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Abstract

The accurate detection of ultralow allele frequency variants in DNA samples is of interest in

both research and medical settings, particularly in liquid biopsies where cancer mutational

status is monitored from circulating DNA. Next-generation sequencing (NGS) technologies

employing molecular barcoding have shown promise but significant sensitivity and specific-

ity improvements are still needed to detect mutations in a majority of patients before the

metastatic stage. To address this we present analytical validation data for ERASE-Seq

(Elimination of Recurrent Artifacts and Stochastic Errors), a method for accurate and sensi-

tive detection of ultralow frequency DNA variants in NGS data. ERASE-Seq differs from pre-

vious methods by creating a robust statistical framework to utilize technical replicates in

conjunction with background error modeling, providing a 10 to 100-fold reduction in false

positive rates compared to published molecular barcoding methods. ERASE-Seq was

tested using spiked human DNA mixtures with clinically realistic DNA input quantities to

detect SNVs and indels between 0.05% and 1% allele frequency, the range commonly

found in liquid biopsy samples. Variants were detected with greater than 90% sensitivity and

a false positive rate below 0.1 calls per 10,000 possible variants. The approach represents a

significant performance improvement compared to molecular barcoding methods and does

not require changing molecular reagents.

Introduction

Next-generation sequencing (NGS) has opened the door to personalized medicine by drasti-

cally reducing the time and cost required to assess an individual’s nucleic acid composition[1].

This has allowed for the successful identification of germline mutations relevant to inherited

genetic disorders[2], cancer predisposition[3], and drug sensitivity[4] among others. It has

also provided a means of monitoring tumor material for somatic mutations, providing

physicians with crucial information that can guide the course of treatment[5]. The massive

read numbers produced by NGS technologies also provide the possibility to look with
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unprecedented depth into a biological sample, identifying low frequency DNA variants buried

at fractions of a percent relative to a wild-type background. One promising application is the

liquid biopsy for cancer detection and monitoring which allows for the identification of clini-

cally actionable somatic variants from blood samples, circumventing the need for expensive

and invasive repeat tissue biopsies[6–8].

The ability to leverage the high sequence depth provided by NGS instruments to accurately

identify ultralow frequency mutations has been technically problematic due to errors intro-

duced by both library preparation and sequencing chemistries[9]. Common bioinformatics

workflows utilize metrics such as base quality, read depth, allele frequency, and strand-bias to

eliminate the most salient errors in NGS data[10, 11] allowing sensitive and specific variant

identification down to 2–5% allele frequency (AF). This has provided a sound methodology

for identifying somatic mutations from solid tumor biopsies[5]. However, the cell free DNA

obtained in liquid biopsy samples often harbors somatic mutations in the 0.01–1% range[6–8,

12], requiring specialized molecular protocols and algorithms designed to systematically

reduce error rates. Molecular barcoding has shown promise in drastically lowering the limit of

detection for variants in NGS data. However, the proof of principle experiments demonstrat-

ing high accuracy at ultralow allele frequencies have required extremely high read depths and

DNA inputs while demonstrating efficacy only over very small genomic regions[13, 14]. Prac-

tical attempts to apply this technology to larger clinically relevant sequence spaces have not

attained the same performance[15, 16], showing loss of accuracy in the 0.5–2% AF range. A

notable exception is the CAPP-Seq iDES method that combines barcoding with a background-

aware caller and provides excellent sensitivity to below 0.1%, however high specificity is sacri-

ficed and false positive counts are kept low by confining variant tests to a tiny fraction of the

panel[17]. While several cfDNA based tests have been commercialized, significant questions

remain as to their fidelity in detecting tumor biopsy variants and agreement across different

tests is low [18–20], demonstrating the need for tests with increased sensitivity an ddecreased

false positive rates.

In the work presented here we apply a new approach to ultralow frequency variant detec-

tion. ERASE-Seq combines the power of technical replication with background-aware variant

calling (Fig 1) to achieve high-resolution DNA variant calls to below 0.1% allele frequency in

highly multiplexed amplicon panels. The basis of our method is elimination of the two major

categories of false positives in NGS low frequency variant data: recurrent artifacts and stochas-

tic errors. Recurrent artifacts occur at error-prone loci that are predisposed to base misincor-

poration either during library prep or sequencing[21, 22]. ERASE-Seq utilizes a set of wild-

type control DNA technical replicates that have undergone library prep and sequencing to

quantify the error background for each variant across the multiplexed amplicon panel. Sto-

chastic errors also occur during the library preparation and sequencing processes, especially

below 0.5% allele frequency. These occur randomly throughout the sequencing space as a

function of polymerase error rates[9, 13]. Consequently, they can only be eliminated using

technical replication, and we observe decreasing false positive rates with increasing replicate

number. ERASE-Seq brings these two error elimination strategies together by employing a sta-

tistical test between count values in sample and reference replicates for each observed variant

(Fig 1). Recurrent artifacts are eliminated due to their presence in reference replicates, and sto-

chastic errors by their inconsistent signal in sample replicates (Fig 1). We demonstrate the abil-

ity of ERASE-Seq to accurately detect low frequency SNVs and indels on three different highly

multiplexed oncology amplicon panels: 56G (Swift Biosciences), TST15 (Illumina), and Spot-

light 59 (Fluxion Biosciences). Our data show perfect sensitivity and specificity to 0.3% allele

frequency and maintain high performance below 0.1%. We analyze the composition of false

positive calls using standard methodologies in terms of recurrent versus stochastic errors and
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show the ability of ERASE-Seq to eliminate these errors. ERASE-Seq represents a significant

performance improvement compared to published molecular barcoding strategies sequenced

to similar depth and in contrast to molecular barcoding ERASE-Seq can be deployed using

existing molecular workflows.

