
Published online 9 July 2021 Nucleic Acids Research, 2021, Vol. 49, No. 14 7995–8006
https://doi.org/10.1093/nar/gkab581

Inferring single cell expression profiles from
overlapped pooling sequencing data with compressed
sensing strategy
Mengting Huang1,†, Yixuan Yang1,†, Xingzhao Wen1,†, Weiqiang Xu2, Na Lu1, Xiao Sun1,
Jing Tu 1,* and Zuhong Lu1

1State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University,
Nanjing 210096, China and 2Department of Statistics and Quantitative Economics, Institute of Economics, Shanghai
Academy of Social Sciences, Shanghai 200020, China

Received December 22, 2020; Revised June 18, 2021; Editorial Decision June 19, 2021; Accepted June 22, 2021

ABSTRACT

Though single cell RNA sequencing (scRNA-seq)
technologies have been well developed, the acqui-
sition of large-scale single cell expression data may
still lead to high costs. Single cell expression profile
has its inherent sparse properties, which makes it
compressible, thus providing opportunities for solu-
tions. Here, by computational simulation as well as
experiment of 54 single cells, we propose that ex-
pression profiles can be compressed from the di-
mension of samples by overlapped assigning each
cell into plenty of pools. And we prove that expres-
sion profiles can be inferred from these pool ex-
pression data with overlapped pooling design and
compressed sensing strategy. We also show that by
combining this approach with plate-based scRNA-
seq measurement, it can maintain its superiorities
in gene detection sensitivity and individual identity
and recover the expression profile with high preci-
sion, while saving about half of the library cost. This
method can inspire novel conceptions on the mea-
surement, storage or computation improvements for
other compressible signals in many biological areas.

INTRODUCTION

Single cells, as the basic components of life, are a new win-
dow to understand individual differences among cell (1,2).
With the development of advanced technologies to capture
single cells quickly and accurately (3,4), scientists can nar-
row down their view from bulk sequencing of thousands
of cells, which averages out cellular difference, to subtle
changes between individual cells (5). The elaborate atlas of
single cells has shed light on multiple biological questions

like revealing new cell types in cancers (6,7), investigating
the dynamics of developmental processes (8), linkage and
developmental trajectory of immune cells in cancer (9) and
generating spatial transcriptomics landscape (10,11).

The two most popular methods for single-cell RNA-
seq are plate-based methods and droplet-based methods.
Plate-based methods like Smart-Seq2 (12,13) capture full-
length transcripts by constructing sequencing library inde-
pendently for each cell, which usually lead to high cost in
large-scale experiments, although some recent works have
addressed this dilemma at lower costs (14–16). By build-
ing one barcoded library for massive cells to analyze large
amount of cells in parallel, droplet-based methods like
Drop-seq and InDrop (17,18) are more efficient in sequenc-
ing, and the pioneer 10X Chromium Single Cell Gene Ex-
pression Solution sequencing platform (19) can even obtain
the expression profile of up to 10 000 single cells at one time.
However, compared with plate-based methods, they require
specialist equipment, and because of the limited reading
depth, fewer genes can be detected per cell (20–22). Due to
the automated separation and mixed sequencing of cells, it
is difficult to trace the specific source of each cell.

A core feature and also challenge of single cell RNA-seq
expression profile (SCEP) data is its high dimensionality. In
emerging researches and applications, large-scale single cell
sequencing of complex tissues requires quantities of experi-
ments and data analysis (23). Therefore, cost-effective data
collection, storage and computation methods are of the
essence, which leads to the idea of dimensionality reduction
during data acquisition (24). In addition to high dimension-
ality, another important characteristic of scRNA-seq data
is sparsity. In general, SCEP usually contains a large por-
tion of zero values (25,26), that is, only relatively few genes
are observed to be expressed in each cell. These zero counts
observed may be due to low mRNA sequenced within indi-
vidual cells, transient gene expression, or ‘dropout’ events
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by technical causes (27,28). The sparse feature of scRNA-
seq data inspired the idea of applying data compression.

Given these features, some studies have developed meth-
ods to increase the number of samples by reducing se-
quencing depth in individual cells, called shallow RNA-
seq (24,29). In other cases, limited number of genes are de-
signed to be detected and counted, to guide and speculate
the expression profile of those unmeasured genes together
with earlier profiling data (30,31). These approaches reduce
the dimension of SCEPs from the perspective of genes to
achieve cheaper and easier data collection (32). However,
since it is easy to obtain the expression values of most genes
by using plated-based sequencing technologies, reducing
the number of samples seems to be a more pivotal way. Is
this a viable approach? No research has yet given this an-
swer.

Compressed sensing (CS) theory is a signal processing
theory for sparse or compressible signals (33). For these sig-
nals, less observation data can be obtained with low sam-
pling, and then the original signal can be recovered with
high probability through a non-adaptive reconstruction al-
gorithm (34). Analog to sparse signals, single cell expression
data also own sparse structures, indicating that it may be
worthwhile to apply compressed sensing theory to SCEPs.
If we compress the expression profile during experiments
and infer the entire original signals by CS algorithm, the li-
brary costs of plate-based methods might be reduced while
incorporating their advantages in gene detection sensitivity
and cell identity tracing.

