H NMR (300 MHz, CDCl3): δ 7.99 (s, 1 H), 6.74 (s, 1H),
3.86–3.79 (m, 8H); 13C NMR (75 MHz, Acetone-d6): δ 155.0, 146.0, 144.9, 134.5 (q, J = 36.7 Hz), 119.6
(q, J = 273.8 Hz), 97.4 (q, J = 4.6 Hz), 79.1, 66.1 (2C), 45.2 (2C); 19F NMR (282 MHz, CDCl3): δ −68.43;
HRMS (ESI) m/z [M + H]+ calcd for C11H11BrF3N4O: 351.0063; found: 351.0063.

3-Bromo-5-((4-methoxyphenyl)thio)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (5g). The purification of
the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 9.5/0.5) to afford 5g
as a yellow solid in 73% yield. m.p. 135–137 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.12 (s, 1H), 7.58 (d,
J = 8.8 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 6.73 (s, 1H), 3.91 (s, 3H); 13C NMR (75 MHz, Acetone-d6): δ
163.9, 161.7, 145.8, 145.5, 137.2 (2C), 133.4 (q, J = 37.5 Hz), 119.3 (q, J = 274.1 Hz), 117.7, 115.5 (2C), 105.6
(q, J = 4.4 Hz), 83.6, 55.1; 19F NMR (282 MHz, CDCl3): δ −68.59; HRMS (ESI) m/z [M + H]+ calcd for
C14H10BrF3N3OS: 403.9675; found: 403.9678.

3.4. General Procedure for C-3 Suzuki–Miyaura Cross-Coupling: Synthesis of 3,5-Disubstituted
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimdines 6a–m

A mixture of 5-aminated 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimdines 5a–g (1 equiv.),
boronic acid (2 equiv.), and K2CO3 (2 equiv.) in EtOH (4 mL) and water (1 mL) was thoroughly degassed
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with a stream of argon. Then, XPhos (10 mol%) and XPhosPdG2 (10 mol%) were added and the
microwave vial containing the mixture was capped and inserted into microwave reactor. The reaction
mixture was irradiated at 135 ◦C for 40 min. After that, the mixture was filtered through a Celite,
washed with EtOAc, and concentrated under reduced pressure. Purification of the crude via column
chromatography afforded desired 3,5-disubstituted 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines
6a–m, which was characterized by 1H, 13C NMR, 19F NMR and HRMS.

3-(4-Methoxyphenyl)-5-morpholine-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6a). The purification of
the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2) to afford 6a
as a yellow solid in 93% yield. m.p. 243–245 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.31 (s, 1H), 7.90 (d,
J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.74 (s, 1H), 3.90–3.88 (m, 4H), 3.87 (s, 3H), 3.79–3.76 (m, 4H);
13C NMR (75 MHz, CDCl3): δ 157.85, 154.1, 143.7, 135.2 (q, J = 36.1 Hz), 126.9 (2C), 124.9, 120.5, 119.5
(q, J = 274.5 Hz), 114.2 (2C), 107.0, 95.0 (q, J = 4.5 Hz), 66.45 (2C), 55.3, 45.3 (2C); 19F NMR (282 MHz,
CDCl3): δ −68.74. HRMS (ESI) m/z [M + H]+ calcd for C18H18F3N4O2: 379.1376; found: 379.1374.

5-Morpholino-3-phenyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6b). The purification of the crude
product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2) to afford 6b as a yellow
solid in 80% yield. m.p. 230–232 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.37 (s, 1H), 7.98 (dd, J = 8.4, 1.2 Hz,
2H), 7.45 (t, J = 7.7 Hz, 2H), 7.25 (tt, J = 7.7, 1.2 Hz, 1H), 6.76 (s, 1H), 3.91–3.87 (m, 4H), 3.81–378 (m,
4H); 13C NMR (75 MHz, CDCl3): δ 154.3, 145.35, 144.0, 135.3 (q, J = 36.6 Hz), 132.3, 128.7 (2C), 125.8,
125.6 (2C), 119.5 (q, J = 274.6 Hz), 107.0, 95.1 (q, J = 4.5 Hz), 66.4 (2 C), 45.25 (2C); 19F NMR (282 MHz,
CDCl3): δ −68.67; HRMS (ESI) m/z [M + H]+ calcd for C17H16F3N4O: 349.1271; found: 349.12680.