Materials and methods

Analytical sample creation

Spiked samples were created by combining DNA from multiple human cell lines. Whole geno-

mic DNA derived from B-lymphocytes was purchased from Coriell Institute corresponding to

samples NA12878 and NA19129. Additionally, whole genomic DNA was extracted from cul-

tured tumor cells lines A549, NCI-H1975, and MDA-MB-231 (ATCC) using the Qiagen

DNeasy Blood and Tissue Kit (catalog number 69504) followed by qPCR quantification using

the ThermoFisher RNase P assay (catalog number 4316831). NA19129 was used as the back-

ground sample into which the other four samples were spiked. Two different spike levels were

created based on DNA concentrations. A projected 1% spike sample was created such that

Fig 1. ERASE-Seq concept and method. (A) ERASE-Seq distinguishes true DNA variants from false positives by statistically comparing presence across a series

of sample and control technical replicates. False positives arising from recurrent artifacts at error-prone loci (blue squares) are eliminated based on their

presence in control replicates. False positives arising from stochastic errors (lined blue squares) are eliminated by inconsistent signal in sample replicates. This

allows highly precise detection of true positives (dark blue squares) in final variant calls. (B) The ERASE-Seq molecular workflow is easily applied to amplicon

panels by simply preparing and sequencing technical replicates of sample and control DNA in the same fashion they are already being used. Control DNA

replicates only need to be generated and sequenced once and can be reused with subsequent samples. (C) The ERASE-Seq bioinformatics workflow begins with

BAM file generation and processing of each library replicate. All base calls above a base quality threshold are used to create a pileup for each replicate.

ERASE-Seq software converts the replicate pileups to a data matrix representing quantized allele frequencies for each variant in each replicate. The variant data

matrix is analyzed using R in order to identify variants that are significantly enriched in sample versus control sequencing runs. These variants are then filtered

by strand bias and allele frequency to produce a final set of low frequency somatic variant calls in VCF format.

https://doi.org/10.1371/journal.pone.0195272.g001
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96% of the DNA mass corresponded to NA19129 and 1% corresponded to each of the

four spiked cell lines (S1 Fig). This sample was then diluted 3:1 with NA19129 such that a

projected 99% of the DNA corresponded to NA19129 and 0.25% corresponded to each of the

four spiked cell lines. A control sample of pure NA19129 was created in order to quantize the

error background for ERASE-Seq variant calling. Samples of pure NA12878, MDA-MB-231,

NCI-H1975, and A549 were created to determine true variants present in the cell lines.

Library preparation and sequencing

Spiked DNA samples and pure NA19129 DNA were used to create targeted amplicon panel

libraries followed by sequencing on Illumina machines. The projected 1% spike sample was

used as a template for four replicate multiplex PCR reactions using the 56G oncology panel

from Swift Biosciences. Pure NA19129 DNA was also used as a template for four replicate mul-

tiplex PCR reactions using the 56G panel. Single replicate libraries were made from pure cell

line DNA samples NA12878, MDA-MB-231, NCI-H1975, and A549. Manufacturer’s instruc-

tions were followed and 10ng of DNA was used as template for each multiplex PCR. These

libraries were then sequenced using the MiniSeq 2 x150 high output kit.

The projected 1% spike sample was used as a template for four replicate multiplex PCR

reactions using the TST15 oncology panel from Illumina. Pure NA19129 DNA was used as a

template for six replicate multiplex PCR reactions using the TST15 panel. Single replicate

libraries were made from pure cell line DNA samples NA12878, MDA-MB-231, NCI-H1975,

and A549. Manufacturer’s instructions were followed and 10ng of DNA was used as template

for each multiplex PCR. The TST15 panel consists of 2 tubes so in total 20ng of DNA was used

per replicate. Additionally, the projected 0.25% spike was used as a template for four replicate

multiplex PCR reactions using the TST15 panel. Manufacturer’s instructions were followed

with two exceptions. First, the DNA input was doubled from 10 to 20ng per multiplex PCR

and the number of cycles was reduced from 16 to 15. Second, the number of cycles in the

indexing PCR was reduced from 17 to 14. These libraries were then sequenced using the

MiSeq 2 x 300 v3 kit, but reads were stopped at cycle 151 on each end.

A second 0.25% spike sample was created and used as a template for four replicate multiplex

PCR reactions using the Spotlight 59 oncology panel from Fluxion Biosciences. Pure NA19129

DNA was also used as a template for eight replicate multiplex PCR reactions using the Spot-

light 59 panel. Manufacturer’s instructions were followed and 10ng of DNA was used as tem-

plate for each multiplex PCR. These libraries were then sequenced using the MiSeq 2 x 300 v3

kit, but reads were stopped at cycle 151 on each end.

Raw fastq files for all libraries are available in the NCBI SRA under BioProject Accession

Number PRJNA389733.

