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Purpose: Early recurrence of glioblastoma after standard treatment makes patient care
challenging. This study aimed to assess preoperative magnetic resonance imaging (MRI)
radiomics for predicting early recurrence of glioblastoma.

Patients and Methods: A total of 122 patients (training cohort: n = 86; validation cohort:
n = 36) with pathologically confirmed glioblastoma were included in this retrospective
study. Preoperative brain MRI images were analyzed for both radiomics and the Visually
Accessible Rembrandt Image (VASARI) features of glioblastoma. Models incorporating
MRI radiomics, the VASARI parameters, and clinical variables were developed and
presented in a nomogram. Performance was assessed based on calibration,
discrimination, and clinical usefulness.

Results: The nomogram consisting of the radiomic signatures, the VASARI parameters, and
blood urea nitrogen (BUN) values showed good discrimination between the patients with early
recurrence and those with later recurrence, with an area under the curve of 0.85 (95% CI,
0.77-0.94) in the training cohort and 0.84 [95% CI, 0.71-0.97] in the validation cohort.
Decision curve analysis demonstrated favorable clinical application of the nomogram.

Conclusion: This study showed the potential usefulness of preoperative brain MRI
radiomics in predicting the early recurrence of glioblastoma, which should be helpful in
personalized management of glioblastoma.

Keywords: blood urea nitrogen, glioblastoma, magnetic resonance imaging, nomogram, preoperative, radiomics,
recurrence, Visually Accessible Rembrandt Images (VASARI)
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most malignant primary
brain tumor (1) and represents one third of primary brain
tumors with 79,000 new cases worldwide per year (2). The
standard treatment for newly diagnosed GBM is maximal
surgical resection followed by radiotherapy plus temozolomide
(3), which takes about six months (4–6). Nevertheless, early
recurrence may occur due to the aggressiveness and diffuse
infiltrative growth of GBM (7, 8).

Pretreatment identification of patients at risk for early GBM
recurrence has several benefits (9). First, a more aggressive
treatment strategy, such as a more extensive resection (10),
with concurrent extended individualized radiotherapy or new
radiotherapy-based methods, may be warranted. Second,
patients may need to choose new treatment early in the course
of the disease to avoid delays in treatment (11, 12). Finally,
patients with early occurrence may need additional in-depth
testing, such as gene sequencing, to assist in clinical decision-
making. Previous studies have identified various indicators
associated with risk of GBM recurrence such as age, gender,
Karnofsky performance status (KPS), and pathology findings
(13–17), but no reliable tool is available to accurately predict
early recurrence. Molecular pathology and genotyping may be
helpful in assessing recurrence (18, 19). However, tissue
collection is invasive and may lead to misdiagnosis due to
errors in the sampling of heterogenous tumors. Clinicians
typically use brain MRI to evaluate the visual radiological
features of GBM such as the size, location, edema and
enhancement characteristics. However, conventional MRI
evaluation is not adequate for predicting early recurrence in
GBM (19, 20). Therefore, there is a need to assess additional
imaging biomarkers analyzed by computational methods for
predicting GBM recurrence (21, 22).

Radiomics quantifies high-dimensional imaging features of
tumors (23, 24), which may reflect tumor heterogeneity and
molecular pathology. Radiomics has been used to evaluate GBM
recurrence because a large number of image features can be
extracted from brain MRI data, including the contrast enhanced
sequence, fluid attenuation inversion recovery (FLAIR), T1-
weighted imaging, and T2-weighted imaging (23–26). In
addition, GBM is a highly vascularized tumor, and the extent
of vascularization is directly associated with the prognosis and
recurrence for patients with GBM (24, 25, 27, 28). Hence, it is
reasonable to speculate that MRI radiomics, taking into
consideration of the various imaging features including
enhancing characteristics reflecting tumor vascularity, could be
a potentially useful tool to predict early recurrence of GBM.

In this study, we evaluated preoperative brain MRI scans for
both radiomic features analyzed by computational methods and
the conventional radiological characteristics included in the
Visually Accessible Rembrandt Images (VASARI) feature set
assessed by neuroradiologists through visual inspection (6). We
built a nomogram incorporating radiomic features, clinical
variables, and the VASARI parameters to predict early
recurrence of GBM. We hypothesized that integration of
conventional radiological parameters and clinical variables into
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the computational radiomic model could improve the model
performance for differentiating patients with and without early
recurrence of GBM
PATIENTS AND METHODS

Patients
Ethical approval was obtained from the Ethics Committee and
Institutional Review Board of Xiangya Hospital of Central South
University, P. R. China (IRB number: 201607831). Informed
consent was waived due to the retrospective nature of the study.

