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INTRODUCTION 
 
The mucosal immune system of the oropharyngeal 
cavity, which is the opening gate for digestive and 
respiratory systems, plays a crucial role in preventing 
pathogen entry into the human body [1]. The oral 
cavity is a suitable environment for microbial 

colonization; 392 taxa with approximately 700 species 
and 1500 microbial genomes have been identified  
as residing therein. Firmicutes, Actinobacteria, 
Proteobacteria, Fusobacteria, Bacteroidetes, and 
Spirochaetes constitute 96% of all oral bacterial phyla 
[2, 3]. Additionally, 85 fungal genera are found in the 
oral cavity [4]. Oral microbes colonize the oral  
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ABSTRACT 
 
The oral cavity plays a crucial role in food digestion and immune protection. Thus, maintaining oral health is 
necessary. Postbiotic and heat-killed probiotic cells have shown increased antibacterial potential with stable 
viability compared with live strains. However, clinical evidence regarding their effect on oral health is 
insufficient. Therefore, in this study, we tested postbiotic lozenges of Lactobacillus salivarius subsp. salicinius 
AP-32, L. paracasei ET-66, and L. plantarum LPL28 and heat-killed probiotic lozenges of L. salivarius subsp. 
salicinius AP-32 and L. paracasei ET-66 for their effect on oral health. In total, 75 healthy individuals were 
blindly and randomly divided into placebo, postbiotic lozenge, and heat-killed probiotic lozenge groups and 
were administered the respective lozenge type for 4 weeks. Postbiotic and heat-killed probiotic lozenge groups 
demonstrated antibacterial activities with a considerable increase in L. salivarius in their oral cavity. 
Furthermore, their salivary immunoglobulin A, Lactobacillus, and Bifidobacterium increased. Subjective 
questionnaires completed by the participants indicated that participants in both the experimental groups 
developed better oral health and intestinal conditions than those in the placebo group. Overall, our study 
revealed that a food additive in the form of an oral postbiotic or heat-killed probiotic lozenge may effectively 
enhance oral immunity, inhibit the growth of oral pathogens, and increase the numbers of beneficial oral 
microbiota. 
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cavity as a biofilm, which regulates oral homeostasis, 
oral immunity, food digestion, detoxification, 
inflammatory processes and is involved in disease 
prevention [5, 6]. 
 
A healthy oral environment consists of multiple symbiotic 
microbiota. Dewhirst et al. demonstrated major oral 
microbial phylum were Firmicutes (36.7%), Bacteroidetes 
(17.3%), Proteobacteria (17.1%), Actinobacteria (11.6%), 
Spirochaetes (7.9%), Fusobacteria (5.2%) [7]. However, 
poor oral hygiene may cause oral microbiota dysbiosis, 
which leads to dental bacterial plaque, gingivitis, and 
periodontitis [8]. In periodontitis, an outgrowth of 
pathogenic bacteria occurs, among which Actinobacillus 
actinomycetemcomitans, Porphyromonas gingivalis, and 
Fusobacterium nucleatum have been reported to be highly 
related to periodontal disease pathogenesis [9, 10]. The 
World Health Organization (WHO) estimated that 
approximately 20%–50% of the global population has 
periodontitis [11]. Patients with periodontitis are at high 
risk of developing stroke, peripheral artery disease, and 
coronary heart disease [12]. The WHO suggested that 
strategies for periodontitis prevention include practicing 
oral hygiene, having a healthy diet, using fluoride and 
antimicrobial agents, and smoking cessation [13]. Studies 
have shown that live probiotic strains inhibit oral 
pathogens and are the rationale for periodontal treatment; 
they are similar to antibiotics but without the major 
concern of antimicrobial resistance [14]. However, 
manufacturing viable probiotics is not feasible owing to 
challenges regarding preservation and viability 
stabilization [15]. Metabolites of viable probiotic strains 
(postbiotic) such as 10-Hydroxy-cis-12-octadecenoic acid 
and heat-inactivated probiotics have shown the potential 
to alleviate the disruption of the gingival epithelial barrier 
caused by periodontitis [16]. 
 
In 2019, the panel of International Scientific 
Association for Probiotics and Prebiotics (ISAPP) 
defined the term ‘postbiotics’ as a preparation of 
inanimate microorganisms and/or their components that 
confers a health benefit on the host [17]. Postbiotics are 
often considered as metabolites secreted by probiotic 
strains during fermentation and consist of microbial cell 
fractions, polypeptides, peptidoglycan-derived 
muropeptides, bacteriocins, peroxides, pili-type 
structures, short-chain fatty acids, teichoic acid, folate, 
vitamins, lactic acid, and extracellular polysaccharides. 
Probiotic components benefit human health, provide 
nutritional support, competitively inhibit pathogenic 
bacteria, and regulate the immune system [18, 19]. In 
addition, the fermentation products of lactic acid 
bacteria (postbiotics) have a unique flavor and 
beneficial nutrients and are therefore widely used in the 
food industry [20]. An in vitro study demonstrated  
that Lactobacilli postbiotics reduce colonization levels 

of A. actinomycetemcomitans, which are related to 
periodontitis [21]. However, clinical evidence proving 
that postbiotics reduce oral pathogenic bacteria and 
improve oral health is lacking. Additionally, our 
previous study revealed that certain heat-killed 
probiotics, including L. salivarius subsp. salicinius AP-
32 and L. paracasei ET-66, effectively limit the growth 
of oral pathogenic bacteria in vitro [22]. Current  
clinical data indicate that oral lozenges made of viable 
strains, including L. salivarius subsp. salicinius AP-32, 
L. paracasei ET-66, and L. plantarum LPL28, can 
increase beneficial microbiota in the oral cavity,  
reduce the colonization of periodontitis-related bacteria, 
and increase the levels of salivary immunoglobulin A 
(IgA) [23]. 
 