In this paper, we explored the compressibility of single
cell expression data and the approach of applying CS in-
ference framework to single cell expression measurements.
The basic roadmap is to subsample different cells into over-
lapped pools, construct libraries for pools (less than the
number of cells) to get composite sequencing results and
then apply certain CS algorithms to recover expression level
for each cell by the observed results. Since the conditions
of pools with mixed cells are known, it could be possi-
ble to decompress the signal and recover the individual
original expression values. Through computational simu-
lations (35,36), we proved the feasibility of our approach
and tested two kinds of regularization models (37,38). In
practical experiments, combined with Smart-Seq2 library
construction protocols, we inferred the SCEP of 54 human
immune cells using the sequencing results of 28 overlapped
pools. Compared with the results of conventional Smart-
seq2 method, 48.15% (26/54) cost of library construction
was saved, 86.46% genes were detected, and the mean Pear-
son correlation coefficient of 54 cells reached 0.875. In all,
our results suggested a new research direction for the field
of utilizing the compressibility of SCEP data.

MATERIALS AND METHODS

Computational simulation

Key resources. The key resources used in this work are
listed in Table 1. A dataset of 64 human pancreatic islet
cells (GSE73727) is considered as dataset1 which has high
sparsity. Sixty-four human immune cells picked up from
dataset GSE98638 were named as dataset2 as a contrast
which has low sparsity. The 53 760 cells’ expression data

of 7 mice were collected from https://doi.org/10.6084/m9.
figshare.5829687.v7, and these cells were sorted by FACS
and sequenced with Smart-Seq2 from 20 organs.

The inference procedure is designed to reconstruct a sin-
gle cell expression profile by a known measurement ma-
trix and the compressive measurements. As single cells are
subsampled into overlapped pools, the sequencing results
of each pool are considered as compressive measurements
here.

It should be clarified that the gene expression matrix dur-
ing reconstruction is the transposition of traditional gene
expression matrix (each row of the expression matrix rep-
resents a gene and each column represents a cell), which
doesn’t affect the result of sequencing.

Sparsity description. Dataset1 was sequenced based on
plate-based Smart-Seq2 protocol, containing seven cell
types: alpha cells, beta cells, delta cells, PP cells, duct
cells, acinar cells and undefined cells. The morphology and
anatomical regions of these types of cells are different, lead-
ing to large differences in their expression level. The corre-
lation between cells is low with a median of 0.147. The non-
zero value in dataset 1 only accounts for 24.49%, indicating
that dataset1 is a relatively sparse matrix.

Dataset2 was selected from a large single cell dataset of
5063 cells and contains a total of 14 952 genes, includ-
ing six cell types: PTC, TTC, PTH, TTH, PTR and TTR.
Though these cells have different tissue sources and cell sub-
types, they are all T lymphocytes with little morphological
and functional differences. The correlation between cells in
dataset2 is high, with a median value 0.738. Cells from same
tissue or same cell type show higher similarity, such as PTR
and TTR (both CD4+CD25highT cells). The proportion of
non-zero values in dataset2 is 32.30%, which is significantly
higher than that in dataset1, indicating that dataset2 has a
low degree of sparsity. The visualized information can be
seen in Supplementary Figure S1 and S5.

Measurement matrix generation. Measurement matrices
M are randomly generated Bernoulli matrices with dimen-
sions of pool number × cell number , where the probabili-
ties of 0 or 1 to appear in a matrix are both 0.5 (the proba-
bility of occurrence of 1 is set as an adjustable parameter
p, here, p = 0.5). The Bernoulli matrix is a commonly
used measurement matrix in compressed sensing theory.
When the measurement number of the random Bernoulli
matrix satisfies M ≥ cKlog(N/K) (c is an extremely small
constant), it will meet the RIP condition with great prob-
ability. In parallel computing scheme, for each sub Mi , we
used the same method to generate measurement matrix as
above.

When a number in a measurement matrix is 0, it means
that the cell corresponding to it will not be subsampled,
so the deviations in our method are mainly related to the
cells added in the pool, which could be sampling error, sam-
ple degradation or sequencing error. Based on it, we build
our turbulence model in computational simulation. When
a turbulence is set as t (t ∈ (0, 1)), we replace value 1 with
a random number sampled from a uniform distribution
u ∈ (1 − t, 1 + t).

https://doi.org/10.6084/m9.figshare.5829687.v7
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Table 1. Key resources table

DEPOSITED DATA SOURCE IDENTIFIER

Gene expression data Single-cell transcriptomes reveal characteristic
features of human pancreatic islet cell types (29)

GSE73727

Gene expression data Landscape of infiltrating T cells in liver cancer
revealed by single-cell sequencing (9)

GSE98638

Gene expression data Single-cell transcriptomics of 20 mouse organs
creates a Tabula Muris (14)

doi.org/10.6084/m9.figshare.5829687.v7

Datasets example simulation processing. The gene expres-
sion matrix for 64 single cells of different sparsity (dataset1
and dataset2) were downloaded as X. The compressive mea-
surements Y were then built up by multiplying generated M
with X (Y = M × X). Randomly generated M was varied
on the number of pools from 15 to 45 (interval = 5, repeat
= 50). Turbulence was set as 0, 0.2, 0.4, 0.6. For dataset1

of high sparsity, we solved
�

X by �1 regularization (l1-magic
toolbox), which based on Basis Pursuit model. For dataset2

of low sparsity, we solved
�

X by �2 regularization based on
Ridge Regression by the following equation.

x = (
λI + MT M

)−1
MT y

x, y stands for each column of X, Y. λ is a trade-off be-
tween sparsity and accuracy. λ was set to 0.01 in this article
based on grid search results.