5-Morpholino-3-(thien-2-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6c). The purification of the crude
product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2) to afford 6c as a yellow
solid in 79% yield. m.p. 233–235 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.27 (s, 1H), 7.42 (dd, J = 3.5, 1.1 Hz,
1H), 7.23 (dd, J = 5.1, 1.1 Hz, 1 H), 7.10 (dd, J = 5.1, 3.5 Hz, 1H), 6.74 (s, 1H), 3.91–3.87 (m, 4H), 3.83–3.80
(m, 4H). 13C NMR (75 MHz, CDCl3): δ 154.3, 144.6, 143.2, 135.3 (q, J = 36.9 Hz), 134.0, 127.1, 122.6,
121.6, 119.4 (q, J = 274.7 Hz), 103.1, 35.2 (q, J = 4.6 Hz), 66.4 (2C), 45.3 (2C). 19F NMR (282 MHz, CDCl3):
δ −68.60. HRMS (ESI) m/z [M + H]+ calcd for C15H14F3N4OS: 355.0835; found: 355.0832.

5-(N-Benzylamino)-3-phenyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6d). The purification of the
crude product by chromatography on silica gel is carried out using (PE/EtOAc: 9.5/0.5) to afford 6d
as a yellow solid in 80% yield. m.p. 173–175 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.34 (s, 1H), 7.98 (d,
J = 7.4 Hz, 2H), 7.46–7.25 (m, 7 H), 7.24 (t, J = 7.4 Hz, 1H), 6.49 (s, 1H), 5.43 (s, 1H), 4.78 (d, J = 5.4 Hz,
2H); 13C NMR (75 MHz, CDCl3): δ 153.7, 145.4, 143.6, 137.7, 135.0 (q, J = 37.1 Hz), 132.2, 128.8 (2C),
128.6 (2C), 127.9 (2C), 127.9 (2C), 125.8 (2C), 119.3 (q, J = 274.4 Hz), 107.2, 98.5, 45.9; 19F NMR (282 MHz,
CDCl3): δ −68.69; HRMS (ESI) m/z [M + H]+ calcd for C20H16F3N4: 369.1322; found: 369.1319.

5-(N-Benzylamino)-3-(thien-2-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6e). The purification of the
crude product by chromatography on silica gel is carried out using (PE/EtOAc: 9.7/0.3) to afford 6e as a
yellow solid in 76% yield. m.p. 156–158 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.24 (s, 1H), 7.47–7.34 (m,
6H), 7.23 (d, J = 4.6 Hz, 1H), 7.1 (dd, J = 5.3, 4.0 Hz, 1H), 6.45 (s, 1H), 5.43 (br s, 1H), 4.8 (d, J = 5.4 Hz,
2H); 13C NMR (75 MHz, CDCl3): δ 153.8, 144.6, 142.9, 137.6, 135.0 (q, J = 37.0 Hz), 133.9, 128.9 (2C),
128.1 (2C), 127.9, 127.2, 122.7, 122.0, 119.2 (q, J = 274.5 Hz), 103.2, 98.7, 45.8; 19F NMR (282 MHz, CDCl3):
δ −68.62; HRMS (ESI) m/z [M + H]+ calcd for C18H14F3N4S: 375.0886; found: 375.0883.

3-([1,1’-Biphenyl]-3-yl)-5-[N-(4-methoxybenzylamino)]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6f).
The purification of the crude product by chromatography on silica gel is carried out using (PE/EtOAc:
9/1) to afford 6f as a yellow solid in 90% yield. m.p. 124–126 ◦C; 1H NMR (300 MHz, CDCl3): δ 8.39 (s,
1 H), 8.36 (s, 1H), 7.99–7.96 (m, 1H), 7.69–7.67 (m, 2H), 7.50 (d, J = 7.6 Hz, 2H), 7.47–7.45 (m, 1H), 7.42
(d, J = 7.6 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.48 (s, 1H), 5.40 (br s, 1H), 4.74 (d,
J = 5.2 Hz, 2H), 3.83 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 159.3, 153.7, 145.9, 143.6, 141.5, 141.5, 135.0
(q, J = 37.1 Hz), 132.8, 129.7, 129.3 (2C), 129.0, 128.7 (2C), 127.2, 127.2 (2C), 124.7, 124.5 (2C), 119.3 (q,
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J = 274.4 Hz), 114.3 (2C), 107.0, 98.6, 55.3, 45.3; 19F NMR (282 MHz, CDCl3): δ −68.64; HRMS (ESI) m/z
[M + H]+ calcd for C27H22F3N4O: 475.1740; found: 475.1739

