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Świderek-Matysiak, M.; Omulecki,

W.; Stasiołek, M. Optical Coherence

Tomography in the Differential

Diagnosis of Patients with Multiple

Sclerosis and Patients with MRI

Nonspecific White Matter Lesions.

Sensors 2021, 21, 7127. https://

doi.org/10.3390/s21217127

Academic Editor: Ahmed

Toaha Mobashsher

Received: 12 September 2021

Accepted: 21 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland;
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Abstract: In the differential diagnosis of nonspecific white matter lesions (NSWMLs) detected on
magnetic resonance imaging (MRI), multiple sclerosis (MS) should be taken into consideration.
Optical coherence tomography (OCT) is a promising tool applied in the differential diagnostic
process of MS. We tested whether OCT may be useful in distinguishing between MS and NSWMLs
patients. In patients with MS (n = 41) and NSWMLs (n = 19), the following OCT parameters were
measured: thickness of the peripapillary Retinal Nerve Fibre Layer (pRNFL) in superior, inferior,
nasal, and temporal segments; thickness of the ganglion cell-inner plexiform layer (GCIPL); thickness
of macular RNFL (mRNFL); and macular volume (MV). In MS patients, GCIPL was significantly
lower than in NSWMLs patients (p = 0.024). Additionally, in MS patients, mRNFL was significantly
lower than in NSWMLs patients (p = 0.030). The average segmental pRNFL and MV did not differ
between MS and NSWMLs patients (p > 0.05). GCIPL and macular RNFL thinning significantly
influenced the risk of MS (18.6% [95% CI 2.7%, 25.3%]; 27.4% [95% CI 4.5%, 62.3%]), and reduced
GCIPL thickness appeared to be the best predictor of MS. We conclude that OCT may be helpful in
the differential diagnosis of MS and NSWMLs patients in real-world settings.

Keywords: multiple sclerosis; nonspecific white matter lesions; differential diagnosis; optical coher-
ence tomography

1. Introduction

An early introduction of efficient disease-modifying therapy (DMT) in multiple sclero-
sis (MS) has been shown to be crucial for long-term clinical outcomes [1–3]. Accordingly,
substantial effort has been put into the improvement of diagnostic tools and criteria to facil-
itate the diagnostic process [4,5]. Nevertheless, the diagnosis of MS remains complex and
difficult in many cases, and high percentages of misdiagnoses have been described in both
North American and European populations [6–9]. Although magnetic resonance imaging
(MRI) represents the most important paraclinical tool in the diagnostic process of MS, its
specificity is not satisfactory [5]. Focal white matter lesions similar to those observed in MS
have been described in many other neurological disorders, such as neuromyelitis optica
spectrum disorders (NMOSDs), Sjögren’s syndrome, systemic lupus erythematosus (SLE),
Susac syndrome and vasculitis, as well as in patients with migraines, small vessel disease
(SVD), and cardiovascular risk factors [10,11]. Moreover, the constantly increasing availabil-
ity of MRI results in the frequent detection of incidental, nonspecific white matter lesions
(NSWMLs) in patients with otherwise subtle or no clinical symptoms [10]. In radiological
reports, NSWMLs are defined as demyelinating, inflammatory, ischaemic, post-ischaemic,
or unidentified lesions. The unknown origin of NSWMLs may cause significant concerns
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with regard to their potential diagnostic meaning and may lead to the improper application
of the McDonald criteria [6–8]. Most importantly, the misinterpretation of MRI findings
is one of the main factors contributing to the misdiagnosis of MS [6–9]. Unfortunately,
there are currently no specific tests or sets of criteria that would allow for fully efficient
discrimination between MS lesions and NSWMLs in clinical practice.

Optical coherence tomography (OCT) is a non-invasive ocular imaging tool that
enables the evaluation of distinct layers of retina [12]. In recent years, growing evidence
has been gathered in support of the utility of OCT as a tool in the diagnostic process
and clinical assessment of patients with various central nervous system (CNS) diseases,
including different demyelinating conditions [12–17].

In our recently published study, we evaluated the applicability of OCT in the differen-
tiation between MS and autoimmune connective tissue disease (CTD) patients with CNS
involvement [17]. Although we did not find significant differences between MS and CTD
patients, in our study, retinal parameters distinguished patients with inflammatory CNS
conditions from healthy controls [17]. Based on these observations, we decided to focus on
the potential role of OCT as a paraclinical tool helpful in the differential diagnostics of MS
and patients with NSWMLs detected on MRI.