Expected variant determination

The analytical performance of ERASE-Seq was tested using standards created by spiking DNA

from cell lines A549, NCI-H1975, MDA-MB-231, and NA12878 into a background of

NA19129. To determine the expected variants across each panel, libraries were made and

sequenced using pure cell line DNA as input. This data was analyzed and germline variants

were determined for each cell line across each panel. To determine germline variants from

sequencing data, quality and strand-bias filtered pileups were searched for variant alleles at

>20% allele frequency. This cut-off provided clear resolution between false positives and true

germline variants and allowed identification of germline mutations expected at less that 50%

allele frequency due to polyploidies found in cancer cell lines. The expected variant set was

then defined as loci variant in one or more of the spiked cell lines, but wild-type in the
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NA19129 background. These expected variants were used to assess ERASE-Seq sensitivity and

specificity and are listed in S3, S4 and S5 Tables. 1 variant was excluded from analysis using

the TST15 panel due to poor coverage (7% of mean).

ERASE-Seq bioinformatics

For the 56G and Spotlight 59 panels primers were trimmed from raw fastq files using Cuta-

dapt[23]. For the TST15 panel primers were trimmed using custom Perl scripts. To test ERA-

SE-Seq performance at lower read depths, down-sampling was performed on fastq files using

custom Perl scripts to select a specified number of random reads. We found no performance

degradation above a read depth of 5,000x. Trimmed fastq files were aligned to hg19 using

BWA-mem[24]. For indel calling, base quality scores were recalibrated and indels realigned

using GATK[25]. Lofreq[11] was then used to create pile-ups of all quality-filtered base calls as

each position in the panel for all replicates from spike samples and background control sam-

ples. Custom Perl scripts were then used to parse pile-up data into a matrix containing read

counts for each sample and control replicate at each possible variant. The data matrix was then

processed in R using the DESeq[26] negative binomial test to quantify the significance of

enrichment between variant count observations in sample and control replicates.

ERASE-Seq exploits the DESeq statistical framework in order to model the probability that

a variant exists in sample versus control data. This framework has been demonstrated to pro-

vide high resolution in gene expression and copy number studies by accurately integrating rep-

licates from both treated and untreated groups and modeling shot noise present in NGS count

data using the negative binomial distribution[26]. A major innovation of ERASE-Seq is to con-

vert replicate variant call data into a matrix than can use this statistical framework, allowing

variant calls to be made based on a statistically robust integration of both intrasample technical

variation and intersample background artifacts.

ERASE-Seq uses this model to assign a p-value to each possible sample variant call as using

the DESeq method previously described[26] For each possible variant if the p-value is above a

cutoff/threshold α, then the null hypothesis is true and there is no mutation present in the

sample as compared to control runs. Conversely, if the null hypothesis is false, p-value < α,

then a mutation call is made for the variant in question. Whereas previously DESeq uses a p-

value threshold to determine the presence of a significant copy difference between sample and

control runs, here we use a similarly derived p-value threshold to determine the presence of a

mutated copy in the starting DNA sample with respect to controls runs.

Subsequently the Benjamini and Hochberg procedure[27] is applied to generate a multiple

hypothesis-adjusted p-value to correct for false positives that arise from performing the tens to

hundreds of thousands of variant tests across the complete amplicon panel space. The final

multiple hypothesis-adjusted p-value adjPi forms the basis for mutation identification. Custom

Perl scripts then integrate adjPi with strand-bias and allele frequency measurements to pro-

duce a final set of variant calls. Allele frequencies for each variant are calculated by taking the

mean of allele frequencies observed across all replicates. The strand bias measure used was (AF

strand 1/AF strand 2), called Strand Bias Factor. When this factor deviates from 1 in either

direction that is indicative of strand bias. In our experiments variants exhibiting a Strand Bias

Factor of magnitude > 5 were excluded. Precise adjPi and allele frequency thresholds used

depend on panel and desired limit of detection.

Sensitivity and specificity calculations

Sensitivity, specificity, and false positive rate are used to compare the performance of ERASE-

Seq with several published low frequency DNA variant detection approaches. These metrics
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are ideal because, unlike other measures like Positive Predictive Value, they are not dependent

on the number of true positives in the test sample and thus objectively quantify the perfor-

mance of the method itself. Sensitivity, or true positive rate, is defined as (True Positives)/

(True Positives + False Negatives) and expresses the ratio of known variants in the analytical

sample that were called by the method. Specificity is defined as (True Negatives)/(True Nega-

tives + False Positives), and expresses the ratio of alleles known not to be present in the sample

that are called as such. In some of the data we chose to instead show false positive rate, which

is 1- Specificity. This can also be defined as (False Positives)/(False Positives + True Negatives)

and represents the average likelihood that a variant will be called as present in the sample

when it is in fact absent. This is alternatively expressed as false positive calls per 10,000 variant

tests (False Positive Rate �10,000). These calculations were performed based on our own data

and compared to similarly computed metrics from published data to compare the techniques

listed in Table 1 and S1 Table.

ERASE-Seq is compared to molecular barcoding methods that have been implemented

over large target regions and have published performance metrics using analytical standards.

Methods that use barcoding alone begin to lose resolution below 1% allele frequency. Barcod-

ing methods that incorporate background modeling can provide sensitivity in the ultralow

range but do not demonstrate high specificity. Technical replication allows ERASE-Seq to pro-

vide high sensitivity and specificity in the ultralow allele frequency range.

ERASE-Seq, Lofreq2, and some of the molecular barcoding papers analyzed in this study

report numbers of false positives across the entire panel. In these cases, the total number of

variant tests used for our false positive rate calculations is equal to (Total Number of Base Pairs

in Panel)�(3 SNV Tests + 1 Indel Test). This is an approximation because the number of indel

tests performed varies by data set. False positive rate metrics are ideal because they characterize

the overall number of false positives that will be called per set number of variants considered.

If not normalized in this way, the absolute number of false positives will always depend on

both the overall panel size and the total number of possible variants considered (variant tests).