Based on previous in-vitro screening of viable probiotic 
strains for improving oral health, we further 
investigated whether heat-killed probiotic (ET-66 and 
AP-32), and postbiotic lozenges (LPL28, ET-66, and 
AP-32) modulate oral microbiota, inhibit oral infectious 
pathogens, and change salivary IgA levels [22, 23]. The 
results can be applied in the production of 
supplementary foods for clinical oral health care in 
future. 
 
RESULTS 
 
Postbiotics of AP-32, ET-66, and LPL28 strains 
showed effective bactericidal effects on oral 
pathogens S. mutans, P. gingivalis, F. nucleatum 
subsp. polymorphum, and A. actinomycetemcomitans 
 
The experimental design was revealed in 
supplementary data (Supplementary Figure 1). First, 
we generated the fermentation products of AP-32, ET-
66, and LPL28 as postbiotic oral lozenge, and 
examined its antipathogenic activity against oral 
pathogens (Figure 1). Compared with the postbiotic  
of a commercially available strain (LGG), the 
fermentation products (postbiotics) of AP-32, ET-66, 
and LPL28 strains had stronger bactericidal effects on 
oral pathogens, particularly S. mutans and A. 
actinomycetemcomitans (Figure 1A). The inhibition 
rates of S. mutans were significantly higher  
with the use of the postbiotics of AP-32 (62.6%), ET-
66 (99.86%, p < 0.001), and LPL28 (94.35%,  
p < 0.001) than with the use of LGG postbiotic 
(41.64%). In addition, the inhibition rates of A. 
actinomycetemcomitans were significantly higher with 
the use of the postbiotics of AP-32 (17.92%, p < 0.05), 
ET-66 (77.86%, p < 0.001), and LPL28 (24.28%, p < 
0.001) than with the use of LGG postbiotic (13.69%). 
All postbiotics effectively inhibited periodontal 
pathogens P. gingivalis BCRC 17689, P. gingivalis 
BCRC 17688, and F. nucleatum subsp. polymorphum 
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Figure 1. In vitro test for determining the antipathogenic activity of (A) individual postbiotic and (B) probiotic oral lozenges against oral 
pathogens. (A) Postbiotics of AP-32, ET-66, and LPL28 showed strong antibacterial activities compared with the positive control of LGG 
postbiotic. (B) Heat-killed AP-32 and ET-66 were used as inactivated probiotics, whereas metabolites of AP-32, ET-66, and LPL28 were used as 
postbiotics. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the positive control group (LGG postbiotic) or the placebo group (without 
the postbiotic). Data are presented as mean ± SD. 
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(Figure 1A). LPL28 postbiotics had a higher inhibition 
rate of P. gingivalis BCRC 17688 (100%, p < 0.05*) 
than did LGG postbiotic (96.83%). 
 
Postbiotic and heat-killed probiotic lozenges were 
effective, demonstrating in vitro bactericidal ability 
against oral pathogens 
 
We prepared two oral lozenges, one with the postbiotics 
of AP-32, ET-66, and LPL28 and the other with heat-
killed AP-32 and ET-66 probiotics for an in vitro 
bactericidal test before launching clinical trials (Figure 
1B). The postbiotic oral lozenge group showed a 
significant increase in the inhibition rates of S. mutans, P. 
gingivalis (BCRC 17689), P. gingivalis (BCRC 17688), 
F. nucleatum, and A. actinomycetemcomitans, namely 
increases of 47.97% (p < 0.05, placebo = 21.02%), 100% 
(p < 0.01, placebo = 49.74%), 100% (p < 0.01, placebo = 
50.38%), and 87.88% (p < 0.01, placebo = 39.96%), 
respectively, compared with the placebo group. The 
inhibition rate of A. actinomycetemcomitans in the 
experimental group slightly increased without a 
significant difference compared with the placebo group 
(oral lozenge: 17.78%; placebo: 10.85%). The heat-killed 
probiotic group significantly inhibited S. mutans, P. 
gingivalis (BCRC 17689), P. gingivalis (BCRC 17688), 
F. nucleatum, and A. actinomycetemcomitans by 89.32% 
(p < 0.001), 85.91% (p < 0.01), 95.32% (p < 0.05), 
91.75% (p < 0.01), and 48.46% (p < 0.05), respectively.  
 
Postbiotic and heat-killed probiotic lozenges 
effectively reduced pathogenic colonies in the saliva 
samples of participants 
 
The 75 selected participants were randomly assigned to 
three groups: placebo, postbiotic lozenge, and heat-killed 
probiotic lozenge. We collected saliva samples at weeks 
0, 2, and 4 after oral lozenge intake initiation and 
measured changes in their microbiota. Plaque weight was 
0.37 ± 0.16 g at week 0, and the initial S. mutans in saliva 
(CFUs/mL) was 4.25E+06 ± 2.90E+06. The postbiotic 
lozenge significantly reduced the oral S. mutans 
bioburden to 60% (median) at week 4 (compared with the 
postbiotic lozenge at week 0 and placebo at week 4;  
p < 0.05 for both), and the heat-killed probiotic lozenge 
significantly reduced S. mutans to 61% (median) at week 
4 (compared with the probiotic lozenge at week 4,  
p < 0.05; Figure 2A). Plate Count Agar (PCA) is a 
common microbiological growth medium used to monitor 
total viable bacterial populations of a sample [24]. The 
PCA agar plate was used to analyze the total  
bacterial population in the oral cavity. The result indicated 
that administrating postbiotic lozenges significantly 
decreased the total bacterial load to 98% at week 2 
(compared with placebo at week 2, 160%, p < 0.05; 
Figure 2B) and to 104% at week 4 (compared with 

placebo at week 4 [187%] and postbiotic lozenge at  
week 0; p < 0.05 for both).  
 
