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Abstract: The cage-free system has gained a lot of interest in recent years because it can offer chickens
more freedom and is easier to manage compared with free-range rearing systems, but few studies
have focused on the effect of the cage-free rearing system on meat quality and flavor. In this study,
44 Jianghan chickens were reared in caged or cage-free systems to explore the effect of different
rearing systems on meat-eating quality. Sensory evaluation of cooked muscles showed that the
leg muscle aroma, juiciness, and flavor intensity significantly improved by the cage-free rearing.
The cage-free hens had significantly lower body weight, abdominal fat percentage, and meat fat
content, but higher meat moisture content. The cage-free group had brighter breast muscle and
redder leg muscle color 24 h after slaughter. Transcriptomic and metabolomic profile analysis of the
leg muscle samples showed that the cage-free rearing changed biosynthesis pathways associated
with glycogen metabolism, lipid and fatty acid biosynthesis and transport, muscle cellular type,
and cellular components, which were related to raw meat quality. Different rearing systems also
resulted in differences in glycolipid metabolism, lipid metabolism, and altered levels of intramuscular
fat content and other flavor precursors. Pathways such as glycerolipid metabolism, adipocytokine
signaling, and metabonomic pathways such as linoleic acid, glycerophospholipid, arginine, proline,
and β-alanine metabolism may be responsible for the meat quality and flavor change.

Keywords: native chicken breeds; exercise; RNA-seq; raw meat; flavor precursors

1. Introduction

China is among the top poultry consumers and producers in the world. The consump-
tion of poultry products increases yearly. There are hundreds of native chicken breeds
in China, which greatly satisfies the consumers’ pursuit of chicken meat [1]. Unlike the
imported fast-growing broiler or commercial layer breeds, most Chinese native chickens
were used for both egg and meat producing purpose. For thousands of years, these native
chickens were dispersed in small scales and reared in the free-range system. Due to the low
production capacity of free-range, it is only suitable for family farming [2]. Over the past
40 years, new chicken rearing systems have been rapidly introduced. Most native chicken
rearing has been transferred from the traditional free-range to cage rearing system as the
production has expanded. However, due to the lack of exercise, caged chickens have lower
disease resistance and high abdominal fat, and consumers often complain that the eating
quality is not as good as that of free-range chickens [3,4].

Meat-eating quality is the dominant factor influencing consumers’ choice, which
depends on comprehensive sensory attributes, including meat flavor, tenderness, and
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juiciness [5]. Among these characteristics, meat flavor depends on both water- and fat-
soluble compounds in meat. Meat flavor can be generated through various reactions,
such as Maillard reaction, lipid oxidation, vitamin degradation, and the interactions with
different components and precursors during the cooking process. Sugars, nucleotides, free
amino acids, peptides, lipids, fatty acids, and thiamine are the major flavor precursors in
raw meat [6]. Animal breed, sex, age, feed, chiller aging, precursor content, and cooking
method are also factors that affect meat flavor [5]. Meat texture, especially tenderness, is
another important aspect of meat quality. External factors (such as nutritional status and
post-slaughter treatment) together with internal factors (muscle fiber type, composition,
glycolysis, calcium release, and protease activation) all contribute to variations in meat
tenderness [7,8].

The cage-free system has gained a lot of interest in recent years because it can offer
chickens more freedom compared with the caged system and is easier to manage compared
with the free-range system. The cage-free system can lead to better animal welfare. Chickens
rearing in a cage-free system are more active, naturally behaved, and have a better resistance
to disease [9–11]. It is also reported that rearing systems have great impacts on chicken
growth, carcass yield, egg quality, and meat production [12–14].

Although the external factors (such as environment, rearing system, and feed) cannot
change the genotype of chickens, their effect on animal economic traits cannot be ignored.
Moreover, the epigenome comprising different mechanisms, e.g., DNA methylation, re-
modeling, histone tail modifications, chromatin microRNAs, and long non-coding RNAs,
interact with environmental factors such as nutrition, pathogens, and climate to influence
the expression profile of genes and the emergence of specific phenotypes [15,16]. Multi-level
interactions between the genome, epigenome, and environmental factors might occur [17].
Furthermore, numerous lines of evidence suggest the influence of epigenome variation
on health and production [15,18,19]. The expression of eukaryotic genes is temporarily
and multidimensionally controlled [20]. Only a relatively small set of the entire genome
is expressed in each type of tissue, and the expression of genes depends on the stage of
development [21]. Therefore, gene expression in eukaryotes is specific to each tissue [22]. In
addition, the amount of gene products that are made in the same tissue, as well as in other
tissues that make up that product, regulates the expression of that gene [23]. One of the
basic activities in domestic animals is the study of genes and proteins related to economic
traits and their study at the cellular or chromosomal level [24]. It has been reported that the
cage-free chickens showed different metabolic and physiological characteristics in egg fatty
acids content, and gene expression patterns in the oviductal magnum and gut microbiome
compared with caged ones [25–27]. However, there is a lack of studies focusing on the
impact of a cage-free system on the specific metabolites of chicken meat and the links
between muscle biosynthesis pathways and the flavor profiles of meat.