The study cohort consisted of all patients between July 2010
and April 2018 who had GBM that was pathologically confirmed
from surgical specimens. The patients were identified by
searching our institutional data base and medical chart review.
We included only the patients with preoperative brain MRI scans
obtained less than 14 days prior to surgery. Patients with missing
clinical data and those who received treatment before surgery,
such as radiotherapy, chemotherapy, or chemoradiotherapy,
were excluded. Patients with a progression-free survival (PFS)
less than 7 months were assigned to the early recurrence group
(7, 8), and the remaining patients were assigned to the later
recurrence group. Figure 1 presents a study flow diagram.
FIGURE 1 | Study recruitment process for patients with glioblastoma
multiforme (GBM).
October 2021 | Volume 11 | Article 769188
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Re-Assessment of Pathology Results
All pathology slides for the study cohort were re-assessed by two
pathologists specializing in brain tumors to confirm GBM
diagnosis (G.G. and Z.H., with 10 and 25 years of experience,
respectively). Both pathologists were blinded to the
clinicopathological data. If any discrepancies arose, agreements
were reached by consensus.

Tumor Segmentation and Radiomic
Feature Extraction
Brain MRI imaging was performed on a 3T MRI scanner
(Discovery MR750w, GE Healthcare) or a 1.5T MRI scanner
(MAGNETOM Avanto, Siemens Healthineers, Erlangen,
Germany). All images were retrieved from the Picture
Archiving and Communication System (PACS) at our hospital.
All brain MRI scans were reviewed independently by two
neuroradiologists [reader 1 (H.D.) and reader 2 (Z.H.), with 5
and 25 years of experience, respectively] who were blinded to the
patient information. Any disagreements were resolved in a panel
format with two additional researchers (X.Y. and H.T.).

All conventional radiological findings from the brain MRI
images, as assessed by the neuroradiologists visually, were
evaluated according to the VASARI parameters (https://wiki.
nci.nih.gov/display/CIP/VASARI). There were 29 VASARI
parameters recorded as F1-F29 (6).

Image pre-processing, tumor segmentation, and radiomic
feature extraction were performed as described previously (29).
Wavelet transform and Laplacian of Gaussian (LoG) filtering
were used for image denoising. For each GBM tumor, manual
contouring and segmentation were performed on the axial,
sagittal, coronal images of the tumor at the level with the
larges t tumor dimens ion , as de termined by both
neuroradiologists (readers 1 and 2) who defined the margins of
the tumors. The segmented tumor with regions of interest (ROI)
was saved for subsequent radiomic feature extraction. We
extracted reliable features from the original image and its
corresponding filtered image. A total of 1204 quantitative
Frontiers in Oncology | www.frontiersin.org 3
radiomic features were extracted from each MRI image
including first order statistics, shape, gray-level run-length
matrix (GLRLM), gray-level co-occurrence matrix (GCLM),
neighboring gray tone difference matrix (NGTDM), gray level
dependence matrix (GLDM), and gray-level size zone matrix
(GLSZM), using an open-source python package PyRadiomics
(2.2.0) (http://www.radiomics.io/pyradiomics.html) (30). To
remove the potential differences between MRI images acquired
from the two different MRI scanners, normalization with the
final 256 bins was performed on all original MRI images using
the gray-scale discretization method before extracting the
radiomic features (Analysis Kit software, version V3.0.0.R, GE
Healthcare). Figure 2 presents the workflow for tumor
segmentation, radiomic feature extraction and selection, and
predictive modeling.

Radiomic Feature Selection, Predictive
Modeling and Statistical Analysis
Max-Relevance and Min-Redundancy (mRMR) was performed to
eliminate the redundant and irrelevant features (31), and 20
features were retained. Then, the least absolute shrinkage and
selection operator (LASSO) method was used to select the
optimized subset of features to construct the radiomic signature
(Rad-score) and to build the models. If the Pearson correlation
coefficient of the feature pairs was larger than 0.8, one of them was
deleted. A 10-fold cross-validation was conducted to avoid model
overfitting. The optimal parameter l was obtained in terms of the
largest value of lambda so that the error was within 1 standard
error of the minimum. According to l, the features corresponding
to the non-zero LASSO coefficient were selected (see
Supplementary Figure 1S). Multivariate logistic regression
analysis was applied to develop a model for predicting early
recurrence of GBM and the nomogram was generated (Figure 2).