We used Pearson Correlation Coefficient to compare re-

constructed
�

X with the original X. Though X is solved col-
umn by column, we care more about reconstructed perfor-
mance of each cell. So, we calculated the Pearson Correla-
tion Coefficient by comparing inferential gene expression of
each cell to its original data (ρc), and we considered mean
of Pearson Correlation Coefficient of different cells as the
detection consistency of our sequencing method to Smart-
Seq2 method (ρ) as follows:

ρc =
∑n

i=1 (xc,i − x̄)
(

x̂c,i − x̂
)

√∑n
i=1 (xc,i − x̄)2 ∑n

j=1

(
x̄c, j − x̂

)2

ρ =
∑m

c=1 ρc

m

Parallel comprehensive model on large dataset. We col-
lected data of 5063 single cells from NCBI (GSE98638) and
then excluded unqualified single cells followed the origi-
nal paper for downstream analysis. To implement a paral-
lel model, we first constructed Mi . To implement parallel
scheme, we partitioned original expression profile by rows
into sub groups of cells’ expression profile Xi , whose row
number equals the column number of Mi . The row num-
ber of Mi is the number of cells in each block, and column
number is the number of pools in each block. Among them,
the number of rows in each Mi is 500 (563 in Mn, n = 10),
and the number of columns is 158 (178 in M10). Each block
was then computed using same scheme as the two datasets
above. Finally, we merged all recovered X̂i by rows to form
the SCEP. For classification visualization, we chose 4034
cells from original dataset, which contains all NTC, PTC,

TTC, NTH, PTH, TTH, NTR, PTR and TTR cells in the
dataset.

The 53 760 cells’ expression data of 7 mice were collected
from https://doi.org/10.6084/m9.figshare.5829687.v7, and
these cells were sorted by FACS and sequenced with Smart-
Seq2 from 20 organs (14). Same as the processing procedure
of the article, we removed low-quality data, and 45 432 cells
passed a QC cutoff of at least 500 genes and 50 000 counts.
Genes that were not expressed in all cells were removed. We
constructed Mi with 500 rows, and segmented the expres-
sion profile X by one for every 500 rows. The Mi here is
500 × 250, and Mn is 423 × 200 (n = 91). For the sake of
simplifying the experimental operations, set p = 0.3. Af-
ter each block was calculated, all of the blocks were merged.
Due to the large differences within each organ type, cells of
each type were clustered before inference to obtain a better
cell sequence for final visualization.

SINGLE CELL SEQUENCING EXPERIMENT

Preparation and culture of cells

In this study, all plastic and glass consumables were prop-
erly sterilized, dried and UV-treated before use. A dedicated
set of pipettors were cleaned with ethanol (Sigma Aldrich)
every time before experiments. Especially in the experiments
involving RNA, all work surfaces, pipettors and equipment
were cleaned by RNaseZapTM (invitrogen) and rinse off
with RNase-free water in advance, and all the disposable
tubes are pretreated with 0.1% DEPC. All reagents were
vortexed and spun briefly before use. Nuclease-free water
(Ambion) was used in all experiments. Room temperature
was kept at 25◦C using an air conditioner during experi-
ments.

Cell line GM12878 was purchased from Coriell Institute,
and cell line HEL, U-937, HMy2.CIR, CEM/C1, HL-60
and Ramos were purchased from American Type Culture
Collection (ATCC). Cells were cultured as the instruction
on the corresponding official website (Coriell Institute and
ATCC).

Single cell isolation and library construction

The cultured cells were washed and resuspended in PBS
(Mg2+ and Ca2+ free). Single cells were isolated by gen-
tly mouth pipetting into RNase-free tubes, then treated by
SMART-Seq HT Kit (Takara), which is based on Smart-
seq2 technology. Single cells were first lysed and then per-
formed one-step first-strand cDNA synthesis and ds cDNA
amplification in a thermal cycler. It is worth mentioning
that the temperature cycles used in this verifying experi-
ment are 23, which is higher than the recommended cycling

https://doi.org/10.6084/m9.figshare.5829687.v7
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number in manual (17–18 cycles). Because cDNA samples
would be separated into two parts, one for subsampling by
measurement matrix and one for conventional Smart-seq2
protocols as contrast, we increased cycles to ensure suf-
ficient yield of cDNA. But when applying our single cell
RNA compressed sequencing in real cases, since there is
no need for extra cDNA sequencing by traditional meth-
ods as contrast, cycling number can be set as recommended
in manual. The amplified cDNA was then purified using the
Agencourt AMPure XP Kit and checked the quality by Ag-
ilent 2100 Bioanalyzer and Qubit fluorometer. The cDNA
of 54 single cells was passed the validation. Part of purified
cDNA was then prepared for sequencing library accord-
ing to manual as traditional Smart-Seq2 method. The other
cDNAs were subsampled into pools for the compressed se-
quencing.

cDNA subsampling and sequencing

A measurement matrix M with dimensions of
40(pool number ) × 54(cell number ) was generated in
the same way we did in the computational simulation.
If Mi j = 1, 4 ng cDNA from cell j will be subsampled
into pool i , otherwise if Mi j = 0, cDNA from cell j will
not be added to pool i . The mass of cDNA defined as a
portion was calculated by the content of cDNA left after
Smart-Seq2 library construction to make sure that cDNA
of all single cells was sufficient for subsampling. After
subsampling, 40 pools were prepared into sequencing
libraries. The libraries of 54 single cells and 40 subsampled
pools were then sequenced on HiSeq XTen using 2 × 150
paired-end reads.