Postbiotic and heat-killed probiotic lozenges 
effectively increased beneficial microbial strains in 
saliva samples 
 
The change in the Bifidobacterium population in the 
participants’ oral cavity was further measured after oral 
lozenge intake. The results revealed that the postbiotic 
oral lozenge significantly increased the Bifidobacterium 
population to 141% at week 4 (compared with the 
postbiotic lozenge at week 0 and placebo at week 4 
[64%], p < 0.05 for both; Figure 2C). Furthermore, the 
heat-killed probiotic lozenge significantly increased the 
salivary Bifidobacterium population to 111% at week 2 
(compared with the probiotic lozenge at week 0 and 
placebo at week 4, p < 0.05 for both) and to 114% at 
week 4 (compared with the probiotic lozenge at week 0 
[p < 0.05] and placebo at week 4 [p < 0.01]). 
 
The measurement of the Lactobacillus population in 
saliva samples revealed that the postbiotic oral lozenge 
significantly increased the Lactobacillus population to 
135% at week 2 (compared with the postbiotic oral 
lozenge at week 0 [p < 0.05] and placebo at week 2 [p < 
0.01]; Figure 2D) and to 227% at week 4 (compared with 
the postbiotic oral lozenge at week 0 and placebo at week 
4; p < 0.001 for both). Furthermore, the heat-killed 
probiotic lozenge significantly increased the salivary 
Lactobacillus population to 123% at week 2 (compared 
with the heat-killed probiotic lozenge at week 0 and 
placebo at week 4; p < 0.05 for both) and to 201% at 
week 4 (compared with the heat-killed probiotic lozenge 
at week 0 and placebo at week 4; p < 0.001 for both). 
 
Postbiotic and heat-killed probiotic lozenges 
effectively increased IgA concentration in saliva 
samples 
 
IgA concentration in saliva increased significantly 
after consuming postbiotic oral lozenges (Figure 3). 
The postbiotic lozenge significantly increased saliva 
IgA to 126% at week 2 (compared with the postbiotic 
lozenge at week 0 [p < 0.05] and placebo at week 2 [p 
< 0.01]) and to 168% at week 4 (compared with the 
postbiotic lozenge at week 0 and placebo at week 4; p 
< 0.001 for both). Moreover, the heat-killed probiotic 
lozenges significantly increased salivary IgA to 122% 
at week 2 (compared with the probiotic lozenges at 
week 0 and placebo at week 2; p < 0.01 for both) and 
to 163% at week 4 (compared with the probiotic 
lozenge at week 0 and placebo at week 4; p < 0.001 
for both). However, plaque weights did not change 
much with oral lozenge intake for 4 weeks 
(Supplementary Figure 2).  
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Figure 2. Microbial change (%) in saliva samples. Change (%) in the population of (A) S. mutans, (B) total bacteria, (C) Bifidobacterium, 
and (D) Lactobacillus in participants’ saliva at 0, 2, and 4 weeks of oral lozenge intake. The oral lozenges contained postbiotics or heat‐killed 
cells. Participants in the control group consumed placebo lozenges without the postbiotic content (*p < 0.05, **p < 0.01, and ***p < 0.001 
compared with  the control group; #p < 0.05, ##p < 0.01, and ###p < 0.001  in  reference  to  the values at week 0). Data are presented as 
medians (n = 25 in each group). 
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NGS detected oral microbiota changes with oral 
lozenge intake 
 
We used the NGS technique to analyze microbiota 
changes in saliva samples with oral lozenge intake. 
Species heatmap (%) demonstrated that L. salivarius 
significantly increased to 0.03% (compared with the 
placebo group, p < 0.05) at 4 weeks after consuming 
postbiotic oral lozenges. Additionally, heat-killed 
probiotic lozenges significantly increased L. salivarius 
to 0.06% (compared with the placebo group, p < 0.05; 
Supplementary Figure 3). The result confirmed our 
previous findings on plate culturing for quantifying 
Lactobacillus in saliva samples (Figure 2D). 
 
LEfSe analysis was used to identify the oral microbiota 
change between before and after oral lozenge intake. 
Nine differential bacterial taxa significantly increased 
after the intake of heat-killed probiotic lozenges, 
including Lactobacillus (Figure 4A). In total, 10 oral 
bacterial clades significantly increased with the intake of 
postbiotic lozenges, including Lactobacillus (Figure 4B).  
 

 
 

Figure 3. Oral lozenges significantly increased salivary IgA 
levels. Change  in Lactobacillus (%)  in participants’ saliva at 0, 2, 
and  4  weeks  with  the  intake  of  oral  lozenges.  Oral  lozenges 
contained  postbiotics  or  heat‐killed  cells.  Participants  in  the 
control group consumed placebo lozenges without the postbiotic 
content (*p < 0.05, **p < 0.01, and ***p < 0.001 compared with 
the  control  group;  #p  <  0.05,  ##p  <  0.01,  and  ###p  <  0.001  in 
reference to values at week 0). Data are presented as medians (n 
= 25 in each group). 

We further analyzed statistical alteration in certain oral 
bacterial strains with the intake of heat-killed probiotic or 
postbiotic lozenges (Figure 5A–5F). Pathogenic 
Veillonella spp. (p < 0.01), Actinomyces graevenitzii 
F0530 (p < 0.05), and Prevotella sp. C561 (p < 0.001) 
significantly decreased by 4 weeks of treatment with 
heat-killed probiotic lozenges. However, the postbiotic 
oral lozenges significantly reduced the growth of 
Selenomonas 3 spp. (p < 0.01) and Prevotella sp. oral 
clone FW035 (p < 0.01). L. salivarius significantly 
increased with the intake of heat-killed probiotic (p < 
0.01) and postbiotic (p < 0.001) lozenges. 
 