Statistical analysis was conducted with R software (version
3.0.1; http://www.Rproject.org). The reported statistical
significance levels were all two-sided, with statistical
significance set at 0.05.
FIGURE 2 | Workflow for tumor segmentation, radiomic feature extraction and predictive modeling.
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Model Performance and the Nomogram
Calibration curves (Hosmer-Lemeshow H test) were used to
evaluate the calibration of the models, and receiver-operating
characteristic (ROC) curves were performed to access the
differentiation efficiency. The performance of the internally
validated nomogram was tested in the validation cohort. The
logistic regression formula formed in the primary cohort was
applied to all patients of the validation cohort. Then, the
calibration curve was derived on the basis of the regression
analysis, and the clinical usefulness of the models was evaluated
by using decision curve analysis in the validation cohort.
Decision curve analysis was conducted to determine the
clinical usefulness of the radiomic nomogram by quantifying
the net benefits at different threshold probabilities in the
validation dataset. Additionally, a correlation matrix analysis
was performed to evaluate the correlations among all selected
features that were integrated into the final predictive model.
RESULTS

Patient Information
A total of 122 patients with GBM were included in this study,
including 65 with early recurrence. Median PFS for all patients
was 189 ± 19 (range, 26 -1639) days after surgery, with the PFS
for early recurrence group and later recurrence group being 97 ±
8 (range, 26 - 203) and 326 ± 31 (range, 217 - 1639) days,
respectively. Each patient was randomly assigned to the training
cohort (n=86) or the validation cohort (n=36) at a ratio of 5:2.
Patient information and comparison between the training and
validation cohorts are summarized in Table 1. No variables were
statistically different between the training and the validation
cohorts (P > 0.05), ensuring a reasonable classification.
Frontiers in Oncology | www.frontiersin.org 4
Inter-Observer and Intra-Observer
Reproducibility of Radiomic Features
Satisfactory inter- and intra-observer reproducibility of the
texture feature extraction was achieved. The inter-observer
intraclass correlation coefficients (ICCs) calculated based on
features extracted by reader 1 (first extraction) and reader 2
ranged from 0.791 to 0.897. The intra-observer ICCs, calculated
based on reader 1’s feature extraction results from two attempts,
ranged from 0.804 to 0.901. Therefore, all subsequent analyses
were based on the radiomic features extracted by reader 1.

Predictive Model Building and
Model Performance
Of all the radiomic features, 20 potential predictors were retained
based on data from the 86 patients in the training cohort. Features
with nonzero coefficients in the LASSO logistic regression model
were used (Supplementary Figure 1S). The most predictive subset
of features was selected and the corresponding coefficients were
evaluated (Supplementary Figure 2S).

A significant increase in the Rad-scores for the early
recurrence group compared to the later recurrence group was
found in the training cohort (P < 0.001), which was further
confirmed in the validation cohort (P < 0.005). The radiomic
signature yielded an area under the curve (AUC) of 0.81 (95%
CI 0.71–0.90) in the training cohort and 0.79 (95%CI 0.64–
0.93) in the validation cohort. The ROC curves are presented
in Figure 3.

Regarding the conventional radiological findings according to
the VASARI parameters, we found that F5 for tumor
enhancement (Odds Ratio=1.61) and F21 for deep white matter
invasion (Odds Ratio=3.45) were risk factors for predicting early
recurrence, and F26 indicating the extent of tumor resection
(Odds Ratio=0.51) was a protective factor against early
October 2021 | Volume 11 | Article 769188
I

TABLE 1 | Demographic, clinical, laboratory, VASARI parameters and radiomic score (Rad-score) of the 122 patients with glioblastoma (GBM).