Foodomics, including transcriptomics, metabolomics, and lipidomics, have been
widely used to reveal physiological and biochemical changes and flavor precursors in
food materials to improve our understanding of flavor precursor composition and flavor
formation [17–20]. In this study, one of the Chinese famous native, dual-purpose breeds
“Jianghan” chickens (eliminate at 60~75 weeks of age) was used as materials [28]. Compar-
ative transcriptomic and untargeted metabolomic techniques were employed to investigate
the flavor-related metabolic differences between caged and cage-free hens. The aim of
this study was to investigate the effect of different rearing systems on chicken-meat-eating
quality and the mechanism responsible for it.

2. Materials and Methods
2.1. Ethics Approval Statement

All animal experiments were carried out according to protocols (No. 5 proclaim of
the Standing Committee of Hubei People’s Congress) approved by the Standing Com-
mittee of Hubei People’s Congress, and the ethics committee of Huazhong Agricultural
University, China.
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2.2. Animal Resources and Rearing Systems

Before the experiment, all Jianghan hens were reared in individual stair-step cages
(with a size of 47 × 37 × 33 cm) from 17 to 60 weeks of age at Huazhong Agricultural
University chicken farm. Chickens were under standard management with a suitable envi-
ronment, lighting regime (16 h light: 8 h dark), sufficient feed (Nongteng-304, China), and
water. After 60 weeks, 44 hens were randomly separated into caged and cage-free groups.
The caged group was maintained in the same cages as used before the experiment, while
the cage-free group was placed collectively in a rearing room with an area of approximately
40 m2. All the other management and feeding practices were identical for both groups. The
experiment lasted for 2.5 months [13,29].

2.3. Carcass Measurement and Meat Quality Assessment of Hens from Different Rearing Systems

Before and after the experiment, the body weight of each chicken was recorded. After
slaughter, the abdominal fat of each hen was measured. Then, the carcass was separated
into two parts. The right part of the carcass was used to measure the basic parameters of
meat (each group of twenty-two samples). A Raman spectrum analyzer (Food Scan, Beijing,
China) was used to identify the protein, moisture, fat, and collagen contents of total meat
(mixture of boneless chest muscle and leg muscle). Parameters including muscle color,
pH, and water holding capacity (WHC) were used for muscle quality assessment (each
group of twenty-two samples). A colorimeter (3nh-NR100, Shenzhen, China) was used
to measure the color of breast and leg muscles at 45 min and 24 h after slaughter. Muscle
color assessment used the “a# (red/green)”, “b# (blue/yellow)”, and “L (lightness)” values.
A pH meter (Qiwei E201-C, Hangzhou, China) was used to measure the pH value of leg
muscle and breast muscle 45 min and 24 h after slaughter. The Kauffman method was used
to assess the water holding capacity (WHC) of leg muscles and breast muscles [30].

2.4. Sample Preparation

The left part of the carcass was used for morphological observation, RNA-sequencing
(RNA-seq), and sensory evaluation. Specifically, the leg muscles were taken from the same
position from the iliotibial lateral muscle, and the breast muscle samples were sampled from
the same position at the center of the breast muscle. One half of the muscle samples were
used for optimal cutting temperature compound (OCT) embedding and paraformaldehyde
fixation. The other half of the samples were homogenated with Trizol reagent (Beyotime,
Shanghai, China) and stored in liquid nitrogen until use. All samples were collected within
5 min after slaughter. After sampling, the remaining parts were stored at −20 ◦C for
sensory evaluation.