Oral lozenges relieved the symptoms of mouth sores, 
constipation, and gastroesophageal reflux based on 
health questionnaire analysis 
 
The severity scores for mouth sores or pustule 
formation decreased to 0.04 ± 0.2 (p < 0.01, compared 
with the placebo group) and 0.08 ± 0.28 (p < 0.05, 
compared with the placebo group) after postbiotic 
lozenge administration for 2 and 4 weeks, respectively 
(Supplementary Table 1). Furthermore, the heat-killed 
lozenges relieved the symptoms of mouth sores at 
weeks 2 (0.23 ± 0.51, p < 0.05, compared with the 
placebo group) and 4 (0.15 ± 0.37, p < 0.05, compared 
with the placebo group), respectively. The scores for 
constipation declined to 0.12 ± 0.33 (p < 0.01) after 4 
weeks of postbiotic lozenge intake (Supplementary 
Table 2). Additionally, 4 weeks after postbiotic oral 
lozenge intake, the symptoms of gastroesophageal 
reflux, cold, and drowsiness significantly decreased to 
0.12 ± 0.33 (p < 0.05), 0.16 ± 0.37 (p < 0.05), and 0.12 
± 0.33 (p < 0.01), respectively. Moreover, the heat-
killed probiotic lozenges diminished the symptoms of 
constipation, gastroesophageal reflux, cold, and 
drowsiness at week 4 to 0.15 ± 0.46 (p < 0.05), 0.19 ± 
0.4 (p < 0.05), 0.12 ± 0.43 (p < 0.05), and 0.08 ± 0.27 (p 
< 0.01), respectively. 
 
DISCUSSION 
 
Based on previous research of viable strain-specific 
approach [25], we selected three of most appropriate 
strains to generate oral health promoting products of 
heat-killed probiotic (ET-66 and AP-32), and postbiotic 
lozenges (LPL28, ET-66, and AP-32) [22, 23]. Several 
studies have tested the effect of certain live probiotic 
strains on oral health. For example, probiotic 
Streptococcus salivarius was reported to reduce severe 
oral halitosis [26]. However, no study has investigated 
the role of the postbiotics on regulating oral microbiota 
and oral immunity. At the beginning of this research, 
we used in vitro antipathogenic assay to demonstrate 
that individual postbiotics of AP-32, ET-66, and  
LPL28 can limit the growth rate of oral pathogenic 
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Figure 4. LEfSe analysis of differential oral microbiota before and after 4 weeks of consuming oral lozenge. Comparing changes 
in oral microbiota with the intake of (A) heat-killed probiotic lozenges and (B) postbiotic lozenges (n = 25 in each group). 
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bacteria S.mutans and periodontal pathogens P. 
gingivalis BCRC 17689, P. gingivalis BCRC  
17688, F. nucleatum subsp. polymorphum, and A. 
actinomycetemcomitans (Figure 1A). Furthermore, the 
postbiotic lozenge made from mixed metabolites of 
AP-32, ET-66, and LPL28 exhibited reliable 
antibacterial function in vitro (Figure 1B). The heat-
killed probiotic lozenges showed better inhibition rate 
in S. mutans and A. actinomycetemcomitans than 
postbiotic lozenges. Moreover, the heat-killed 
probiotic lozenges presented excellent bactericidal 
ability in oral pathogens, which was in accordance 
with previous findings on individual heat-killed strains 
[22]. However, the oral lozenges (made from 3 mixed 
postbiotics) did not inhibit S. mutans and A. 
actinomycetemcomitans better than individual ET-66 
postbiotic did. This may be because of a lower 
concentration of functional ingredients in the oral 

lozenge than in an individual postbiotic (50 mg 
individual postbiotic versus 50 mg of mixed 
postbiotics/1 g of lozenge). Besides, previous study 
revealed viable probiotic lozenges had an excellent 
inhibition rate (nearly 100%) in five oral pathogenic 
bacteria S. mutans and P. gingivalis BCRC 17689, P. 
gingivalis BCRC 17688, F. nucleatum subsp. 
polymorphum, and A. actinomycetemcomitans [23]. 
Higher dosage of heat-killed and postbiotic lozenges 
are presumed to achieve similar pathogenic growth 
inhibition rate to viable probiotic lozenges. The half 
maximal inhibitory concentration (IC50) for heat-
killed and postbiotic lozenges in limiting oral growth 
rate should be tested in future. 
 
Next, we validated the antipathogenic ability of heat-
killed probiotic or postbiotic lozenges through the 
detection of changes in the microbial number in saliva. 

 

 
 

Figure 5. Significant changes in specific oral bacterial strains after consuming heat-killed probiotic or postbiotic oral 
lozenges. Changes in (A) Veillonella spp., (B) Selenomonas 3 spp., (C) Actinomyces graevenitzii F0530, (D) Prevotella sp. C561, (E) Prevotella 
sp. oral clone FW035, and (F) L. salivarius after consuming heat-killed probiotic or postbiotic oral lozenges were analyzed through the LEfSe 
analysis. Comparing changes in oral bacterial concentration (%) in participants’ saliva at 0 (before) or 4 weeks (after) of oral lozenge intake. 
The oral lozenges contained postbiotics or heat-killed cells. Participants in the control group consumed placebo lozenges without the 
postbiotic content (*p < 0.05, **p < 0.01, and ***p < 0.001 compared with the control group; #p < 0.05, ##p < 0.01, and ###p < 0.001 in 
reference to the values at week 0). Two-tailed t-tests was performed to analyze the statistical difference of experimental results. Data are 
presented as means ± SDs (n = 25 in each group). 
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Compared with the placebo group, the postbiotic and 
heat-killed lozenge groups exhibited significantly 
reduced numbers of S. mutans and total bacteria at week 
4, but no significantly difference at week 2 (Figure 2A, 
2B). S. mutans is the main pathogen involved in the 
initiation of dental caries and exhibited a positive 
correlation with periodontitis [27]. In addition, a high 
ratio of S. mutans DNA was discovered in cardiovascular 
specimens [28]. Thus, reducing oral S. mutans numbers 
with postbiotic lozenge intake may prevent dental cavity 
progression, periodontitis, and cardiovascular diseases. 
Moreover, Bifidobacterium and Lactobacillus in saliva 
(cultured on MRS agar plate) revealed that cell numbers 
increased with the intake of heat-killed probiotic or 
postbiotic lozenges (Figure 2C, 2D). 
 