Characteristic Total (n=122) Early
recurrence (n=65)

Later
recurrence (n=57)

P-Value Training
cohort (n=86)

Validation
cohort (n=36)

P-Value

Demographics and clinical characteristics
Gender, n (%)
Male 72 (59.0) 35 (53.8) 37 0.218 49 (57.0) 23 (63.9) 0.613
Female 50 (41.0) 30 (46.2) 20 37 (43.0) 13 (36.1)

Age [median (IQR), years] 47 (34~55) 47.0 (34.5~57.0) 47.0 (34.0~54.5) 0.683 47.5 (32~57) 47.0 (34.3~52.5) 0.678
KPS [mean (SD)] 81.2 (13.4) 80.15 (13.75) 82.5 (13) 0.346 80.2 (15.3) 83.6 (6.8) 0.203
Laboratory findings
BUN [No. (%)] 0.367
Elevated 23 (18.9) 18 (27.7) 46 (80.7) 0.175 59 (68.6) 28 (77.8)
Normal 87 (71.3) 41 (63.1) 5 (8.8) 19 (22.1) 4 (11.1)
Decreased 12 (9.8) 6 (9.2) 6 (10.5) 8 (9.3) 4 (11.1)

VASARI parameters [mean (SD)]
F5 4.467 (1.03) 4.6 (1.028) 4.316 (1.02) 0.038* 4.4 (1.1) 4.6 (0.9) 0.421
F21 1.26 (0.44) 1.38 (0.49) 1.12 (0.33) 0.002** 1.29 (0.46) 1.17 (0.38) 0.144
F26 7.79 (0.55) 7.68 (0.64) 7.91 (0.39) 0.007** 7.77 (0.57) 7.83 (0.51) 0.477
Radiomics
Rad-score (median
[interquartile range])

0.4[-0.4,1.4] 1[0.2,1.6] -0.3 [-1.4, 0.4] <0.001*** 0.4 [-0.8, 1.2] 0.9 [-0.5, 2.0] 0.176
*P<0.05, **P<0.01 and ***P<0.001.
BUN, Blood urea nitrogen; KPS, Karnofsky performance status; VASARI, Visually Accessible Rembrandt Images; F5, the VASARI parameter indicating enhancing tumor; F21, the VASAR
parameter indicating deep white matter invasion; F26, the VASARI parameter indicating extent of tumor resection.
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recurrence. In our study, F5 and F21 were predictors of early
recurrence, and F26 predicted the lack of early recurrence.

Based on the radiomic signature and clinical variables, a model
was constructed to predict early recurrence. A logistic regression
analysis identified the radiomic signature (F5, F21, F26) and blood
urea nitrogen (BUN) concentration as independent predictors
(Figures 4A, B), which was presented as a nomogram
(Figure 4C). The model with the nomogram provided an AUC
of 0.85 (0.77-0.94) in the training cohort and 0.84 (0.71-0.97) in the
validation cohort (Figures 4A, B). The calibration curve for the
probability of resistance in the training and validation cohorts
showed good agreement between prediction and observation.

Clinical Applications
The decision curve analysis for both the radiomic model, clinical
model, and the nomogram is presented in Figure 5. The decision
curve showed that if the threshold probability is greater than 20%,
using the nomogram in the current study to predict the recurrence
time addedmore benefit than other forecast schemes or the forecast-
none scheme.Within this range, net benefitswere comparable on the
basis of the radiomic nomogram and clinical model.
DISCUSSION

In this study, we found that radiomic features derived from
preoperative brain MR images were associated with early
Frontiers in Oncology | www.frontiersin.org 5
recurrence in patients with GBM. Our predictive model
combining radiomic features, VASARI parameters, and clinical
variables could efficiently differentiate the patients with early
recurrence from those with later recurrence. Thus, our study
results demonstrate the potential usefulness of a non-invasive
radiomic approach for predicting early recurrence of GBM.

Radiomics has been used to predict treatment response
through assessment of tumor heterogeneity (32). Tumor
heterogeneity, which includes variations in histological markers
and in the presence of genetic alterations, has been associated
with poor clinical outcomes in various diseases, including GBM
(33). Heterogeneous tumors are more likely to contain cancer
cells that may proliferate faster, may more readily metastasize,
and may be more resistant to treatment (33, 34). Therefore,
standard treatment with radiotherapy plus temozolomide may
not be effective. At the same time, tumor heterogeneity often
leads to vascular proliferation (33). A prior study showed that
tumor vascularity is a prognostic factor for newly diagnosed
glioblastoma (25). Higher tumor heterogeneity may reflect a
more aggressive tumor and higher probability to recur (35).
Therefore, it was not surprising that our radiomic model, which
reflected tumor heterogeneity, achieved robust performance.