3-[(4-Hydroxyméthyl)phenyl]-5-((4-methoxybenzyl)amino)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6g).
The purification of the crude product by chromatography on silica gel is carried out using (PE/EtOAc:
7.5/2.5) to afford 6g as a yellow solid in 82% yield. m.p. 184–186 ◦C; 1H NMR (300 MHz, Acetone-d6): δ
8.40 (s, 1H), 8.07 (d, J = 8.3 Hz, 2H), 7.61 (br s, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.93
(s, 1H), 6.93 (d, J = 8.7 Hz, 2H), 4.73 (d, J = 5.6 Hz, 2H), 4.65 (d, J = 5.5 Hz, 2H), 4.17 (t, J = 5.7 Hz, 1H),
3.78 (s, 3H); 13C NMR (75 MHz, Acetone-d6): δ 159.1, 154.3, 145.8, 142.6, 139.4, 133.8 (q, J = 36.8 Hz),
131.5, 130.8, 129.1 (2C), 126.9 (2C), 125.2 (2C), 119.7 (q, J = 273.3 Hz), 113.8 (2C), 106.1, 99.8, 63.8, 54.6,
44.5; 19F NMR (282 MHz, Acetone-d6): δ −69.15; HRMS (ESI) m/z [M + H]+ calcd for C22H20F3N4O2:
429.1533; found: 429.1531.

5-[N-(4-Methoxybenzyl)amino]-3-(1H-pyrazol-4-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6h). The
purification of the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2)
to afford 6h as a yellow solid in 50% yield. m.p. 197–199 ◦C; 1H NMR (300 MHz, Acetone-d6): δ 12.08
(s, 1H), 8.24 (s, 1 H), 8.14 (s, 2H), 7.43 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 6.88 (s, 1H), 4.74 (d,
J = 5.5 Hz, 2H), 3.78 (s, 3H). 13C NMR (75 MHz, Acetone-d6): δ 159.1, 153.95, 145.0, 142.05, 135.55,
133.7 (q, J = 36.8 Hz), 130.8, 129.1 (2C), 122.0, 119.7 (q, J = 273.2 Hz), 113.8 (2C), 112.5, 110.1, 99.5, 54.6,
44.4. 19F NMR (282 MHz, Acetone-d6): δ −69.22. HRMS (ESI) m/z [M + H]+ calcd for C18H16F3N6O:
389.1332; found: 389.1331.

5-[N-(4-Methoxybenzyl)amino]-3-(pyridin-3-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6i). The purification
of the crude product by chromatography on silica gel is carried out using (PE/EtOAc: 8/2) to afford 6i
as a yellow solid in 91% yield. m.p. 192–194 ◦C; 1H NMR (300 MHz, CDCl3): δ 9.29 (s, 1H), 8.45 (s,
1H), 8.33 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.39–7.37 (m, 1H), 7.33 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz,
2H), 6.54 (s, 1H), 5.84 (br s, 1H), 4.68 (d, J = 5.2 Hz, 2H), 3.80 (s, 3H). 13C NMR (75 MHz, CDCl3): δ
158.9, 153.7, 146.4, 145.9, 142.5, 134.5 (q, J = 37.1 Hz), 132.2, 129.1, 128.9 (2C), 128.4, 123.2, 118.8 (q,
J = 274.3 Hz), 113.8 (3C), 103.3, 98.8, 54.9, 45.0. 19F NMR (282 MHz, CDCl3): δ −68.58. HRMS (ESI) m/z
[M + H]+ calcd for C20H17F3N5O: 400.1380; found: 400.1376.