Read alignments and gene-expression estimation

Qualified sequencing reads from 54 cells and 40 pools were
aligned to human (hg19) reference genome using STAR
with default settings (39). Gene expression was calculated
as TPM values for each transcript using RSEM (40). Gene
expression matrix of 54 cells by Smart-Seq2 method could
be directly acquired by RSEM results. To make sure gene
expression values in 40 pools are comparable to them of 54
cells, we chose TPM value to normalize gene length and se-
quencing depth as comprehensive as possible. For sequenc-
ing data of pools, since several cells equally share the depth
of a pool (the mass of each subsampled single cell cDNA is
the same), the real depth of each single cells in this pool is
the depth divided by the number of cells. To recover their
depth to the same level of Smart-Seq2 data, an additional
normalization step should be conducted as follows.

YT PM = diag
(

1
rowsum (M)

)
MXT PM

Mnormali zed = diag
(

1
rowsum (M)

)
M

It is noteworthy that we don’t need this normalization
step in computational simulation because we obtain com-
pressive measurements Y there by matrix multiplication.
Then X̂T PM was solved by CS method from YT PM and

Mnormali zed . Because the samples we used were all human
immune cells and most of them have certain diseases, we
assumed that their gene expression are active and the spar-
sity of gene expression matrix is low. The non-zero value of
the matrix accounts for 29.97%, which supports this con-
clusion. Here, we first performed CS inference using all of
the 40 pools, and then we randomly selected 28 pools from
40 pools to further test the performance of the algorithm.
We compared X̂T PM with XT PM from Smart-Seq2 method
in terms of gene detection sensitivity and consistency. Con-
sidering rounding errors resulted from floating point oper-
ations and biological significance of TPM values, we con-
sidered genes whose TPM values were below 0.001 as unex-
pressed or undetected genes, and compared the number of
genes detected by different methods as gene detection sensi-
tivity. The detection consistency was calculated as the same
equation in computational simulation part by Pearson Cor-
relation Coefficient.

RESULTS

Framework of Compressed sensing strategy

Compressibility of single cell expression data: theoretical ba-
sis. The application premise of compressed sensing theory
is that the original signal is sparse. In practice, as long as
the signal approximately satisfies the sparsity, that is, most
of the values tend to zero, the signal can be considered as
compressible and can be subsampled (41). As mentioned
above, many zero values constitute SCEP into zero-flated
data. Hence, the sparse feature of SCEP makes it suitable
for the theoretical framework of compressed sensing.

In addition, the existence of relevancies among data is a
major prerequisite for its compressibility. Regulatory mod-
ules in gene expression data have been proved and stud-
ied in many articles, which is due to the existence of co-
expressed genes (42). They are co-regulated by certain tran-
scription factors, expressed or silenced (43). To some extent,
these modules bring a certain degree of data redundancy
and further provide opportunities for the compression of
single cell expression data. Some studies have utilized these
modules to infer module activities and further ‘decompress’
or ‘reconstruction’ the expression level of individual genes
(32,44,45).

Here, we deem the compressibility of single cell expres-
sion data also closely related to the heterogeneity level be-
tween samples in the dataset. If the characteristic genes of
each type of cells differ considerably, there will be more pro-
truding features for signal recognition. When compressing,
it can better target at the less important ‘redundancy’, and
more accurately grasp the significant information that can
distinguish the data when restoring. For instance, the two
datasets we use below vary in sparsity degree with differ-
ent heterogeneity levels. Supplementary descriptions of this
part can be found in the Materials and Methods section.

From grouping idea to solving linear equation: model design.
To find a systematic approach to achieve compressed sam-
pling and reduce library usage, we learned the idea of group
testing method, dividing all cells into overlapped groups.
The ‘overlapped’ here means that a single cell appears in
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different pools, and one pool contains a group of cells. This
overlapping fashion utilizes the same cell as an information
bridge and can reduce the tests by cross information. Equa-
tion (1) is a representation of the theoretical model for our
method (Figure 1A):

Yp×g = Mp×c × X̂c×g (1)

Among them, M ∈ R
p×c stands for the measurement ma-

trix, a known matrix generated by computer in computa-
tional simulation. In single cell practice, since pooling (or
grouping) is the central idea of our method, we designed
the matrix M artificially to divide different cells into dif-
ferent pools. In the basic scenario, M = {mi j } is a binary
p × c matrix, where p indicates the number of pools which
equals the number of library we will use, and c represents the
number of cells. Accordingly, mi j = 1 if and only if i th pool
contains j th cell (Figure 1A). Pools are designed according
to the M matrix first, and then sequenced using NGS tech-
nology. Y ∈ R

p×g represents the observation data, which is
the sequencing results of sub-sampling samples by pools.
X̂ ∈ R

c×g represents the inferred expression matrix, the de-
sired SCEP, where g is the number of genes detected. Sup-
pose the original SCEP is X ∈ R

c×g, then Y: j = M × X̂: j
can be easily interpreted as: we get Y: j (a compressed for-
mat of gene j ’s expression profile) by using a combination
of detectors M to overserve the SCEP X̂: j (original format
of gene j ’s expression profile). To sum up, by means of com-
bining the observed Y and the measurement matrix M to
solve equation (1), the initial SCEP X can be reconstructed
as X̂.