Furthermore, postbiotic or heat-killed probiotic 
lozenges increased IgA concentration in saliva  
(Figure 3). IgA constitutes 10%–20% of the serum 
immunoglobulin, second only to IgG. Moreover, IgA 
present in the mucosal tissues of the oral cavity, 
digestive tract, and respiratory tract prevents pathogen 
invasion. Additionally, IgA is present in saliva, tears, 
and breast milk, particularly in that with high colostrum. 
No IgA antibody is present in neonatal serum, but 
newborns obtain IgA secreted from breast milk [29]. 
Carbohydrate intake may reduce IgA concentration in 
saliva [30]. Furthermore, salivary IgA acts as the 
frontline mucosal immune defense against the entry of 
respiratory pathogens, including severe acute 
respiratory syndrome coronavirus 2 [31]. Therefore, 
novel postbiotic or heat-killed probiotic lozenges, which 
effectively increase salivary IgA concentration, improve 
bacteriostatic activities, and increase oral populations of 
beneficial bacteria, may be a potential food product in 
improving oral health and preventing further infection. 
 
Additionally, we used LEfSe analysis to detect 
significant changes in oral microbiota after the 
administration of heat-killed probiotic or postbiotic 
lozenges (Figure 4). Both heat-killed and postbiotic 
lozenges showed the ability to significantly increase 
Lactobacillus in the oral cavity. Furthermore, heatmap 
results of NGS analysis showed an increase in L. 
salivarius level (Supplementary Figure 3). Thus, oral 
lozenges containing postbiotic or heat-killed probiotic 
cells promoted the growth and colonization of beneficial 
microorganism in the oral cavity. In addition, the 
upregulation of L. salivarius in oral microbiota has been 
reported to promote anticariogenic effects [32, 33]. 
Moreover, an animal study revealed that L. salivarius 
subsp. salicinius AP-32 can eradicate Helicobacter pylori 
infection in addition to improving oral health [34].  
 
Based on previous findings that probiotic strains of 
AP-32, ET-66 and LPL28 effected oral microbiota 

[23] and viable strains may improve salivary  
IgA via up-regulating anti-inflammatory cytokines, 
IL-10 and TGF-beta [35]. Besides, a previous  
animal study discovered the mixed viable probiotic 
strains of Lactobacillus salivarius subsp. salicinius 
AP-32, L. johnsonii MH-68, L. reuteri GL-104, and 
Bifidobacterium animalis subsp. lactis CP-9, 
significantly increased SCFA and MCFA levels. The 
elevated SCFA and MCFA levels may affect the 
populations of gut microbiota [36]. The secreted 
SCFA and MCFA from viable probiotic strains  
may affect the oral bacterial populations. Some 
metabolites such as butyrate may stimulate the 
formation of periodontal/periapical tissues at low or 
high concentrations [37–39]. 
 
However, the detailed mechanism of how three mixed 
viable probiotic strains (AP-32, ET-66, and LPL28) 
altered the oral microbiome should be tested in the 
future. Here, we further discovered that postbiotic 
would also improve oral microbiota. Nevertheless, the 
clinical oral health improving function should be 
tested after stopping consuming postbiotic  
lozenges. A larger scale clinical analysis of oral 
microbiota and metabolite profiling for the 
development of personalized oral therapy in the  
future [40]. 
 
The heat-killed lozenges were efficacious in reducing 
growth of pathogenic Veillonella spp., A. graevenitzii 
F0530, and Prevotella sp. C561. Moreover, the 
postbiotic lozenges reduced the growth of 
Selenomonas 3 spp. and Prevotella sp. oral clone 
FW035 (Figure 5). Veillonella spp. has been reported 
to be associated with halitosis [41] and dental caries 
[42]. The overgrowth of Prevotella spp. may lead to 
halitosis [41] and periodontal disease [43]. A. 
graevenitzii has been discovered to cause pulmonary 
abscess [44], pneumonia [45], and dental caries [42]. 
Thus, heat-killed probiotic lozenges might improve the 
oral smell and oral hygiene by reducing the oral 
population of Veillonella spp., Prevotella spp., and A. 
graevenitzii. Additionally, postbiotic oral lozenges 
may significantly reduce Selenomonas spp. and 
Prevotella spp., which are associated with halitosis 
[41]. Moreover, the oral health questionnaires 
presented that heat-killed and postbiotic lozenges 
would significantly improve symptoms of ruptured 
mouth, drool (Supplementary Table 1), constipation, 
gastroesophageal reflux, cold, drowsiness 
(Supplementary Table 2). The results of questionnaires 
at present study are in accordance with previous 
findings in viable probiotic lozenges. The 
questionnaires for viable probiotic lozenge present 
additional improvements in teeth bleeding, sore throat, 
and stomach pain [23]. 



www.aging-us.com 2230 AGING 

Finally, Ishikawa, K. H. et al. demonstrated postbiotics 
would effectively limit the formation of biofilm 
formation and growth rate of A. actinomycetemcomitans 
[21]. At present study, it demonstrated that postbiotic 
significantly reduced the survival rate of other oral 
pathogens including S. mutans and periodontal 
pathogens P. gingivalis BCRC 17689, P. gingivalis 
BCRC 17688, F. nucleatum subsp. polymorphum. We 
also measured changes in participants’ salivary IgA and 
oral microbiota by consuming lozenges of postbiotic 
AP-32 (L. salivarius subsp. salicinius), ET-66 (L. 
paracasei), and LPL28 (L. plantarum). The different 
mixing proportion of three postbiotics effected on oral 
hygiene should be tested in future. 
 