For example, in the analytical data reported for the iDES [12] method a set of only 279 prese-

lected negative control variants is tested (as opposed to all variants across the entire panel) to

determine their specificity, so in our comparison we use 279 as the number of variant tests to

determine their false positive rate. Data used to calculate false positive rates and sensitivity for

the techniques listed in Table 1 and S1 Table can be found in the following sources: Peng et al:

Table 1, Hiatt et al: Fig 4, Newman et al (2016): Fig 4a, Lanman et al: Results; Analytic specific-

ity and sensitivity.

Data for Lofreq2 was obtained by using the same bam files used for ERASE-Seq analysis.

These files were recalibrated for base quality and the indels were realigned according to GATK

best practices[25]. SNVs and indels were called using default lofreq2 parameters with a

Table 1. ERASE-Seq performance comparisons.

Detection Method Method Basis Allele Frequency

Range

Sensitivity False Positives per 10k Variant

Tests

ERASE-Seq Spotlight 59 Replicates and background modeling 0.1–0.5% 94% 0.1

ERASE-Seq TST15 Replicates and background modeling 0.07–1.3% 94% 0.7

Integrated Digital Error Suppression

[17]

Duplex molecular barcoding and background

modeling

0.05–1.6% 97% <36

Digital Sequencing [12] Molecular barcoding and background modeling 0.1–1% 66% not reported

Amplicon Molecular Barcoding [16] Molecular barcoding only 1–2% 85% 0.2

Molecular Inversion Probes [15] Molecular barcoding only 0.75–1.5% 72% 0.1

https://doi.org/10.1371/journal.pone.0195272.t001
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homopolymer limit of three. Output vcfs were subsequently tested for sensitivity and false pos-

itive rate.

Results

Sequencing error composition

Replicate experiments against the ERASE-Seq background model allow for an accurate catego-

rization of false positive variant calls observed in sequencing data as either recurrent artifacts

or stochastic errors. Fig 2C and 2D shows all false positive calls present in sequencing reads fil-

tered by base quality, read depth, and strand bias for 56G and TST15 experiments. Recurrent

artifacts are those false positive calls present in the single replicate data but eliminated by ERA-

SE-Seq due to their presence in the background model. Stochastic errors are those false posi-

tives called in single replicate ERASE-Seq, but eliminated with increasing replicate number.

False positives are binned by allele frequency and divided into recurrent artifacts and stochas-

tic errors (Fig 2C and 2D). The data show that most false positives are recurrent artifacts at all

allele frequencies, with 71% of 56G false positives and 95% of TST15 false positives belonging

to this category.

Fig 2. False positive composition. (A,B) The number of false positive calls in 0.05% allele frequency intervals is shown for ERASE-Seq using 1, 2, 3, and 4

replicates for the amplicon panels 56G and TST15. (C,D) The number of false positives using standard intra-sample variant calling metrics (base-quality, strand-

bias and read-depth filters) are shown in 0.05% allele frequency intervals for 56G and TST15. They are further divided into recurrent artifacts and stochastic

errors. Stochastic errors are those called in single replicate ERASE-Seq and recurrent artifacts are those eliminated in single replicate ERASE-Seq based on the

background model.

https://doi.org/10.1371/journal.pone.0195272.g002
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Both types of errors decline in abundance as allele frequency increases although recurrent

artifacts are more persistent than stochastic errors. Stochastic errors largely disappear above

0.3% allele frequency and are completely absent above 0.5% in both data sets whereas numer-

ous recurrent artifacts remain in the data above 0.5% allele frequency. Notably, most recurrent

artifacts above 0.5% are indels, whereas the majority below 0.5% are SNVs. The general trends

observed are the same for both panels but each has its own error profile. TST15 has a 3-4x

higher number or recurrent artifacts, but only about ½ of the stochastic errors in AF ranges

below 0.2%. This suggests some panel specific optimization of the error suppression protocols

is possible. In our experiments detailed below these unique error profiles did not translate into

significant differences in ERASE-Seq performance. Spotlight 59 error profiles were not ana-

lyzed however the panel chemistry and content is highly overlapping with 56G such that simi-

lar results are expected.

ERASE-Seq eliminates ultralow frequency errors via technical replication

To achieve high specificity at AF < 0.2%, ERASE-Seq uses the statistical power of technical

replication. Fig 2A and 2B shows the number of false positives in analytical samples using

ERASE-Seq and leveraging 1, 2, 3, and 4 sample technical replicates for both 56G (A) and

TST15 (B). False positive counts by bin are shown between 0.05% and 0.5% AF. Robust elimi-

nation of false positives at> 0.5% allele frequency occurs due to the background-aware caller,

for even a single sample replicate. Below 0.5% the number of false positives increases with

decreasing allele frequency, up to hundreds of false positive calls for single replicate samples

in the 0.05–0.1% interval. Increasing replicate number maintains high specificity at ultralow

allele frequencies. Adding a second sample replicate eliminates 88% of the errors observed

with a single replicate for the 56G panel and 77% for the TST15 panel. We have settled on a

maximum of 4 replicates, because at 10ng input per replicate this requires a total of 40ng, a

quantity obtainable from cfDNA samples isolations. Higher replicate numbers are not

feasible, but great results can still be obtained from 2 replicate experiments where input mate-

rial is limited. Using four replicates allows precise calling down to the lowest allele frequen-

cies. On the TST15 panel only 2 false positives out of 120469 possible variants are called

above 0.1% (specificity = 99.9983%) and 8 false positives are called above 0.05% (specific-

ity = 99.9933%). Similarly, on the 56G panel only 2 false positives out of 94888 variant tests

are called above 0.1% (specificity = 99.9979%) and 9 false positives are called above 0.05%

(specificity = 99.9905%).