Experimentally, since every single cell will be sequenced
many times, the aliquots of its cDNA amplification prod-
ucts can be used to represent the exact cell. Each pool in
M contains several cells, and each cell appears in different
pools (Figure 1B and C). Suppose we want to sequence 96
unique cells using the pooling strategy, we would first add
the amplification products of each cell into different wells
of a 96 well plate (Figure 1B), and then adopt a different
combination of different cells for each pool according to
the pool design (Figure 1C). For each pool, the required
cells are extracted into a test tube; next, one library is con-
structed for one tube and then sequence a whole tube at a
time.

Model solving: other descriptions. After the observed Y is
obtained by random sub-sampling, the restore of the origi-
nal data is an indispensable step in compressed sensing the-
ory. Our goal is to solve equation (1) effectively in high
accuracy with a properly designed M. In order to realize
the signal reconstruction, not only the original SCEP X
should be compressible, but also the measurement matrix
M needs to meet certain conditions. Restricted Isometry
Property (RIP) should be satisfied, which is equivalent with
the proviso that the measurement matrix is not interrelated
to the sparse representation base. To achieve this, our con-
structed M needs to be as random as possible. The require-
ments on M can be relaxed if we just want a silhouette of
the SCEP.

Mathematically, the ill-conditioned linear equation (1) (p
is usually much less than c, which meets our needs to use less

library) has infinite answers. However, compressed sensing
can help to solve this equation when X is sparse. In order to
restore the original X without overfitting, certain regular-
ization requirements should be meet on the boundary con-
ditions of equation (1). This is an optimization problem of
the minimum �0 norm. However, it is an NP-C problem, so
it is difficult to be solved directly. Usually, it is converted
to the minimum �p norm to solve. In this paper, consider-
ing the different sparsity characteristics of sample matrix,
we applied two different regularization models, Basis Pur-
suit model (�1 norm) and Ridge Regression model (�2 norm)
for data inference. �1 regularization is inclined to get sparse
solutions, while �2 norm can make the solutions smoother,
close to but not zero. The adaptability and effectiveness of
these two models are compared and evaluated.

In silico simulation of compressed sensing strategy

Inference of data with high sparsity. We first applied com-
pressed sensing method on dataset1 (GSE73727) to evaluate
the recovery ability. This dataset contains 7 types of cells,
making up a total of 64 cells. After statistical analysis, we
decided dataset1 a relatively sparse matrix (Supplementary
Figure S1).

We inferred the primary SCEP and applied three mea-
surements to visualize and evaluate the performance:

(1) Mean Pearson correlation for 64 cells between the orig-
inal SCEP and the inferred one. Two regularization
models were used to complete the reconstruction, Ba-
sis Pursuit model and Ridge Regression model, to com-
pare their restore accuracy.

(2) A heat map of correlation for 64 cells, original and in-
ferred, in a certain circumstance.

(3) Correlations between the inferred genes and original
genes, ranked by their sparsity level and expression
value.

As expected, the overall correlation calculated between
the reconstruction result and the original dataset rises with
the increment of the pool number due to the increase in sam-
pling times (Figure 2A). Meanwhile, as the perturbation in-
creases, the correlation coefficient gradually decreases, and
the dispersion of the result under random repetition ex-
pands. For these two models, when the pool number is large,
the effect of reconstruction using Basis Pursuit model is nor-
mally better than that of using Ridge Regression model.
The reduction effect of pool number under 20 is too low
for practical applications. At the same time, it can be no-
ticed that when the perturbation increases, the advantage
of using Basis Pursuit model gradually falls because Ridge
Regression model is more robust to perturbation. Under 0.6
turbulence, we can see that Ridge Regression performs bet-
ter in every pool condition.

It’s worth noting that when the pool is set to 35, the mean
Pearson correlation can still reach 0.908 (Basis Pursuit),
which can save nearly half of the cost (29/64) of sample se-
quencing and library construction. And in general, using 35
pools can capture most information which is highly coher-
ent with original data, visualized by heat map (Figure 2B).
Every types of cells can be distinguished explicitly. A low-
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Figure 1. Objection overview illustration. (A) Illustration of pool strategy for single cell expression profile inference. The M matrix is pool-cell matrix,
which is overlapped. In this example, 22 cells are designated into 4 pools. M11 is painted means pool1 contains cell1. Y is pool-gene matrix, which is the
expression level for each pool after sequencing. Different shades represent different levels. X is cell-gene matrix, that we want to infer from Y and M. It is
usually sparse among most genes. (B) Illustration of pooling strategy, same amount of amplification products of each cell is extracted into pools. (C) In the
middle, different masks on the 96-well plate represent different cell group in each pool. Each plate is an 8 × 12 matrix, on the right is a long one-dimensional
vector with length of 96. It contains value zero (unpainted) and one (painted) indicating how to choose cells for each pool. On the left, a grouping-based
sequencing result for each pool.

dimensional embedding representation for 64 cells (t-SNE)
can also prove the results of the cell classification (Supple-
mentary Figure S2A).

The restore performance of each gene can be seen in Sup-
plementary Figure S4A. Consistent with the characteristics
of �1 regularization, we find that those genes expressed in
fewer cells (this value defines sparsity level, that is, the fewer
cells a gene is expressed in, the higher its sparsity level is)
show great inference results, and their correlations with the
original data almost reach 1. On the contrary, the reduction
effect of dense genes expressed in most cells is mediocre. As
the gene expression values (the accumulation of expression
values in all cells) increase, their correlations gradually de-
crease from close to 1 to around 0.8, telling the same trend
as ranked by sparsity level. Fortunately, we are more con-
cerned with genes that are specifically expressed in certain
cells or cell types than housekeeping genes.