2.5. Sensory Evaluation

Leg and breast muscles from each treatment group were prepared separately for
sensory evaluation. Briefly, each sample was put on a deep plate and then steamed at
100 ◦C for 2 h using a steamer. The steamed sample was cut into 2~3 pieces (2 × 1 × 1.5 cm
meat chunks). A total of 41 volunteers participated in the sensory evaluation. Panelists’
age ranged from 21 to 36, and the gender ratio was about 2:1 (female:male). All panelists
consumed chicken meat regularly in their daily life. All participants were taught how to
infer scores before the test. Before tasting, samples were cooled to 40 ◦C, and each volunteer
was randomly served with one chunk of leg meat and one chunk of breast meat separately
for evaluation. An 8-point scale (1 to 8) was used to evaluate the intensity of aroma, initial
impression of juiciness, first bite, sustained impression of juiciness, muscle fiber and overall
tenderness, amount of connective tissue, overall flavor intensity, and off flavor intensity.
The detailed method of sensory evaluation and statistical analysis followed similar steps in
a previous study [31].
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2.6. Morphological Studies of Leg Muscle Samples

A total of eight leg muscle samples (each group of four samples) were used for
morphological evaluations. Tissues were embedded perpendicular to the muscle bundle.
Morphological differences were observed by paraffin sections with hematoxylin-eosin
staining. Intermuscular fat (IMF) was identified by frozen sections and oil red O staining.
Hematoxylin-eosin staining and oil red O staining of sections were performed according to
the same steps as used in our previous study [32].

2.7. RNA-Seq and Data Analysis and qRT–PCR Verification

RNA was isolated using the phenol/chloroform RNA-extraction method [33]. After
RNA isolation, 10 samples (each group of 5 samples) were sent to the Majorbio biotech-
nology company (Shanghai, China) for paired-end 150 mRNA sequencing. Each sample
produced more than 6 GB of clean data. Data analysis followed the same steps as in our
previous study [25]. The cage-free group was compared to the caged group to reveal
differentially expressed genes (DEGs) and pathways between different rearing systems.
Genes with p value < 0.05 and |log2(Foldchange)| > 1 were considered differentially
expressed genes (DEGs). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis of DEGs were conducted by the KOBAS 3.0 web-
site (http://kobas.cbi.pku.edu.cn/kobas3/, accessed on 16 April 2021). Terms with a
p value < 0.05 were regarded as significantly enriched.

Candidate genes, including COL3A1 FABP3, FBN1, GLS2, and NR4A3, were selected
to verify the reliability of RNA-seq. cDNA was synthesized using the one-step gDNA
removal and cDNA synthesis supermix (TransScript, Beijing, China). A total of 10 samples
(5 from caged groups; 5 from cage-free groups) were used for qRT–PCR. The primers were
designed by Oligo 7.6 (Molecular Biology Insights, Colorado Springs, CO, USA). Primer
information is listed in Supplementary File S1. The quantitative real-time PCR (qPCR)
amplification conditions were as follows: 95 ◦C for 10 min; 40 cycles of 95 ◦C for 15 s and
60 ◦C for 1 min; 95 ◦C for 15 s; 60 ◦C for 1 min; 95 ◦C for 1 s. The fold change was calculated
by the 2−∆∆Ct method followed by significance testing by t test.

2.8. Untargeted Metabolomics and Data Analysis

Eighteen leg muscle samples (2 treatments × 9 biological replicates) were prepared
for untargeted metabolomics analysis by Liquid Chromatography–Mass Spectrometry
(LC–MS) (Thermo, uhplc-q exactive HF-X). Metabolite extraction and quality control
were performed by the standard sample preparation process of Majorbio Biotechnology
Company (Shanghai, China). The chromatographic column was ACQUITY UPLC HSS
T3 (100 mm × 2.1 mm I.D., 1.8 µm; Waters, Milford, MA, USA). Mobile phase A was
95% water with 5% acetonitrile (containing 0.1% formic acid), and mobile phase B was
47.5% acetonitrile with 47.5% isopropyl alcohol and 5% water (containing 0.1% formic
acid). The sample injection volume was 2 µL, and the flow rate was set to 0.4 mL/min. The
column temperature was maintained at 40 ◦C. Quality control, missing value recoding, and
data normalization were conducted using the Majorbio standard process.

The cage-free group was compared to the caged group to reveal differential metabolites
between the two rearing systems. Orthogonal partial least squares discriminate analy-
sis (OPLS-DA) was used for statistical analysis to determine global metabolic changes
between comparable groups. Metabolites with VIP values > 1 and p values < 0.05 were
considered differentially abundant. GO enrichment and KEGG analysis of differentially
accumulated metabolites were conducted using the Majorbio Cloud Platform (http://www.
majorbio.com/, accessed on 12 March 2021). Terms with a p value < 0.05 were regarded as
significantly enriched.

2.9. Comparative Analysis of RNA-Seq and Untargeted Metabolomics Data

The correlation between RNA-seq and untargeted metabolomics data was assessed by
the Omicshare website O2PLS online tools (https://www.omicshare.com/tools/Home/
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Soft/o2pls, accessed on 18 August 2021). Correlations between DEGs and differential
metabolites were analyzed by the Metaboanalyst 5 online tools (https://www.metaboanalyst.
ca/, accessed on 20 October 2021).