In conclusion, the postbiotics and heat-killed 
probiotics have the advantages of preservation and 
stable viability over viable strains. Here, we found that 
lozenges of postbiotic AP-32 (L. salivarius subsp. 
salicinius), ET-66 (L. paracasei), and LPL28 (L. 
plantarum) and the heat-killed probiotics of AP-32 (L. 
salivarius subsp. salicinius) and ET-66 (L. paracasei) 
were beneficial to oral health. Previous study 
demonstrated that three strains had excellent 
antimicrobial activity in zone of inhibition test. The 
present clinical study revealed that postbiotic or heat-
killed probiotic lozenges could effectively reduce the 
number of S. mutans in the oral cavity, increase L. 
salivarius in oral microbial flora, increase salivary IgA 
concentration, and decrease oral infections. 
Furthermore, results from the subjective questionnaire 
revealed that improved oral health was associated with 
attenuated intestinal symptoms, relieved constipation, 
and reduced gastroesophageal reflux, stomach pain, 
colds, and sense of drowsiness. This study suggested 
that deactivated probiotic cells and their postbiotics 
can serve as supporters to optimize the efficacy of oral 
health supplements. However, further experiments are 
required. 
 
According to the current manufacturing regulations of 
cosmetics and cleaning products in various countries, 
the inactive substances of functional lactic acid bacteria 
are more suitable for the industrial application. 
Therefore, this study presented potential food-grade 
supplementations for promoting oral health and 
applicable food industrial products in the future. 
 
MATERIALS AND METHODS 
 
Oral lozenges of heat-killed probiotics and 
postbiotics 
 
Three probiotic strains known for their antipathogenic 
against oral pathogens, namely L. salivarius subsp. 
salicinius AP-32, L. paracasei ET-66, and L. plantarum 

LPL28, were obtained from Bioflag biotech. Co. Ltd 
(Tainan, Taiwan). L. salivarius subsp. salicinius AP-32 
was isolated from healthy human intestine and 
deposited in Food Industry Research and Development 
Institute, Taiwan (ID: BCRC 910437) and in Wuhan 
university, China (ID: CCTCC-M2011127); L. 
paracasei ET-66 was isolated from healthy human 
breast milk and deposited in Food Industry Research 
and Development Institute, Taiwan (ID: BCRC 910753) 
and in China General Microbiological Culture 
Collection Center, Beijing, China (ID: CGMCC-13514). 
L. plantarum LPL28 was isolated from fermented food 
Mizo and deposited in Food Industry Research and 
Development Institute, Taiwan (ID: BCRC 910536) and 
in China General Microbiological Culture Collection 
Center, Beijing, China (ID: CGMCC-17954).  
 
We collected postbiotics from these three strains (50 mg 
of mixed postbiotics/1 g of lozenge) to develop oral 
lozenges [46]. The detailed procedure for producing 
postbiotic powder is described as follow: Incubating three 
probiotic strains AP-32, ET-66 and LPL28 (2 × 1011 
colony-formation units [CFUs]/g) in De Man, Rogosa and 
Sharpe (MRS) media (Difco. Laboratories, Detroit, MI, 
USA) at 37° C for 48 h to obtain viable probiotics strains. 
Fermenting mixed probiotics stains of AP-32, ET-66 and 
LPL28 (the concentration of each probiotic strain was 1 × 
109 CFU/mL) with nitrogen sources (skimmed milk and 
soy bean) and carbohydrate sources (glucose, fructose) at 
37° C for 16 hours. Collecting fermented supernatant 
(postbiotic solution) after centrifugation at 15,000 x g. 
Pasteurizing fermented product with ultra-high-
temperature (UHT) to 135–140° C for 4 seconds. Then 
spray-drying fermented solution into postbiotic powder. 
The major nutritional components of postbiotic powder 
(per 100 g contribution) were crude protein 15.9 g, crude 
fat 1.9 g, saturated fat 0.21 g, carbohydrate 65.3 g, sugar 
3.799 g, glucose 0.553 g, sucrose 0.082 g, maltose  
0.667 g, lactose 2.497 g, sodium 3062.7 mg, and calories 
341.9 Kcal.  
 
We incubated two probiotic strains L. salivarius subsp. 
salicinius AP-32 and L. paracasei ET-66 (2 × 1011 
colony-formation units [CFUs]/g) in De Man, Rogosa 
and Sharpe (MRS) media (Difco. Laboratories, Detroit, 
MI, USA) at 37° C for 48 h to obtain viable probiotics 
strains [22]. Fermentation and centrifugation procedure 
was the same as making postbiotic product. Collecting 
and pasteurizing pellet with ultra-high-temperature 
(UHT) to 135–140° C for 4 seconds. Freeze-drying the 
pasteurized pellet for 40 hr, and then obtaining heat-
killed probiotic powder. The heat-killed probiotic oral 
lozenges were composed of 1010 CFUs/g of cells. 
Furthermore, food-grade D-sorbitol, erythritol, 
fructooligosaccharides, lactose, magnesium stearate, 
silica, and sucralose were used to prepare placebo oral 
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lozenges. Furthermore, food-grade D-sorbitol, 
erythritol, fructooligosaccharides, lactose, magnesium 
stearate, silica, and sucralose were used to prepare 
placebo oral lozenges. 
 