Reconstruction of data with low sparsity. In order to probe
which regulation model is more suitable for a less sparse
dataset, we selected another 64-cell single-cell dataset2 (in
contrast to dataset1) as the experimental data, including

six cell types (GSE98638). The statistical data indicate that
dataset2 has a low degree of sparsity (Supplementary Fig-
ure S1).

As with dataset1, we performed SCEP recovery and the
identical measurements to visualize and evaluate the regres-
sion performance. Differently, it can be seen from Figure 3A
that the inference effect of dataset2 by Ridge Regression
model is generally better than Basis Pursuit model in any
condition, with the correlation coefficient reaching more
than 0.85. The dispersion of the results is slightly affected
by pool number (sampling times) and remains almost un-
changed under 50 random simulations, indicating that the
inference effect of Ridge Regression model is credibly sta-
ble. From the perspective of perturbation, Ridge Regression
model also has a superior robustness. When the disturbance
value is between 0 and 0.4, the difference of correlation co-
efficient results is very small, which may be related to the
consideration of noise in data in the optimization part of
Ridge Regression model.

Because of the little difference between the cells in
dataset2, distinguishing them by their expression character-
istics is a more difficult job. Seen from heat map result, the
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Figure 2. Simulation results of dataset1. (A) Mean Pearson correlation for cells in dataset1 between original and inferred SCEP with the Basis Pursuit
model and the Ridge Regression model and with different pool numbers under different error perturbations. Repeat = 50, the error bar represents the
standard deviation of the data. (B) A heat map of correlation for 64 islet cells between original data and its inference by Basis Pursuit model. 35 pools were
used, no turbulence.

Figure 3. Simulation results of dataset2. (A) Mean Pearson correlation for cells in dataset2 between original and inferred SCEP with the Basis Pursuit
model and the Ridge Regression model and with different pool numbers under different error perturbations. Repeat = 50, the error bar represents the
standard deviation of the data. (B) A heat map of correlation for 64 lymphocytes between original data and its inference by Ridge Regression model. 35
pools were used, no turbulence.

inferred SCEP using equally 35 pools can generally separate
these cells into their own clusters, which is basically consis-
tent with the original SCEP, especially PTC and TTH (Fig-
ure 3B). More sampling times are needed to present a fine
t-SNE result (Supplementary Figure S2B).

Compared with violin plots of dataset1, as the sparsity
level declines and the expression value rises, the correlations
of genes in dataset2 show the similar downward trend (Sup-
plementary Figure S4B). The difference is that, although
the sparse genes’ correlation of dataset2 is not as high as
that of dataset1, its overall situation is more stable. Further-
more, dense genes in dataset2 perform better, with a median
correlation only a bit lower than 0.8. The nature of �2 reg-
ularization to choose more non-zero features may provide
explanations for these results.

Overall, these results for two datasets showed that by us-
ing compressed sensing method to subsampled expression
matrix, people can successfully infer SCEP with high accu-
racy when pool number meets and regularization model fits.
For data with high sparsity, Basis Pursuit model has a bet-
ter inference performance, while Ridge Regression model is
more suitable for data with low sparsity, and it is also more
robust to disturbances. Therefore, we achieved the goal to
cut down the library cost nearly twice. Though only half of
the cost was cut down and more experimental efforts were
paid, the merit of our approach will be amplified when deal-
ing with much more cells. However, challenges are still re-
mained for recovering dataset with an enormous scale of
single cells. Next, we will extend this method to tackle both
problems.
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Parallel comprehensive model on large dataset. We focused
on a dataset with 5063 T cells isolated from different tis-
sues of liver cancer patients (GSE98638) as a showcase. Our
comprehensive parallel model was applied on these cells us-
ing the same reconstruct strategy as dataset1 and dataset2.

In calculation process, since Ridge Regression model can
be solved based on analytical solutions and does not require
iterative approximation, its calculation speed is significantly
superior to that of Basis Pursuit model, gaining advantages
in the calculation of large amounts of single-cell transcrip-
tome data.

We manipulated the simulation from 1600 pools which
is over three times less than 5063 libraries as before. To
achieve the goal of reducing calculating time and increase
the inference accuracy, we divided the original SCEP into
small blocks (500 cells per block, 10 blocks in total) in-
stead of building a large conversion matrix, and restored
each block using the previous strategy in parallel, and fi-
nally merged all the restored results together. For better
visualization, 4034 cells were selected from the 5063-cell
dataset.

As illustrated in Figure 4A, over 75% cells have correla-
tion coefficients over 0.80 with their inferences, which accu-
mulate around 3200 cells. In addition, our model success-
fully distinguished nine different cell types by using only
sparse genes (Figure 4B). Each type of cells shows different
expression features, which proves that most of the informa-
tion of original data can already be obtained by using only
1600 pools in experiment.

Next, to explore the application value of this paral-
lel model on a much larger dataset, we selected a larger
dataset with a scale of 53 760 cells (14). This dataset con-
tains approximately 10 times the amount of data in the
previous dataset, and its characteristics are different from
the expression profile of human cells, since its data come
from 20 types of mouse organs. After removing the low-
quality cells, we obtained a 45 423-cell SCEP. After ob-
taining the inferred SCEP (22 700 pools used), we also ob-
served the heat map and violin plot made from the correla-
tion values of all cells and compared them with Figure 4A
and B.