3. Results
3.1. Carcass and Meat Quality under Different Rearing Systems

Statistical analysis of carcass and meat quality parameters is shown in Table 1. The
body weight of cage-free hens was decreased, while the body weight of caged hens was
increased compared with the beginning of the experiment. The abdominal fat of hens in
the cage-free groups was 2.49%, which was significantly lower than that in the caged group
(4.65%). The meat content analysis showed that samples from the cage-free group showed
a significant increase in moisture content and a decrease in fat content, but no difference
in protein and collagen content compared to the caged group. Meat quality assessment
of muscles revealed that cage-free rearing significantly decreased leg muscle WHC, but
no effect was found on breast muscle WHC. Both breast and leg muscle pH increased in
cage-free groups 45 min after slaughter, but there was no difference between the two groups
24 h after slaughter. The breast muscle color a# and b# values in the cage-free group showed
a significant decrease 45 min after slaughter, the a# value showed a continuous decline,
whereas the L value significantly increased 24 h after slaughter. Only leg muscle color a# in
cage-free groups showed a significant increase 45 min after slaughter, but all these values
showed significant differences compared with the caged group 24 h after slaughter.

Table 1. Comparison of carcass and meat quality parameters between different rearing conditions.

Traits
Value

Ca CF

Body weight change (g) 127 ± 153 −132 ± 115 ***
Abdominal fat rate (%) 4.65 ± 1.48 2.49 ± 0.98 ***
Breast muscle WHC (%) 11.81 ± 6.08 12.26 ± 8.17

Leg muscle WHC (%) 12.74 ± 4.97 8.22 ± 2.37 ***
Meat moisture content (%) 73.33 ± 0.56 74.19 ± 0.54 ***
Meat protein content (%) 22.23 ± 0.48 22.06 ± 0.48

Meat fat content (%) 3.68 ± 0.68 3.22 ± 0.45 *
Meat collagen content (%) 1.56 ± 0.09 1.61 ± 0.10
Breast muscle pH (45 min) 5.07 ± 0.32 5.88 ± 0.14 ***

Breast muscle pH (24 h) 5.69 ± 0.09 5.79 ± 0.26
Leg muscle pH (45 min) 5.30 ± 0.19 6.09 ± 0.15 ***

Leg muscle pH (24 h) 5.94 ± 0.13 5.91 ± 0.21
Breast muscle color a# (45 min) 9.92 ± 1.07 5.25 ± 1.39 ***
Breast muscle color b# (45 min) 6.40 ± 1.24 4.42 ± 1.35 ***
Breast muscle color L (45 min) 48.13 ± 4.57 50.18 ± 2.80
Breast muscle color a# (24 h) 8.88 ± 1.17 4.79 ± 2.00 ***
Breast muscle color b# (24 h) 5.87 ± 2.37 5.57 ± 1.59
Breast muscle color L (24 h) 52.13 ± 3.41 58.04 ± 3.73 ***
Leg muscle color a# (45 min) 4.91 ± 1.25 10.04 ± 1.67 ***
Leg muscle color b# (45 min) 4.83 ± 1.71 5.18 ± 1.45
Leg muscle color L (45 min) 49.67 ± 3.31 50.12 ± 4.95
Leg muscle color a# (24 h) 4.80 ± 1.64 11.35 ± 9.78 *
Leg muscle color b# (24 h) 6.63 ± 2.10 4.94 ± 1.64 **
Leg muscle color L (24 h) 60.64 ± 3.29 53.33 ± 3.05 ***

“Ca” refers to the caged system, and “CF” refers to the cage-free system. “*” refers to p value < 0.05, “**” refers to
p value < 0.01, and “***” refers to p value < 0.001. Muscle color a# refers to the red/green value. “b#” refers to the
blue/yellow value. L refers to lightness.

3.2. Sensory Evaluation of Cooked Meat

Leg muscles showed higher sensory characteristics than those of chest muscles in
general except for the amount of connective tissue. The performance of sensory panelists
was first evaluated and the results showed that age had no significant (p > 0.05) effect