ERASE-Seq performance

ERASE-Seq eliminated the clear majority of sequencing errors and enabled accurate variant

calling to sub 0.1% allele frequency. Fig 3 shows allele frequency measurements and ERASE-

Seq p-values plotted for observed variants in three different low frequency spike-in analytical

experiments. In the top panel observed variants are shown by allele frequency from a single

replicate and true positives are buried among noise from sequencing errors, making accurate

calling impossible. The bottom panel shows the same variants’ ERASE-Seq p-value enabling

differentiation between true and false positives. The p-value measurement can differentiate all

true variants tested from false positives with 100% sensitivity and specificity in the two low fre-

quency experiments (Fig 3A, 3B, 3D and 3E). Ultralow frequency variants shown in the third

experiment are still detected with high sensitivity and specificity down to 0.07% allele fre-

quency (Fig 3C and 3F).
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Performance comparisons

ERASE-Seq provides superior variant calling performance compared to previously described

low frequency detection methods at similar read depth and DNA inputs (Table 1, S1 Table).

Table 1 compares the performance of ERASE-Seq to several other studies that use analytical

spike samples to establish performance metrics. In these experiments, DNA with known vari-

ants was spiked into wild-type DNA at low relative frequency and libraries made from the

spiked sample were sequenced. ERASE-Seq strongly outperforms algorithms based on base

quality scores such as Lofreq2[11]. ERASE-Seq is also compared to published strategies using

molecular barcoding[15, 16]. Peng et al. and other published methods lose sensitivity and spec-

ificity below 1% allele frequency whereas ERASE-Seq maintains perfect sensitivity and speci-

ficity to 0.3% allele frequency using both the TST15 and 56G panel. An ultralow frequency

analytical spike containing multiple variants below 0.1% allele frequency was also analyzed

using the ERASE-Seq. This sample shows 94% total sensitivity and identifies 3/3 variants

below 0.1% allele frequency while maintaining a false positive rate of less than 0.007% of vari-

ant tests using the TST15 panel. Additionally, an ultralow spike containing variants between

0.1% and 0.5% analyzed using ERASE-Seq with the Spotlight 59 panel demonstrated 94%

Fig 3. Error reduction using ERASE-Seq. Low frequency variants observed in three analytical DNA spikes mixtures are shown both by allele frequency in the

top panel and by ERASE-Seq multiple hypothesis adjusted p-value in the bottom panel. True positives are shown in red and noise is shown in black. (A,D) A

spiked DNA mixture is analyzed using the Swift Biosciences 56G amplicon panel. The 19 snvs and one indel ranging from 0.27–1.78% expected allele frequency

are detected with perfect sensitivity and specificity using ERASE-Seq. (B,E) A spiked DNA mixture is analyzed using the Illuimina TruSight 15 amplicon panel.

The 30 snvs and one indel ranging from 0.35–5.6% expected allele frequency are detected with perfect sensitivity and specificity using ERASE-Seq. (C,F) A more

challenging spiked DNA mixture is analyzed using the Illuimina TruSight 15 amplicon panel. The 30 snvs and one indel range from 0.07–1.3% expected allele

frequency. All variants above 0.3% allele frequency are detected with perfect sensitivity and specificity and robust detection of ultra-low frequency alleles is

achieved with a small number of false positives.

https://doi.org/10.1371/journal.pone.0195272.g003
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sensitivity and a false positive rate of less than 0.001%. This demonstrates a large improvement

over Guardant digital sequencing which only achieves 66% sensitivity for variants between

0.1–1% allele frequency and does not publish a false positive rate[12]. The method with com-

parable sensitivity to ERASE-Seq in the ultralow allele frequency range is iDES[17]. However,

iDES specificity measurements are taken from an extremely limited search space, testing only

279 preselected negative control variants throughout the panel thus only demonstrating a false

positive rate as low as 0.358%. In contrast, ERASE-Seq remains highly specific across the

120,469 variant tests comprising the entire TST15 panel, demonstrating a false positive rate of

0.0064% when calling variants to 0.05% allele frequency. Similarly, ERASE-Seq remains highly

specific across the 100,904 variant tests comprising the entire Spotlight 59 panel, demonstrat-

ing a false positive rate of 0.00105% when calling variants to 0.1% allele frequency.

Single replicate ERASE-Seq performance

Applying ERASE-Seq to single replicate data provides a background aware variant caller that

can be used for typical data generated by targeted sequencing. This analysis demonstrates both

the advantages provided by the ERASE-Seq background model and the limitations of variant

calling without technical replicates. The same sequencing data used for ERASE-Seq was also

analyzed with Lofreq2 (Fig 4). Sensitivity and specificity were measured using the two algo-

rithms across four TST15 samples and four 56G samples, with the same fastq data inputs. The

background model-driven ERASE-Seq variant calling algorithm outperforms the base quality

score-driven Lofreq2 algorithm. In Fig 4 sensitivity is shown for variants expected between 0.3

and 1% allele frequency, of which each panel contains ten. False positive rates are also shown.

ERASE-Seq provides improved sensitivity and reduced false positive rate in all samples ana-

lyzed. When compared to Lofreq2, single replicate ERASE-Seq provides an increase in average

sensitivity from 71% to 93% and an average 6-fold decrease in the false positive rate (from

about 2 down to about 0.3 FPs per 10k variants).