According to Figure 4C, we can see that the inferred cor-
relations of the vast majority of cells are close to 1, and more
than 75% of the cells have correlations >0.95. Meanwhile,
Figure 4D also shows the expression patterns of each type
of cells, and the diagonal lines are clearly visible, which is
similar to the results in Figure 4B. This result indicates that
the original SCEP can be roughly restored with half of the
cell number, which is of guiding significance for large-scale
single cell sequencing experiments.

In practical experiments, we can use this parallel idea to
group cells first. Combine the difficulty of operations with
the overall number of cells to determine the number of cells
in each group, such as 100 to 500 cells per group. For each
group of cells, implement mixing and sequencing opera-
tions, and perform compressed sensing inference. Experi-
ments of these groups can be carried out simultaneously
and finally the obtained results will be combined. In this
way, processing large-scale cells will become feasible.

In vitro verification experiment of compressed sensing strat-
egy

After computer simulation, we carried out practical ex-
periments to test the feasibility of our method. For
stress testing, we cultivated 54 human immune cells (7
cell types with small differences) as experimental sam-
ples and obtained corresponding cDNA samples. Accord-
ing to the compressed sensing measurement matrix gener-
ated by the computer, we subsampled and mixed the sam-
ples to obtain 40 cDNA mixing pools. Finally, 54 single
cell samples and 40 sub-sampling mixed pools were se-
quenced. We performed bioinformatics processing on the
scRNA-seq data and obtained 54 single-cell samples with
high mapping rates, with an average of 93.40%. After
TPM normalization of the gene expression matrix, we re-
moved the genes expressed in none of the cells, and got
21 375 genes remained. The alignment rates of the 40-
pool data were higher and their fluctuations were little,
with an average of 97.44%. TPM normalization was also
performed.

After inspection, we found this dataset had low spar-
sity (Supplementary Figure S3A), and the distribution of
genes with different sparsity levels also shows its closeness
to the profile of dataset2 (Supplementary Figure S5). This
result manifested that the subsampled data in this exper-
iment were more suitable for Ridge Regression model to
infer the original expression profile. After successful infer-
ence with 40 pools (Figure 5C), we extracted 28 pools ran-
domly from 40 pools for inference to test the possibility of
reducing more cost using this method. Genes with a sum
of TPM value <0.001 were removed, with a total of 18 245
genes obtained. After compressed sensing reconstruction by
Ridge Regression model, we obtained the inferred SCEP of
54 cells with a 54 × 18 245 matrix. Compared with the tra-
ditional Smart-seq2 result (dimension 54 × 21 375), there
were 3130 genes less, accounting for 14.64%. In addition, we
set the expression values of genes whose TPM value is <5 to
0 to ensure the accuracy, and finally got the median of the
expressed gene number per cell as 6678. In summary, in this
experiment, the genes detected in total reached 85.36% of
that of the traditional Smart-seq2 method, and only 1.82%
of the undetected genes were genes with TPM values >1
(Figure 5A).

The inferred SCEP obtained by Ridge Regression recon-
struction was compared with SCEP by Smart-seq2, and the
cell-to-cell correlations were visualized (Figure 5B). The av-
erage coefficient of 54 cells’ correlation is 0.875, with a me-
dian of 0.892. Besides, the standard deviation of the data
is only 0.069. SCEP reconstruction was also carried out
using the Basis Pursuit model, and it was found that its
correlation with Smart-seq2 SCEP was significantly lower
than that of the Ridge Regression model, even if 40 pools
were used, and the former degree of dispersion is high
(Figure 5B).

As with the verification measurements above, we exam-
ined the performance of reconstruction by drawing a heat
map of the Pearson correlation between Smart-seq2 and
inferred SCEP. As Figure 5D displayed, the numerical re-
sults for each cell of inferred results using Ridge Regres-
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Figure 4. Visualization of the inference performance for large dataset. (A) The correlation distribution diagram of using the Ridge Regression model
to infer original 4034 cells expression profile. (B) Pearson correlation heat map between 4034 cells and their inferences. (C) The correlation distribution
diagram of using the Ridge Regression model to infer original 45 423 cells expression profile. (D) Pearson correlation heat map between 45 423 cells and
their inferences.

sion model is generally similar to the traditional scRNA-
seq results, with high correlation coefficients on the diago-
nal. Furthermore, some cells can already distinguish their
cell types, such as CEM/C1 and HL60 cells. Judging from
the performance of gene reconstruction, the results are ac-
ceptable (Supplementary Figure S4C). We can observe that
most of the results are consistent with the simulation results
of dataset2, but the overall median values of the correlation
coefficients are lower. Emphasis should be placed on the
sparse or low-expressed genes in experimental data. Their
correlations between primary genes are not high, which is
most likely resulting from perturbations in the experimental
process, such as sample contamination and mRNA degra-
dation. Due to their specificities, measurement errors on
them will affect the inference results to a greater extent. Cor-
respondingly, genes ranked 20–40% perform best, reaching
a median value close to 0.7. When the number of pools
reaches 20, the overall correlation shows more errors, and
the inferred cell identities are unauthentic to believe (Sup-
plementary Figure S3B). Based on these results, we believe

28 a reliable pool number, indicating nearly half of the li-
brary cost save.