https://www.omicshare.com/tools/Home/Soft/o2pls
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https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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on the rating scores (Supplementary File S2). Gender only significantly affected (p < 0.05)
the overall sensory rating of leg muscle, of which females tended to give a higher score
than males possibly because women tend to be more reactive to stimuli [34], and possibly
because the females were more sensitive to the flavor. Overall, the individual differences
were negligible, so the rating scores were further used to evaluate the effect of the rearing
system on chicken meat sensory attributes. The results showed that the free-cage rearing
significantly (p < 0.05) improved leg muscle aroma intensity, sustained impression of
juiciness, overall flavor intensity scores, as well as breast muscle fiber and overall tenderness
score (Figure 1A).
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Figure 1. (A) Statistical analysis of sensory evaluation from different groups. Different colors refer to
different parts of muscles and groups. “Breast” refers to breast muscle, “Leg” refers to leg muscle,
“CF” refers to the cage-free group, and “Ca” refers to the cage-rearing group. The free-cage rearing
significantly improved scores of aroma intensity, sustained impression of juiciness, overall flavor
intensity of leg muscles (marked with “*”), and the score of muscle fiber and overall tenderness
of breast muscles (marked with bold “*”). Morphological differences in leg muscles between the
cage-free and caged groups. The paraffin section and hematoxylin-eosin (H&E) staining showed that
the muscle fibers of the cage-free group (B) were looser than those of the caged group (C). Oil red O
staining showed that there was more intramuscular fat deposited between the muscle bundles in the
cage-free group (D) than in the caged group (E). The fat was stained red and indicated by the arrow.
Normal scale bar, 100 µm; enlarged scale bar, 20 µm.
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3.3. Meat Morphological Changes under Different Rearing Systems

Morphological observation showed that both meat morphological characteristics and
IMF deposition were different between the two rearing groups. The muscle fibers of cage-
free hens were obviously looser, and there was more IMF deposited between the muscle
bundles compared to the caged group (Figure 1B–E).

3.4. RNA-Seq and Differentially Expressed Gene Analysis

Quality control analysis suggested that the quantity and quality of RNA-seq clean
data were good enough for the following gene expression analysis. The cage-free group
was compared to the caged group to investigate the DEGs and pathways that were re-
lated to the different rearing systems. Pearson correlation analysis showed there is a high
repeatability of samples within groups (Figure 2A). A total of 745 DEGs were identified
(Supplementary File S3), among which 239 were upregulated and 506 were downregulated
(Figure 2B). qPCR verification showed that all five selected genes followed a similar expres-
sion tendency with the RNA-seq data (Figure 2C). The gene expression heatmap of the top
200 DEGs showed that the gene expression patterns were significantly different between
the two groups (Figure 2D).
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Figure 2. Transcriptome analysis of leg muscle samples from cage-free and caged groups. “Ca” refers
to the caged rearing group, and “CF” refers to the cage-free group. (A) Pearson correlation analysis
between samples. “CF” refers to the cage-free group, and “Ca” refers to the cage-rearing group.
Numbers refer to correlation coefficient between samples. (B) Volcano plot of differentially expressed
genes. The X-axis refers to the log2-fold fold change, and the Y-axis refers to −log10 (p value). The
red dots and green dots represent the upregulated and downregulated genes, respectively. (C) qPCR
verification of RNA-seq results. All 5 genes (COL3A1, FBN1, FABP3, GLS2, and NR4A3) followed
a similar RNA-seq expression pattern. The X-axis represents different developmental groups, and
the Y-axis represents the relative expression levels. “*” and “**” refer to significant differences with
p values < 0.05 and < 0.01, respectively. Error bars indicate standard errors. (D) Heatmap of the top
200 DEGs. Different colors refer to different expression levels. (E) The top 20 enriched GO terms of
DEGs. The X-axis refers to the rich factor. The Y axis refers to different GO terms.

A total of 152 GO terms and 6 pathways were significantly enriched. The top
20 enriched GO terms of DEGs are shown in Figure 2E. GO terms such as glycogen
metabolic process (4 genes were enriched, including PRKAG2, UGP2, LEPR, and PHKA2),
fatty acid oxidation (3 genes were enriched, including LEPR, NR4A3, and C1QTNF2) and
terms such as glycolipid metabolism (7 genes were enriched, including genes such as PN-
PLA2, MBOAT2, and LPIN1), and adipocytokine signaling pathway (6 genes were enriched,
including genes such as TRADD, PRKAG2, CPT1A, LEPR, and MAPK9) were included.
Significantly enriched KEGG pathways and GO terms that were potentially related to
muscle quality or flavor changes are shown in Tables 2 and 3, respectively.
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Table 2. Significantly enriched KEGG pathways are potentially related to muscle quality and
meat flavor.

Term Count Gene

ECM-receptor interaction 11
COL1A2, COL6A1, COL6A2, COL6A3,

ENSGALG00000042388, FN1, LAMC1, NPNT, RELN,
THBS1, THBS2

Glycerolipid metabolism 7 AGPAT2, DGAT2, DGKH, ENSGALG00000016285,
LPIN1, MBOAT2, PNPLA2

Adipocytokine
signaling pathway 6 CPT1A, ENSGALG00000034970, LEPR, MAPK9,

PRKAG2, SOCS3

Table 3. GO terms potentially related to leg muscle quality and meat flavor changes.