Our study found a renal function indicator, BUN, being
relevant for predicting early recurrence in patients with GBM.
BUN is a commonly used marker of renal function and its serum
concentration varies according to glomerular filtration rate (32).
High BUN indicates accumulation of ammonia in tissues and
A B

C

FIGURE 3 | Rad-scores and receiver-operating characteristic (ROC) curves for the early recurrence group and the later recurrence group. (A) Box plots showing the
Rad-scores for the early recurrence group and the later recurrence group. The label 0 indicates the later recurrence group and 1 indicates the early recurrence
group. The left panel shows the training cohort and the right panel shows the validation cohort. (B) ROC curve for the training cohort. (C) ROC curve for the
validation cohort.
October 2021 | Volume 11 | Article 769188
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blood (33). In general, chemotherapy drugs such as cisplatin
have strong renal toxicity and the dosage is determined and
adjusted according to the BUN values. Therefore, abnormally
elevated BUN may lead to a decrease in the dosage of
Frontiers in Oncology | www.frontiersin.org 6
chemotherapy drugs, which may result in inadequate
treatment of the tumor and thus facilitate recurrence (34). In
addition, elevated BUN is an indicator of poor physical condition
of the patient, who may not be able to fight off tumor recurrence.
A B

C

FIGURE 4 | The receiver operating characteristic (ROC) curves of the predictive models and the corresponding nomogram. ROC curve for the combined model
(Nomogram, red), radiomic model (Radiomics, blue), and clinical model (Clinics, green) for (A) the training cohort and (B) the validation cohort. (C) Nomogram with
significant indicators. F5, F21, and F26 are part of the Visually Accessible Rembrandt Image (VASARI) feature set. F5, enhancing tumor; F21, deep white matter
invasion; F26, extent of tumor resection.
FIGURE 5 | Decision curve analysis for the models built with the nomogram (red), radiomic model (Radiomics, blue), clinical model (Clinics, green), and a
combination of all models (Nomogram, Red). The y-axis measures the net benefit.
October 2021 | Volume 11 | Article 769188
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Our data showed that several VASARI parameters were
independent factors for predicting early recurrence. The VASARI
lexicon contains visually analyzable features extracted from routine
medically indicated brain MRI and provides standardized visual
grading of brain MRI findings for GBM. In our study, F5 and F21
were predictors of early recurrence, and F26 predicted the lack of
early recurrence. The F5 parameter in the VASARI feature set
indicates tumor enhancement, and a higher score means a higher
enhancement ratio with more tumor blood supply and more
enhancing tumor. Mathivet et al. (25) observed a progressive
increase in vessel diameter during GBM development in an
orthotopic mouse model. Therefore, it is reasonable to speculate
that increased GBM tumor vascularity may support early
recurrence. The VASARI parameter F21 indicates deep white
matter invasion, which may pose challenges for complete tumor
resection during surgery and render the tumor prone to recur. The
VARASI parameter F26 indicates the extent of tumor resection
whencomparing the preoperative andpostoperativeMRI images. It
is understandable that a more complete tumor resection should
improve prognosis and made it less likely to recur.

This study had several limitations. First, this was a retrospective
study at a single institution, limiting the generalizability of our study
results. In addition, although there were 122 patients with GBM
included in our study, our sample size was still modest for a
radiomic study, given the heterogeneous nature of GBM. Second,
we used 2D texture features of the brain MRI images. A 3D
approach for textural features may offer more information about
the entire tumor, which may improve predictive model
performance (36). Lastly, we did not assess the overall survival
rate for this cohort. Clinical data for some patients after recurrence
were incomplete because they went back to their local hospitals to
continue treatment. In addition, some patients were lost to long-
term followup. It has also been challenging to assess overall survival
as patients with recurrent GBM underwent various therapies such
as additional surgery, with or without concurrent chemoradiation,
or radiation only or chemotherapywith temozolamide only orwith
additionofbevacizumab, immunotherapy, herbal holistic remedies,
etc. With our modest sample size, we did not have the statistical
power to tease out the survival rate for patients undergoing different
treatments. A futuremulti-center prospective study of glioblastoma
recurrence will be necessary to properly assess survival rate.

In summary, our MRI radiomic analysis and nomogram
showed potential value for predicting early recurrence of GBM,
which may assist in personalized treatment planning. Future
prospective multicenter study with a larger sample size will be
needed to validate our study result and to optimize the prediction
models for clinical practice.
Frontiers in Oncology | www.frontiersin.org 7
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