Given the above, using compressed sensing strategy for
scRNA-seq has high gene detection sensitivity and SCEP
inference accuracy. Not only in computational simulations,
but also in real experiment operations, this method proved
its feasibility. Because of the stability fluctuation and var-
ious constraints in practical operations, Ridge Regression
model has more application value in most cases and es-
pecially real single cell experiments. In addition, normal-
ization of data is also necessary for this strategy in prac-
tical. We must be clear that the pool expression values we
sequenced display the sum of all single cell expression in
the pool. As speculated, in the experiment of our study,
Ridge Regression method is more suitable for the inference
of SCEP. Moreover, through this strategy, we can save a lot
of library cost and data processing time, source the iden-
tities of cells and even predict the disturbance level of the
scRNA-seq data, which has a wide range of application
prospects.
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Figure 5. In vitro verification results with experimental data. (A) The gene distribution diagram of SCEP by original results and inferred results (the x-axis
is ordered by the sum of TPM value for each gene, and the y-axis represents the percentage of the number of genes in the total 21 375 genes). (B) The
correlation distribution diagram, a comparison of Ridge Regression with 28 and 40 pools, and Basis Pursuit model with 40 pools. (C and D) A heat map
of correlation for 54 lymphocytes between original results and inferred results. Ridge Regression model, 40 and 28 pools used respectively.

DISCUSSION

In this study, we explored the compressibility of single-cell
expression data. In addition to mathematical modeling and
computer simulation, we proved through experiments that
the SCEP directly obtained from data collection can be
compressed from the perspective of cells. To achieve this
process, we compressed sampled the expression profile by
overlapped pooling strategy and inferred original signals
using compressed sensing theory. Here, we listed some im-
portant thoughts on this framework.

We believe that the proposal of this approach is instruc-
tive in certain respects. In the first place, by using Smart-
seq2 protocol, our results retain the identity information of
each sample and guarantee high gene detection sensitivity,
which massive droplet-based methods cannot do; we can
tell the expression information of each cell, which indicates
that this method is useful for areas such as spatial transcrip-
tomics. Moreover, given that highly varied genes contain the
most crucial information for classification, the recovery per-
formance of our method for such genes has been able to
capture the structural gist of the original profile. Finally, at
the most basic level, we reduced the number of libraries by
nearly half, which may save a mass of money when sam-
ple size is large. From the financial perspective, our method
may be an economic alternative to these plate-based single
cell sequencing methods.

For this method, the comparison of the two regulariza-
tion models in compressed sensing algorithm played an in-
dispensable role. Through two different types of datasets,
we found these two models have their own advantages and
are suitable for different scenarios. In principle, for datasets
with high sparsity, choosing Basis Pursuit model (�1 reg-
ularization) will get better solutions, yet Ridge Regression
model (�2 regularization) performs better when the spar-
sity is low. At the same time, Ridge Regression model ex-
hibits better robustness under turbulences, so it can be more
suitable for most situations, just like our experimental re-
sults demonstrated. In fact, In the scenario of scRNA-
seq, many inevitable disturbances will be introduced during
sample loading manually and cDNA degrading naturally.
Therefore, the expression matrix of single cells is difficult
to be really sparse, leading to inaccurate numerical solu-
tions. As seen from Supplementary Figure S5, dataset with
high sparseness contains most genes expressed in few cells
and almost no genes expressed in all cells, showing a per-
fect descending distribution curve, whereas our experiment
data shows a rise in dense genes proportion. We recommend
that a small-scale sampled sequencing can be performed to
roughly predict the overall sparsity level before implement-
ing CS strategy on new samples.

Though the cell correlation between our results and orig-
inal data keeps at a high level, the CS strategy still comes
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with limitations in real experiments. (i) Experimental mea-
surements will inevitably include noise. Whether in the pro-
cess of mixing cells or sequencing, the emergence of errors
will exert a certain impact on the accuracy of the inference
model. There is always a trade-off between numeric preci-
sion and experimental efforts. This is also the case when
we want to increase the number of pools for better per-
formance. The automatic sampling systems might relieve
this dilemma between performance and experimental ef-
forts in the future, and also providing more possibilities for
large-scale experiments. (ii) Since the current design is not
exquisite enough, the frame itself contains systematic er-
rors. First, SCEP shows a negative binomial distribution
whereas our methods model the data as the prior distribu-
tions of regularization models. Second, due to the restric-
tion of compressed sensing algorithm, it is difficult to ac-
curately restore the expression level of dense genes without
any reference or assumption. Besides, information loss dur-
ing decompressing results in data distortion to a certain ex-
tent, while the process of regularization tends to make the
solutions of linear equations more ‘averaged’, which may be
the main reason for the inaccuracy.

For future improvements, we envisage changes in the
following directions. Similar with co-regulated genes, cells
from same individuals, tissues or positions, or with similar
phenotypes display similar expression patterns. If the de-
pendencies between cells could be used to form cell modules
that serve as pre-information for low rank compressed sens-
ing recovery, it might lead to better performance of dense
genes recovery, or require less overlapped pools for sequenc-
ing. Meanwhile, optimization of the algorithm is necessary
before our method can be widely used, such as employing
superior regularization models.

To sum up, SCEP analysis is an emerging and exciting
area to explore with its intrinsic features like sparsity. These
features, in turn, bring opportunities and challenges, requir-
ing novel statistical and computational methods. Based on
the sparse feature of scRNA-seq data, our work offered a
comprehensive study on inferring the original signals from
the compressed sampled expression profile. This framework
may provide a technical guide to other datasets of biologi-
cal information with similar structures, including data from
proteomics, lipidomics and metabolomics, etc. We believe
that more works in this area are enthusiastically to be seen
for the coming years.
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