3-(Dibenzo[b,d]thiophen-4-yl)-5-[N-(4-methoxybenzyl)amino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine
(6j). The purification of the crude product by chromatography on silica gel is carried out using
(PE/EtOAc: 9/1) to afford 6j as a yellow solid in 92% yield. m.p. 198–200 ◦C; 1H NMR (300 MHz,
Acetone-d6): δ 8.59 (s, 1H), 8.38–8.35 (m, 1H), 8.25 (dd, J = 7.7, 1.1 Hz, 1H), 8.23 (dd, J = 7.7, 1.1 Hz, 1H),
8.03–8.00 (m, 1H), 7.67 (t, J = 4.8 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.54 (dd, J = 5.7, 3.4 Hz, 2H), 7.41 (d,
J = 8.7 Hz, 2H), 7.03 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 4.69 (d, J = 5.7 Hz, 2H), 3.77 (s, 3H). 13C NMR
(75 MHz, Acetone-d6): δ 159.1, 154.6, 146.5, 143.3, 139.0, 136.9, 136.15, 135.85, 133.9 (q, J = 36.8 Hz),
130.6, 129.2 (2C), 127.9, 126.9, 126.7, 124.9, 124.6, 122.6, 121.75, 119.7 (q, J = 273.2 Hz), 119.25, 113.75
(2C), 105.3, 100.5, 54.6, 44.4. 19F NMR (282 MHz, Acetone-d6): δ −69.04. HRMS (ESI) m/z [M + H]+

calcd for C27H20F3N4OS: 505.1304; found: 505.1303.

5-N-[4-(Hydroxycyclohexyl)amino]-3-(naphthalen-2-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (6k).
The purification of the crude product by chromatography on silica gel is carried out using (PE/EtOAc:
9/1) to afford 6k as a yellow solid in 91% yield. m.p. 251–253 ◦C; 1H NMR (300 MHz, Acetone-d6): δ
8.78 (s, 1H), 8.56 (s, 1H), 8.28 (dd, J = 8.6, 1.7 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 8.5 Hz, 2H),
7.53–7.41 (m, 2H), 7.22 (d, J = 6.7, 1H), 6.86 (s, 1H), 4.16–4.05 (m, 1H), 3.86 (d, J = 4.4 Hz, 1H), 3.73–3.65
(m, 1H), 2.38–2.34 (m, 2H), 2.08–2.06 (m, 2H), 1.66–1.42 (m, 4H); 13C NMR (75 MHz, DMSO-d6): δ 154.1,
146.3, 142.8, 134.1, 133.8 (q, J = 36.6 Hz), 131.8, 130.7, 127.8, 127.6, 127.60, 126.05, 124.9, 124.2, 123.0,
119.7 (q, J = 273.3 Hz), 105.6, 100.0, 69.0, 50.3, 34.1 (2C), 29.7 (2C); 19F NMR (282 MHz, Acetone-d6): δ
−62.10; HRMS (ESI) m/z [M + H]+ calcd for C23H22F3N4O: 427.1740; found: 427.1739.

N-[4-(Hydroxycyclohexyl)amino]-3-(3-(trifluoromethyl)phenyl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine
(6l). The purification of the crude product by chromatography on silica gel is carried out using
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(PE/EtOAc: 9.2/0.8) to afford 6l as a yellow solid in 77% yield. m.p. 257–259 ◦C; 1H NMR (300 MHz,
Acetone-d6): δ 8.77 (s, 1H), 8.54 (s, 1H), 8.26 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 7.8 Hz,
1H), 7.27 (d, J = 6.9 Hz, 1H), 6.86 (s, 1H), 4.09–4.05 (m, 1H), 3.82 (d, J = 6.9 Hz, 1H), 3.67–3.60 (m, 1H),
2.29–2.26 (m, 2H), 2.08–2.05 (m, 2H), 1.54–1.42 (m, 4H). 13C NMR (75 MHz, Acetone-d6): δ 154. 4, 146.4,
142.5, 134.2, 133.8 (q, J = 36.5 Hz), 130.3 (q, J = 31.5 Hz), 129.2, 128.0, 124.8 (q, J = 272.0 Hz), 121.6 (q,
J = 3.9 Hz), 121.2 (q, J = 3.7 Hz), 119.6 (q, J = 273.2 Hz), 104.1, 100.3, 68.9, 50.0, 33.9 (2C), 29.8 (2C). 19F
NMR (282 MHz, Acetone-d6): δ −63.01, −69.09. HRMS (ESI) m/z [M + H]+ calcd for C20H19F6N4O:
445.1458; found: 445.1456.