Particularly dramatic gains are achieved for indel calls that are relatively abundant above

0.3% and are recurrent in nature. (Fig 2A and 2B). However, in the space below 0.3% signifi-

cant stochastic errors exist that cannot be eliminated without replication.

Practical considerations for ERASE-Seq implementation

Single replicate ERASE-Seq can be applied to existing data sets by creating a background error

model to provide excellent performance down to AFs of 0.5%. Its sensitivity is above 90% and

specificity is very high, with a false positive rate below 0.3FP/10k variants.

The ideal implementation of ERASE-Seq uses multiple technical replicates sequenced to a

read depth of at least 5,000x. The overall depth per sample (at least 20,000x) is not a major

challenge, as these depths are commonly achieved in targeted deep sequencing (S1 Table).

When using off the shelf reagents, two practical challenges are the additional material costs per

targeted amplification reaction and the higher DNA input requirements. These challenges can

be addressed by purpose-built kits like Spotlight 59 that provide all the targeted amplification

and library preparation reagents necessary for 4 replicates and draw on optimized amplicon

chemistries that minimize DNA input and overall reaction tube number. Regardless of the rep-

licate number and amplicon panel chosen, the background needs to only be produced once

and can be reused for each sample set.

Discussion

ERASE-Seq brings together the principles of deconvolution and technical replication to

achieve improved performance in ultralow frequency DNA variant calling. The deconvolution
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component consists of performing repeated library preparation and sequencing of negative

control DNA. Each variant in the panel is then quantified across the negative control replicates

to establish a variant-specific background noise model. Actual sample measurements are then

tested for statistically significant enrichment against the background model to distinguish true

positive variants from noise. Previous studies have employed similar deconvolution strategies

to increase precision[4, 28] but this is the first background-aware caller to incorporate sample

replicates into a robust statistical variant calling model.

ERASE-Seq’s unique approach is to incorporate multiple sample measurements into the

statistical test between variant counts in background and sample replicate data. It has been

shown that the high degree of noise in NGS data can be mitigated through technical replica-

tion and this has been widely adopted in gene-expression studies[29, 30] and suggested for

variant calling[9]. ERASE-Seq provides a quantitative statistical model for using technical rep-

licates that is applicable to ultralow frequency somatic variant discovery and provides signifi-

cant increases in accuracy.

Fig 4. Single replicate ERASE-Seq performance. The ERASE-Seq algorithm may also be used with single replicates to

eliminate false positives resulting from recurrent artifacts. This fig demonstrates ERASE Seq’s large gains in resolution

below 1% allele frequency as compared to Lofreq2, a high-performing standard low frequency calling algorithm that

does not model background errors and therefore does not eliminate recurrent artifacts. Sensitivity in the 0.3–1% allele

frequency range is shown along with false positive rate for four analytical samples using the TST15 amplicon panel and

four analytical samples using the 56G amplicon panel. ERASE-Seq provides an average increase in sensitivity from 71%

to 93% and a greater than six-fold reduction in false positive rate as compared to Lofreq2.

https://doi.org/10.1371/journal.pone.0195272.g004
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Our data demonstrate the practical power of both the background modeling and replication

components of ERASE-Seq. A performance comparison between ERASE-Seq (single replicate)

and Lofreq2 applied to the same data set measures the gains of the background-aware caller

alone, without use of replicates (Fig 4). Base quality score-driven caller algorithms such as

Lofreq2 begin to show false positives below 1% allele frequency[11]. However, the sub 1%

variant space is of high interest in clinical liquid biopsy applications[8, 12, 17], so we compare

variant calls in the 0.3–1% allele frequency range for single replicate ERASE-Seq. We show

improvements in specificity in all eight samples tested while reducing false positive rates by an

average of greater than six-fold (Fig 4). These gains are due to the elimination of recurrent arti-

facts only. Notably, the Lofreq2 caller is equipped with a homopolymer filter that was used in

this analysis and was unable to match the power of ERASE-Seq’s empirical background error

model for false positive elimination. The variant calling performance metrics are corroborated

by our false positive component analysis (Fig 2C and 2D) that demonstrates the clear majority

of sequencing errors above 0.3% allele frequency are recurrent artifacts. This also demonstrates

the ability of ERASE-Seq to provide large gains to molecular pathology laboratories without

altering bench protocols. Laboratories may create and sequence negative control libraries

using their current panel reagents. Subsequently sample library preparation and sequencing

continue unchanged and resolution can be gained by simply employing the ERASE-Seq vari-

ant caller.

Technical replication enables the highest precision in ERASE-Seq experiments. Our false

positive component analysis (Fig 2C and 2D) demonstrates stochastic errors begin to accumu-

late in abundance at ultralow frequencies when using single replicate data. This is because

polymerase errors[13, 31] populate the sequencing libraries at ultralow frequencies across the

large sequence spaces assayed. These stochastic errors are recalcitrant to elimination because

they are present in the sequencing library[9]. Both molecular barcoding and ERASE-Seq tech-

nical replication attempt to address this challenge. Replication allows for accurate discernment

of the alleles in the biosample whereas base quality-driven algorithms only allow for accurate

discernment of alleles present in the sequencing library. The power of technical replication is

what gives ERASE-Seq unparalleled specificity in the sub 0.1% allele frequency range, while

maintaining high sensitivity. In fact, the sensitivity of the ERASE-Seq method is not limited by

inherent background noise, but rather DNA input copy number. For example, 10ng of human

DNA input should contain approximately 3333 copies of each allele, meaning that a 0.1% vari-

ant will have on average 3 copies. Below this allele frequency variant incorporation in all four

replicates becomes inconsistent, following a Poisson distribution. We show that sensitivity in

this range can be retained by increasing DNA input to 20ng per replicate by successfully

detecting 3/3 sub 0.1% variants on the TST15 panel (S1 Table).