Term Count Gene List

Muscle alpha-actinin binding 4 MYPN, VCL, NRAP, PDLIM3
Glycogen metabolic process 4 PRKAG2, UGP2, LEPR, PHKA2

* Positive regulation of fatty
acid oxidation 3 LEPR, NR4A3, C1QTNF2

Oxygen carrier activity 3 CYGB, HBAD, HBA1
Positive regulation of triglyceride

biosynthetic process 2 MFSD2A, SLC27A1

Carbohydrate transport 2 MFSD2A, MFSD2B

Z disc 6 MYPN, CSRP3, VCL, NRAP,
PDLIM3, FHL2

Sarcolemma 5 SGCD, COL6A3, VCL, COL6A1,
COL6A2

Lipid storage 3 PNPLA2, NRIP1, DGAT2
Long-chain fatty acid transport 2 MFSD2A, FABP3

Myoblast migration 2 MEGF10, SIX4
Triglyceride biosynthetic process 2 LPIN1, DGAT2

Carbohydrate binding 6 COLEC12, MAN2A1, MRC2, GALNT17,
GALNT14, GALNT16

Collagen binding 5 COL6A1, COL6A2, MRC2, NID1, SMAD3
Hydrogen peroxide catabolic process 3 PXDN, HBAD, HBA1

Oxygen binding 3 CYGB, HBAD, HBA1
Oxygen transport 3 CYGB, HBAD, HBA1

Peroxidase activity 3 PXDN, HBAD, HBA1
Proteoglycan binding 2 FN1, NID1

Sarcomere organization 5 MYPN, CSRP3, FHOD3, WDR1, SIX4
* Bold characters represent significantly enriched GO terms that are related to lipid and fatty acid metabolism.

3.5. Untargeted Metabolomics and Different Metabolite Analyses

Quality control analysis suggested that the quantity and quality of metabolome assay
data were good enough for the following metabolite expression analysis. The OPLS-
DA showed that there were significant differences between the cage-free and caged
groups (Figure 3A,B). The cage-free group was compared with the caged group to in-
vestigate the differential metabolites and pathways. A total of 408 differential metabolites
(Supplementary File S4) were identified, among which 173 were upregulated and 271 were
downregulated (Figure 3C). Metabolites that are potentially related to meat flavor and
flavor precursors are shown in Table 4. The cluster analysis of the top 200 differential
metabolites is shown in Figure 3D. KEGG pathway enrichment of differential metabolites
showed 15 significant pathways. Pathways such as lipid metabolism and metabolism of
other amino acids are included (Figure 3E).
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Figure 3. Metabolome analysis of leg muscle from different rearing conditions. “Ca” refers to the cage
rearing group, and “Fr” refers to the cage-free rearing group. (A) OPLS-DA score plot of metabolites
in leg muscle samples. “Dot” refers to the cage rearing group, and “triangle” refers to the cage-free
rearing group. (B) The permutation tests of data; the Y axis refers to similarity. (C) Volcano plot
of differentially expressed metabolites. The X-axis refers to the log2-fold change, and the Y-axis
refers to −log10 (p value). The red dots and blue dots represent the upregulated and downregulated
metabolites, respectively. (D) The heatmap of the top 200 differential metabolites. Different colors
refer to different expression levels. (E) The KEGG pathway analysis of differential metabolites. The
X-axis refers to the p value and the Y-axis refers to different pathways.

Table 4. Metabolites potentially related to flavor compounds and flavor precursors.

Classification Metabolite List

Lipids and lipid-like molecules

* PC(18:0/20:4(8Z,11Z,14Z,17Z)), LysoPE(22:4(7Z,10Z,13Z,16Z)/0:0),
LysoPC(22:4(7Z,10Z,13Z,16Z)), 2-Methylbutyroylcarnitine, Allyl

valerate, LysoPE(18:2(9Z,12Z)/0:0), PE-NMe2(9D3/9D3),
Phytyl diphosphate, PS(18:4(6Z,9Z,12Z,15Z)/20:0),

PC(22:5(7Z,10Z,13Z,16Z,19Z)/P-16:0), Mesterolone, PC(14:0/0:0),
Humulol, Glucosylgalactosyl hydroxylysine, Succinylcarnitine,

(R)-3-hydroxybutyrylcarnitine, Glycerophosphocholine
Free amino acids and Peptides D-Ornithine, L-Proline, Cycloposine, Carnosine, Oxidized glutathione

Carbohydrates N-Acetyl-D-Mannosamine
Vitamins and Cofactors Pantothenic Acid

Nucleosides, nucleotides, and analogs DIMP, 5’-CMP, Adenosine 3’,5’-Diphosphate

* PC: phosphatidylcholine; PE: phosphatidyl ethanolamines, PS: phosphatidylserine.