Oral pathogenic bacteria 
 
We used tryptic soy broth (TSB; Merck KGaA, 
Darmstadt, Germany) supplemented with 5% sheep’s 
blood to cultivate P. gingivalis and F. nucleatum subsp. 
polymorphum and brain heart infusion (BHI; Merck 
KGaA, Darmstadt, Germany) broth for culturing A. 
actinomycetemcomitans. Additionally, TSB was used to 
cultivate Streptococcus mutans. We incubated 
pathogens at 37° C (48 h) for subsequent antibacterial 
tests. S. mutans BCRC 10793T, P. gingivalis BCRC 
17689, P. gingivalis BCRC 17688, F. nucleatum  
subsp. polymorphum BCRC 17679, and A. 
actinomycetemcomitans BCRC 14405 were obtained 
from Bioresource Collection and Research Center 
(BCRC), Hsinchu, Taiwan. 
 
Analyzing bacteriostatic activities 
 
The three probiotic strains were individually cultured in 
MRS media at 37° C for 20 h. Then, 4.9 mL of 
supernatants were collected and mixed with oral 
pathogenic bacteria (106 CFUs/0.1 mL) after which the 
mixed solution was incubated at 37° C for 48 h. 
Subsequently, the CFUs of pathogenic bacteria in each 
tube were calculated. Furthermore, the CFUs of oral 
pathogens were compared with the control media, which 
contained pathogens without postbiotic treatment. 
 
The bacteriostatic activities of postbiotic and heat-killed 
probiotic lozenges were tested according to the same 
protocol. The experimental lozenges were dissolved in 
either a TSB or BHI medium at 0.1 g/mL concentration, 
and then, oral pathogens (106 CFU) were introduced 
into the lozenge solutions and coincubated at 37° C for 
2 (S. mutans) or 3 (P. gingivalis, F. nucleatum subsp. 
polymorphum, and A. actinomycetemcomitans) days. 
Furthermore, the CFUs of pathogenic bacteria in each 
tube were calculated. We measured the survival rates of 
the oral pathogens by using the following formula: 
CFUexperimental group/CFUcontrol media (%). The inhibition 
rates of the oral pathogens were determined using the 
following formula: 1 − survival rate (%). The 
metabolites of L. rhamnosus GG (LGG) purchased from 
Chr. Hansen, Hoersholm, Denmark were tested as 
positive control. 
 
Participants 
 
In total, 75 participants (on-smokers, free from systemic 
diseases) between 20 and 40 years of age and with S. 

mutans >105 CFUs/mL in their saliva samples were 
recruited. Their average age was 26.29 ± 5.59 years. 
The initial amount of S. mutans in their saliva 
(CFUs/mL) was 4.25* 106 ± 2.90* 106, and their plaque 
weight was 0.37 ± 0.16 g. All clinical tests were 
performed according to the guidelines of the Ministry of 
Health and Welfare, Taiwan (Health Food Evaluation 
No. 88037803). All participants were randomly and 
blindly assigned to three groups: placebo, heat-killed 
probiotics, and postbiotics (25 participants in each 
group). Participants were asked to clean their oral cavity 
and then consume three oral lozenges (3 g) every day 
for 4 weeks [47]. We collected and measured oral 
microbiota, IgA levels, and oral pathogens in 2-mL 
saliva samples at weeks 0, 2, and 4. Additionally, total 
plaque and oral health questionnaire were analyzed at 
weeks 0, 2, and 4. The protocols for evaluating the 
uptake of postbiotic products, colleting human saliva 
samples, and administering subjective questionnaires 
were approved by the Institutional Review Board of 
Chung Shan Medical University, Taiwan (CS19052). 
 
Analysis of the populations of Lactobacillus, 
Bifidobacterium, S. mutans, and total aerobic 
bacteria in the oral cavity 
 
For analyzing the populations of Lactobacillus, 
Bifidobacterium, total aerobic bacteria, and S. mutans  
in the oral cavity, 100-μL saliva samples were cultured 
on MRS with 0.05% cysteine agar, plate count agar 
(PCA; Merck KGaA, Darmstadt, Germany), and mitis 
salivarius-bacitracin (MSB Agar) (Merck KGaA, 
Darmstadt, Germany) in triplicate, and CFUs on each 
plate were calculated. The change rates of oral pathogen 
were determined using the following formula: 
(CFUsweek 2 or 4 − CFUsweek 0)/CFUsweek 0 (%). 
 
Next-generation sequencing analysis of oral 
microbiota 
 
Changes in oral microbiota were measured using the 
next-generation sequencing (NGS) technique. Microbial 
DNA was extracted from the saliva samples and sent to 
Genomics Co. Ltd. for NGS analysis. In brief, 
commercial specific primers (Genomics Co. Ltd., 
Taiwan) were used to amplify the amplicon DNA 
segments (16S rRNA and 16S V3–V4) by using the 
polymerase chain reaction (PCR) technique (Phusion 
High-Fidelity PCR Master Mix, New England Biolabs, 
USA). The PCR products of 400–450 bp were purified 
using the Qiagen Gel Extraction kit (Qiagen, Germany). 
Then, the TruSeq DNA PCR-free sample preparation kit 
(Illumina, USA) was used to generate sequencing 
libraries with provided index codes. The Qubit 2.0 
Fluorometer (Thermo Scientific, USA) and Agilent 
Bioanalyzer 2100 system (Agilent Technologies, Inc., 
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USA) were applied to confirm the library quality. 
Finally, the Illumina HiSeq 2500 platform was used to 
sequence and analyze the DNA library. QIIME 
software, version 1.7.0, was used to analyze NGS raw 
data [48]. The sizes of each single taxon of the groups 
were further analyzed through linear regression plots 
and linear discriminant analysis effect size (LEfSe) 
analysis (https://huttenhower.sph.harvard.edu/galaxy/) 
and the analysis protocol was followed the instruction  
in https://twbattaglia.gitbooks.io/introduction-to-qiime/ 
content/lefse.html. 
 
Measuring IgA and plaque 
 
The human IgA enzyme-linked immunosorbent assay 
(ELISA) kit (Invitrogen, Lot: 218315-003) was used to 
measure IgA concentrations of saliva samples in 
triplicate. The IgA concentration was analyzed at an 
optical density of 450–570 nm by using the ELISA 
reader. Plaque in the mouth was collected using a swab. 
Then, the dehydrated plaque was weighed. The weight 
of plague (g) = total weight of samples with sample 
tubes (g) – sample tubes (g). 
 