The wide applicability of ERASE-Seq is demonstrated by successful use of this method with

three different oncology amplicon panels and two different DNA sample types. The perfor-

mance gains observed are consistent across the panels tested showing the robustness of ERA-

SE-Seq. Over 90% sensitivity down to AFs below 0.1% was obtained while maintaining

extremely low false positive rates. Perfect sensitivity and specificity is demonstrated down to

0.3% allele frequency. The false positive profiles are highly consistent as is the performance of

single replicates. In addition, experiments show high correlation between observed and

expected allele frequencies (Fig 5, S2 Table) and training parameters remain robust over

repeated analytical tests.

A key implementation question is the applicability of error backgrounds obtained using

gDNA standards across other sample types. We have addressed this by analyzing an external

data set using the Horizon cfDNA standard consisting of fragmented DNA that aims to repli-

cate cfDNA patient samples, and TST15. The data (Fig 6) demonstrates a slight advantage
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when also using fragmented cfDNA, but the gains are similar in order of magnitude when

using our standard gDNA derived background. False positive rates are summarized in S2 Fig

and S6 Table. This data set is important in demonstrating the ERASE-Seq approach to be

highly efficacious even when different sample types (gDNA vs fragmented DNA) are used to

generate the position-specific background model. It demonstrates that the vast majority of

errors are introduced during targeted amplification, library preparation and sequencing. The

nature of the starting sample only drives a small minority of errors, accounting for less than

5% of false positive calls in our analytical experiment (Fig 6).

ERASE-Seq strongly outperforms molecular barcoding strategies at similar read depths and

inputs (Table 1). iDES, a recently developed method that combines a background-aware caller

with molecular barcoding, demonstrated great sensitivity in the ultralow frequency range but

without the high panel-wide specificity of ERASE-Seq. The iDES approach used a very limited

search space (279 variants) to limit false positive calls. This approach to reducing FP rates can

be very useful clinically if only a subset of less than a few hundred variants are relevant to dis-

ease assessment, but suffers from clear limitations when analyzing wider mutation spectra.

Another commonly employed cfDNA assay, the Guardant 360 test also employs a combina-

tion of molecular barcoding and background modeling to increase performance[12]. Previ-

ously published analytical data for Guardant 360 demonstrate a sensitivity of 66% for variants

present between 0.1–1%[12] as compared to over 90% for both iDES and ERASE-Seq[12, 31].

Fig 5. Observed vs expected allele frequencies. ERASE-Seq demonstrates high reproducibility (R-squared = 0.961) in

allele frequency determination between experiments, even in the ultralow allele frequency range. This graph compares

measured allele frequencies between the 1% TST15 spike and the 0.25% TST15 spike. The 0.25% spike is a simple 4X

dilution of the 1% spike into the same NA19129 DNA background so variant allele frequencies in the 0.25% spike are

expected to be ¼ their value in the 1% spike. The y-axis plots observed variant allele frequencies in the 0.25% spike and

the x-axis plots their expected values.

https://doi.org/10.1371/journal.pone.0195272.g005
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The greatest loss in sensitivity is at the 0.1% level, where only 33% of variants are detected.

Analytical specificity of the test is not reported below AF values of 2.5%, nor are the bioinfor-

matics details describing how calls are made[12]. It is likely that search space reduction is also

necessary to decrease the false positive rate.

Many recent publications[6–8, 12, 17] report that somatic variants in cancer patient cfDNA

are commonly found in the 0.05 to 0.5% range, so increases in sensitivity and specificity will

significantly impact the effectiveness of these assays. Even in the advanced patient populations

(predominantly stage IV patients), about a third of samples tested do not detect any somatic

variants when using the Guardant 360 test[12]. Several recent publications looking and this

and other tests challenges in demonstrating high concordance to solid tumors and agreement

between different tests[18–20, 32]. This is likely due to a combination of low cfDNA content

in these samples and assay sensitivity limitations, so improved sensitivity/specificity will

directly result in liquid biopsies being applicable to a larger percentage of patients, earlier in

the disease process, with fewer false positives.

Search space reduction can also be combined with ERASE-Seq with the advantage of inher-

ently lower false positive numbers, but we chose not to take this approach. Because the list of

clinically relevant mutations is evolving quickly we believe that a whole panel caller is superior.

Additionally, there are situations where the high specificity of ERASE-Seq is paramount.