3.6. Comparative Analysis of RNA-Seq and Untargeted Metabolomics Data

Comparative analysis between RNA-seq and untargeted metabolomics data showed
that they followed similar expression patterns. The top 30 DEGs and differential metabolites
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are shown in Figure 4A. Genes and metabolites involved in glycolipid metabolism and
glycophospholipid metabolism showed the closest relationship between the transcriptome
and metabolism (Figure 4B).
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analysis between RNA-seq and metabolome data. The X and Y axes refer to the first joint loading
and second joint loading, respectively. The absolute value of the number in coordinates indicates the
degree of correlation of the two omics. The red dot refers to the gene, and the blue triangle refers
to the metabolite. (B) Comparative analysis between DEGs and differential metabolites. The X-axis
refers to the pathway impact between the two omics. The y-axis refers to −log10 (p value).

4. Discussion

In this study, we mainly focused on the impact of different rearing systems on the
chicken-meat-eating quality with an emphasis on the flavor-related characteristics. We did
not separate the chickens into different rearing systems from chicks or young chickens. The
main reason was that the difference in growth and egg laying process may also be affected
by rearing systems [12,29], which makes the results more complex and difficult to interpret.
More importantly, at the late laying stage, the laying rate was significantly decreased and
hens tended to become fat, with a low immunity due to lack of exercise [3,35]. Therefore,
the chickens were separated into the caged and cage-free groups at this stage to increase
the activity of chickens, improve animal welfare, promote body health, and obtain meat
products with better quality and flavor before the slaughter.

The cage-free hens showed more natural behaviors, such as jumping, fly, fighting,
perch, and preening, and had more physical activity than the caged group during the
experiment. Statistical results showed that cage-free rearing had different effects on carcass
and meat-quality-related parameters. The body weight and abdominal fat percentage
were significantly decreased in the cage-free rearing group, which proved that physical
metabolism could be affected by different rearing systems. Although the fat content de-
creased in whole meat, morphological evaluation showed a contrary increase in IFMs
in cage-free chicken muscles, which provides more evidence of the physical metabolism
changes, specifically for the fat metabolism. Cage-free rearing affects muscle quality in
many distinct aspects, among which muscle color and pH seem closely related to the mea-
surement time point after slaughter. The collagen content showed a strong correlation with
WHC and pH [36]; however, our results found no differences of it between different groups.
This suggested that other factors may be responsible for the WHC and pH differences in
different rearing systems. It is noteworthy that the cage-free group had higher moisture
content and lower fat content in whole meat, lower WHC in leg muscles, brighter breast
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muscle color, and redder leg muscle color, all of which were considered to be beneficial to
meat quality [9,12,19,37]. These results were consistent with the sensory evaluation results
that after cooking, the leg muscles from the cage-free group were juicier and tender due to
the higher WHC and looser muscle bundles. IMF is rich in unsaturated fatty acids, which
were important meat flavor precursors. Additionally, it also serves as an important solvent
for various flavor substances [6,38,39]. More IMF deposited between the muscle bundles
may be one of the main reasons for a better flavor sensory of cage-free groups.

In this study, we also found that different rearing systems had more impact on the
sensory attributes of leg muscles than breast muscles, possibly because the leg mus-
cles were crucial tissue used in walking, jumping, fighting, and physical exercise. In
order to further understand the effect of the rearing system on the biosynthesis pathways
of flavor-related compounds, the leg muscles were used for further transcriptomic and
metabolomic analysis.

In humans, physical exercise improves health and leads to the remodeling of skele-
tal muscle phenotype reflected by changes in myogenesis, glucose metabolism, lipid
metabolism, angiogenesis, transcriptional regulation, and mitochondrial genes [40–42].
Similarly, transcriptomic and metabolomic changes were also observed in hens under
cage-free rearing compared with caged hens. Transcriptomic analysis between the two
groups revealed a series of DEGs potentially responsible for meat quality. For example,
MYPN was downregulated in the cage-free group, which was reported to be specifically
expressed in striated muscle and played a critical role in the control of muscle growth [43].
PDLIM3 was also upregulated in the cage-free group, which regulates the proliferation and
differentiation of skeletal muscle satellite cells [44,45]. As the main component of myoin-
tima, collagen-encoding and collagen-binding genes, such as COL6A1, COL6A2, COL6A3,
and VCL, were identified as downregulated DEGs. UGP2, PHKA2, and LEPR are genes im-
portant for regulating glycogen metabolic patterns [46–48], and the upregulation of UGP2
and LEPR and the downregulation of PHKA2 suggested a novel glycogen metabolic pattern
in muscle. In addition, a series of genes related to oxygen carrier activity, oxygen binding,
hydrogen peroxide catalytic process, and peroxidase activity were identified as DEGs. The
results clearly showed that physical exercise promotes muscle remodeling and stimulates
muscle satellite cell activation to repair damaged cells. Our results suggested that the
muscle cell type, cellular components, and metabolic pattern were positively affected by
cage-free rearing, leading to changes in meat color, pH, and WHC, which could be related
to the tenderness and juiciness of the meat.