3-(Naphthalen-2-yl)-5-[2-(tert-butoxycarboxylamino)-N-ethylamino]-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine
(6m). The purification of the crude product by chromatography on silica gel is carried out using
(PE/EtOAc: 8.5/1.5) to afford 6m as a yellow solid in 74% yield. m.p. 183–185 ◦C; 1H NMR (300 MHz,
Acetone-d6): δ 8.73 (s, 1 H), 8.57 (s, 1H), 8.33 (dd, J = 8.6, 1.6 Hz, 1H), 7.96–7.85 (m, 3H), 7.46–7.43 (m,
3H), 6.91 (s, 1H), 6.32 (br s, 1H), 3.82 (q, J = 5.9 Hz, 2H), 3.55 (q, J = 6.0 Hz, 2H), 1.40 (s, 9H); 13C NMR
(75 MHz, Acetone-d6): δ 156.2, 155.0, 146.1, 142.9, 134.1, 131.8, 130.5, 127.9 (2C), 127.5, 125.9, 124.9,
124.4, 123.1, 119.7, 119.7 (q, J = 273.3 Hz), 105.9, 100.0, 78.0, 41.6, 39.4, 27.7 (3C); 19F NMR (282 MHz,
Acetone-d6): δ −69.06; HRMS (ESI) m/z [M + H]+ calcd for C24H25F3N5O2: 472.1955; found: 472.1953.

3.5. Deprotection of N-Boc Protected Amine by TFA: Synthesis of 5-[2-Amino-N-ethylamino]-3-(naphthalen-
2-yl)-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (9)

A solution of the N-Boc protected amine 6m in 5 mL of trifluoroacetic acid was stirred under argon
atmosphere at room temperature for 6 h. After the trifluoacetic acid was removed under vacuum,
the residue was mixed with water (1 mL), and the mixture was treated with an ammonia solution
(10%) to pH = 8. The formed solid was filtered and washed with water and Et2O to give product 9 as a
yellow solid in 95% yield. m.p. 171–173 ◦C; 1H NMR (300 MHz, Acetone-d6): δ 8.57 (s, 1H), 8.45 (s,
1H), 8.19 (dd, J = 8.6, 1.7 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.0 Hz,
1H), 7.38 (td, J = 7.5, 1.3 Hz, 1H), 7.33 (td, J = 7.5, 1.3 Hz, 1H), 6.83 (s, 1H), 4.18–4.20 (m, 2H), 4.05–4.03
(m, 2H). HRMS (ESI) m/z [M + H]+ calcd for C24H25F3N5O2: 372.1455; found: 372.1453.

4. Conclusions

In conclusion, an efficient strategy to synthesize 3,5-disubstituted pyrazolo[1,5-a]pyrimidines
bearing CF3 group at C-7 was developed, starting from the building block, 3-bromo-7-(trifluoromethyl)
pyrazolo[1,5-a]pyrimidin-5-one. A sequential SNAr with various amines and Suzuki cross-coupling
were achieved at C-5 and C-3, respectively. The activation of the C-O bond of the amide function
followed by the addition of several amines or p-methoxythiophenol allowed the functionalization
of pyrazolo[1,5-a]pyrimidine core at C-5. The arylation at C-3 was carried out in good to excellent
yields under Suzuki cross-coupling, requiring XPhosPdG2/XPhos as a catalytic system and potassium
carbonate as a base in a mixture of EtOH/H2O (4/1) at 135 ◦C under microwave irradiation. Further
studies are underway in our laboratory following this strategy in order to develop highly biologically
active pyrazolo[1,5-a]pyrimidines.

Supplementary Materials: The following are available online. 1H-NMR and 13C-NMR of compounds 3, 4, 5a–g,
6a–m.
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