Questionnaire of dental problems and gastrointestinal 
symptoms 
 
Self-report questionnaires were used to evaluate 
common dental symptoms and a gastrointestinal 
symptom [23]. All participants completed the 
questionnaire at weeks 0, 2, and 4 after the intervention. 
Participants could give the following responses: 0 = no 
symptom; 1 = mild; 2 = medium; 3 = serious. 
 
Statistics 
 
GraphPad Prism software (San Diego, CA, USA) was 
applied to perform statistical analysis of collected data. 
Data of bacterial colonies in oral and salivary IgA are 
presented as medians. Each test was performed 
triplicate. The rest of the data are presented as means ± 
standard deviations (SDs) or means. Two-tailed t-tests 
were performed to analyze the statistical differences in 
experimental results. Statistical difference was indicated 
by p < 0.05. A significant statistical difference was 
observed in the treatment data of the experimental 
groups compared with their pretreatment data at week 0 
(# p < 0.05) and compared with the placebo group data 
at week 4 (* p < 0.05). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Experimental design. 
 

 
 

Supplementary Figure 2. Plaque weight analyses. The oral lozenges contained postbiotics or heat-killed cells. Participants in the control 
group consumed placebo lozenges without the postbiotic content (no significant difference was observed between the groups). Data are 
presented as mean ± SD. 
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Supplementary Figure 3. NGS for detecting changes in oral microbiota with the intervention of oral lozenges. Heatmap 
presents oral microbiota changes (genus, %) in participants’ saliva before and after 4 weeks of consuming oral lozenge. Participants in the 
control group consumed placebo lozenges without the postbiotic content (*p < 0.05 and **p < 0.01 indicate significant change compared 
with the placebo group). Data are presented as means. 
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Supplementary Tables 
 
Supplementary Table 1. Analyses of the oral health questionnaire. 

0W  
Placebo  Heat-killed probiotics  Postbiotics  

2W  4W  0W 2W 4W 0W  2W  4W  
Toothache / 
Gingival Swellingc 0.4±0.71  0.2±0.41  0.16±0.47  0.31±0.68  0.19±0.49  0.19±0.69  0.48±0.59 0.28±0.54  0.16±0.37 

Teeth bleeding, 
while brushingc 0.48±0.78  0.44±0.65  0.44±0.65 0.46±0.81  0.27±0.53  0.31±0.62 0.44±0.58 0.28±0.61  0.16±0.37 

Ruptured mouth or 
pustule formationc 0.6±0.76 0.72±0.98  0.52±0.82  0.5±0.71  0.23±0.51a 0.15±0.37a 0.44±0.82 0.04±0.2b 0.08±0.28a 

Sore throatc 0.48±0.59  0.4±0.87  0.36±0.76  0.42±0.7 0.19±0.49  0.19±0.4  0.28±0.46 0.2±0.41 0.16±0.47 
Droolc  0.32±0.56  0.52±0.82  0.48±0.65  0.38±0.57  0.12±0.33a 0.15±0.46a 0.6±0.76 0.12±0.33a  0.16±0.37a 
Coughc  0.32±0.48  0.24±0.6  0.4±0.76  0.62±0.8  0.27±0.6 0.54±0.81 0.36±0.57  0.12±0.44  0.12±0.44 

aSignificant difference compared with the placebo group, p < 0.05. 
bHighly significant difference compared with the placebo group, p < 0.01. 
cScores were evaluated according to severity: 3 points = severe; 2 points = normal; 1 point = mild; 0 point = none; the data are 
presented as mean ± SD collected from all groups. 
 

Supplementary Table 2. Intestinal symptoms based on health survey evaluationc. 

0W  
Placebo Heat-killed probiotics  Postbiotics  

2W  4W  0W   2W 4W 0W  2W  4W  
Defecationd 0.08±0.28 0.2±0.41 0.36±0.49  0.23±0.43  0.38±0.5 0.46±0.58 0.2±0.41  0.4±0.5  0.32±0.48 
Constipationc 0.48±0.65  0.44±0.65  0.6±0.71 0.31±0.68  0.15±0.46 0.15±0.46a 0.28±0.46 0.16±0.37  0.12±0.33b 
Diarrheac 0.2±0.41  0.32±0.63 0.36±0.64 0.27±0.53  0.15±0.46 0.15±0.46 0.12±0.33 0.24±0.66 0.16±0.37 
Stomach painc 0.68±0.8  0.4±0.65  0.32±0.63  0.35±0.49 0.23±0.43  0.23±0.43  0.36±0.49 0.12±0.33 0.16±0.37 
Gastroesophagealc 0.68±0.9  0.48±0.65 0.52±0.71 0.31±0.47  0.15±0.37a 0.19±0.4a 0.28±0.46  0.08±0.28b 0.12±0.33a 
Refluxc          
Coldc 0.36±0.57  0.44±0.71  0.56±0.82 0.46±0.58 0.23±0.51 0.12±0.43a 0.32±0.47 0.2±0.41 0.16±0.37a 
Drowsinessc 0.36±0.7  0.4±0.58  0.52±0.65 0.31±0.47 0.15±0.37  0.08±0.27b 0.32±0.56 0.16±0.37  0.12±0.33b 

aSignificant difference compared with the placebo group, p < 0.05. 
bHighly significant difference compared with the placebo group, p < 0.01. 
cScores were evaluated according to severity: 3 points = severe; 2 points = normal; 1 point = mild; 0 point = none; the data are 
presented as mean ± SD collected from all groups. 
dScores were analyzed based on frequency: >3 days = 2 points; once every 3 days = 1 point; more than once a day = 0 points. 