The generation of cooked meat flavor mainly depends on the content of precursors [5,6].
Both RNA-seq and metabolomics revealed that flavor precursors, including lipids, fatty
acids, free amino acids, sugars, nucleotides, free amino acids, peptides, and thiamine, were
affected by the rearing systems. Changes involved in lipid and fatty acid metabolism were
the most noteworthy in this study. Cage-free rearing reduced the abdominal fat and fat
content (mainly intermuscular fat) in meat but increased the muscle IMF content. A series
of genes participating in lipid and fatty acid metabolism were identified. For instance,
NR4A3 was regarded as one of the most exercise- and inactivity-responsive genes identified
in a meta-analysis and were involved in the regulation of glucose and fatty acid utilization
in skeletal muscle [49–51]. MFSD2A was reported to be an important lipid transporter
that was essential for omega-3 fatty acid docosahexaenoic acid transport [52,53]. FABP3
belonged to the fatty acid-binding protein family, which was highly expressed in skeletal
muscles and served as a lipid “chaperone” in regulating fatty acid metabolism [54,55].
The PNPLA2 gene encoded an enzyme that catalyzed the first step in the hydrolysis of
triglycerides in adipose tissue [56]. The upregulation of NRA43, MFSD2A, and FABP3
and the downregulation of PNPLA2 suggested changes in lipid and fatty acid synthesis,
transportation, and metabolism in muscles due to cage-free rearing. Metabolomic analysis
revealed a series of lipids and lipid-like metabolites, such as LysoPC (22:4(7Z,10Z,13Z,16Z)),
glycerophosphocholine, and succinylcarnitine. Linoleic acid metabolism and glycerophos-
pholipid metabolism were the most enriched pathways. Comparative analysis confirmed
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that the genes and metabolites related to lipid metabolism were highly correlated in this
study. It is well known that fat content, especially IMF content, plays a crucial role in
meat tenderness, juiciness, and flavor [6,38,39]. Therefore, the changes in lipid and fatty
acid metabolism, especially the IMF content change in muscles, could contribute to eating
quality differences between different rearing systems.

Metabolomic analysis revealed that arginine, L-proline, and β-alanine metabolism
were affected by the different rearing systems. Among these compounds, arginine and
L-proline are regarded as important flavor compounds in puffer fish meat [57,58] and were
more abundant in the cage-free group. Carnosine is widely distributed in skeletal muscle;
plays roles in antioxidant capacity, pH buffering, and metal-ion chelation; has a close
relationship with glycolytic metabolism in muscle [59,60]. Glutathione plays an essential
role in scavenging radicals, detoxification, and signal transduction. These differential amino
acids and peptides not only function as flavor precursors in meat but also participate in the
metabolic process in muscle [61,62]. Additionally, some nucleosides, nucleotides, vitamins,
and other compounds, such as 5’-CMP, DIMP, pantothenic acid, choline compounds, and
alcohol compounds, were also identified as differentially metabolized in this study and
might be potential flavor precursors in raw meat.

5. Conclusions

In conclusion, cage-free rearing significantly reduced body weight and abdominal fat
percentage, showed different impacts on the meat-quality-related parameters, and helped
to improve sensory evaluation scores of muscles. Transcriptomic analysis revealed genes
and pathways related to meat quality and flavor changes. Metabolite analysis showed that
lipid metabolism, intramuscular fat, and other flavor precursor metabolisms were affected
by the rearing system, which had a potential impact on meat flavor. Overall, the cage-free
system showed a positive effect on the improvement of chicken-muscle-eating quality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11182890/s1, Supplementary File S1: Primer information for
qRT–PCR verification. Supplementary File S2: Data analysis of sensory evaluation.
Supplementary File S3: Differentially expressed genes derived from cage-free compared to caged
groups. Supplementary File S4: Different metabolites derived from cage-free compared to caged groups.
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