Tumor suppressor genes including TP53[33], RB1[34], and Notch1[35] have been shown to

have wide loss of function mutation spectra distributed over multiple domains and to include

missense, nonsense, and frameshift subtypes. Coupled with the observation that many cancer

types can arise from loss of function in one of several tumor suppressor genes[36, 37], the abil-

ity to query larger sequence spaces is necessary to avoid false negative clinical results. The ana-

lytical work here presents a versatile platform for high-resolution detection of low frequency

DNA variants that is particularly suited to the expected allele frequencies found in liquid

Fig 6. Robustness of the ERASE-Seq approach across different sample types. We analyzed a previously produced data set looking at a Horizon cfDNA standard

spike (fragmented DNA) using both an unrelated gDNA background standard and a more similar Horizon cfDNA standard. The false positive rate per 10,000

variant tests is plotted for all conditions. ERASE-Seq results from applying a background model using either background (empty triangle, circle) show a high

reduction in the false positive rate for both as compared to a standard caller (filled round). Of the two, using a similar Horizon cfDNA background (empty circles)

provides slightly better error correction, while both perform very well above 0.5% allele frequency. The same relationship holds when using two replicates for the

Horizon cfDNA sample (square, rhombus), with very low false positive rates above 0.2%. Together, the data demonstrate consistent performance of the

background model across sample types. A summary of the false positive rate dependence on the replicate number and control background data used is shown in S6

Table.

https://doi.org/10.1371/journal.pone.0195272.g006
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biopsy samples. Furthermore, ERASE-Seq is the first ultralow allele frequency DNA variant

detection method that does not require the adoption of new molecular reagents, making it eas-

ily implementable for research and clinical laboratories.

Conclusions

Liquid biopsy testing methods are being developed at an rapid pace due to the promise of the

technology to better represent the diversity of solid tumors and their ability to follow disease

progression longitudinally and noninvasively. While a number of recently developed targeted

panels and clinical tests have shown great results in selected advanced patient populations,

recent literature also highlights significant limitations. Limited sensitivity and specificity

have led to measurements of low concordance for CLIA approved cfDNA tests [20] and low

sensitivity to solid tumor mutations [32]. Further performance improvements are needed to

address a patient populations where at a majority of variants are in the 0.1–1% allele frequency

range. Here we present analytical validation data for ERASE-Seq, a new method that, instead

of using molecular barcodes, uses technical replicate analysis and a sequencing noise back-

ground model to make calls. Using analytical standards on par with previously described

methods and clinically realistic DNA input quantities, we detect SNVs and indels between

0.05% and 1% allele frequency with greater than 90% sensitivity and a false positive rate below

0.1 calls per 10,000 possible variants. This provides a 10 to 100-fold reduction in false positive

rates compared to published molecular barcoding methods. Future work in patient samples

will evaluate clinical improvement by looking at concordance to tumor biopsies and orthogo-

nal high sensitivity PCR-based methods in cfDNA.

Supporting information

S1 Fig. Schematic of analytical sample creation. DNA from four different cell lines was

spiked into a normal background (NA19129) at a target of 1% per cell line. Variant allele fre-

quencies present in the analytical mixture spanned a wide range (0.25–5.6%) due to the fact

than many variants were shared across some or all cell lines, some variants had non-standard

ploidies due to copy number variation, and different quantitation methods led to slightly dif-

ferent input quantities of each cell line relative to the background. This created an analytical

sample with many low frequency variants that could be used to test multiple panels. The ana-

lytical sample pictured could be further diluted with NA19129 DNA to create samples contain-

ing ultralow allele frequency variants.

(TIFF)

S2 Fig. Differences in noise between Horizon cfDNA and gDNA samples. The analysis of

Horizon cfDNA standards and gDNA allows to compare the noise false positive rate (FP rate)

dependence on sample type and DNA fragmentation. Both standard analysis (filled symbols)

and ERASE-Seq one replicate only data show a higher noise level for cfDNA as compared to

gDNA derived data.

(TIFF)

S1 Table. Detailed ERASE-Seq performance comparisons. ERASE-Seq is compared to

other low frequency variant detection methods. Performance in terms of sensitivity and

specificity is reported in conjunction with sequence depth and DNA input quantity. At compa-

rable sequencing depths and DNA inputs ERASE-Seq outperforms barcoding methods in

terms of both sensitivity and specificity. Additionally, ERASE-Seq utilizes moderate increases

in sequencing depth to strongly outperform other methods in the ultralow allele frequency
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range. The � indicates a two-tube multiplexed PCR amplicon panel which is why DNA inputs

are higher.

(DOCX)

S2 Table. TST15 variant allele frequencies. This table shows the spiked variants along with

their allele frequencies across the TST15 panel for the 1% and 0.25% spikes along with the

expected allele frequencies of the 0.25% spike. The 0.25% spike is a simple 4X dilution of the

1% spike into the same NA19129 DNA background so variant allele frequencies in the 0.25%

spike are expected to be ¼ their value in the 1% spike.

(DOCX)

S3 Table. Expected variants in the TST15 panel region. Expected variants in the spiked ana-

lytical mixtures are shown along with their allele frequency in each pure spiked cell line. In

total 31 variants, 30 SNVs and one insertion, compose the test set. All variants were homozy-

gous for the hg19 reference allele in the pure NA19129 background.

(DOCX)

S4 Table. Expected variants in the 56G panel region. Expected variants in the spiked analyti-

cal mixtures are shown along with their allele frequency in each pure spiked cell line. In total

20 variants, 19 SNVs and one deletion, compose the test set. All variants were homozygous for

the hg19 reference allele in the pure NA19129 background.

(DOCX)

S5 Table. Expected variants in the Spotlight 59 panel region. Expected variants in the spiked

analytical mixtures are shown along with their allele frequency in each pure spiked cell line. In

total 18 variants, 17 SNVs and one deletion, compose the test set. All variants were homozy-

gous for the hg19 reference allele in the pure NA19129 background.

(DOCX)

S6 Table. ERASE-Seq efficacy depending on sample type, replicate number and back-

ground type. False positives per 10,000 variants tested is shown for ERASE-Seq implementa-

tions using a variety of analytical sample types (fragmented cfDNA standard vs gDNA) and

background models used. Replicates provide the lowest false positive rates, and function very

well independent of sample type.

(DOCX)
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