2. Experimental Section
2.1. Study Design

The study was conducted according to the guidelines of the Declaration of Helsinki
(1964) and its later amendments and approved by the Local Ethics Committee of the Medical
University of Lodz (approval number/360/17/KE, 21 November 2017, RNN/231/18KE,
12 June 2018). Informed consent was obtained from all the subjects involved in the study.

The participants were consecutively recruited from the Department of Neurology and
Neurology Outpatient Clinic, Medical University of Lodz, Poland, between December 2017
and August 2018. The participants had to be 18–55 years old and clinically stable, i.e.,
without any exacerbation of neurological signs and symptoms at least 6 months before
enrolment in the study.

The subjects were divided into two study groups.
Group 1 included patients diagnosed with MS according to the McDonald Criteria

2017 (MS group). Only patients with the relapsing–remitting course of the disease were
recruited for the study. Demographic and medical data, including clinical presentation of
MS, disease duration, relapses, current and prior disease-modifying treatment (DMT), and
comorbidities, were collected in a medical database. The level of neurological disability
was assessed with the Expanded Disability Status Scale (EDSS) [18].

Group 2 included patients with NSWMLs detected by cerebral MRI (NSWMLs group).
Two independent, trained, and certified radiologists identified NSWMLs according to
previously published criteria [19,20] as supratentorial white matter lesions located mainly
in paraventricular and subcortical areas not reaching the CSF space, with spotty appearance,
not compatible with demyelinating disease. The main indications for MRI examination in
this group of patients were unspecific, subjective complaints, such as transient and global
weakness (n = 7), short-lasting incidents of vertigo (n = 8), and temporary mood decline
(n = 4). Neurological examination in all participants was normal.

Exclusion criteria encompassed treatment with immunomodulatory and immuno-
suppressive drugs (other than DMTs in MS group), diabetes mellitus, hypertension, mi-
graine, history of stroke or transient ischaemic attack, infectious, metabolic, toxic and
metastatic diseases, systemic lupus erythematosus (SLE), Sjögren’s syndrome, neurosar-
coidosis, rheumatic arthritis, psoriasis, undifferentiated connective tissue disorders, vas-
culitis, and dementia.

Additionally, exclusion criteria included conditions that could affect retinal parame-
ters or the quality of OCT measurement, such as age-related macular degeneration and
pathological retinal findings on ophthalmologic examination, such as glaucoma, hyper-
tensive or diabetic retinopathy, post-cataract extraction, central serious chorioretinopathy,
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high refractive error (±6.00 D spherical equivalent), optic disc drusen, and a history of
optic neuritis (ON). ON was identified on the basis of clinical information from medical
records according to the accepted recommendations [21], visual evoked potentials, and
the results of ophthalmologic examination, including colour perception, pupillary light
reflex, best-corrected visual acuity, intraocular pressure, slit lamp examination of anterior
and posterior segments, and OCT assessment (asymmetry with cut-off values of ≥4 µm
for ganglion cell-inner plexiform layer (GCIPL) and ≥5 for retinal nerve fiber thickness in
the peripapillary area (pRNFL)), according to published guidelines [22].

2.2. Data Collection
2.2.1. Magnetic Resonance Imaging

All participants underwent brain MRI exams performed on a 3.0 T scanner (Vida,
Siemens, Munich, Germany) according to the guidelines of the Polish Neurological So-
ciety and Polish Medical Society of Radiology [23]. The MRI protocol included the fol-
lowing sequences: axial 3D T1-MPRAGE (TR = 2200 ms, TE = 246 ms, TI = 900 ms,
slice thickness = 1.5, number of slices = 167, pixel size = 1 × 1 × 1 mm), fluid-attenuated in-
version recovery (FLAIR) (TR = 2560 ms, TE = 135 ms, TI = 6700 ms, slice thickness = 3.0 mm,
number of slices = 46, matrix = 256 × 256), PD/T2-weighted (TR = 2560 ms,
TE1/TE2 = 90/30 ms, slice thickness = 3.0 mm, number of slices = 46, matrix = 256 × 256),
double-inversion recovery (DIR) (TR = 2560 ms, TE = 60, T11/TI2 = 4500/5700 ms, slice
thickness = 3.0 mm, number of slices = 46, matrix = 256 × 256), and 3D T1-MPARAGE
after contrast administration (gadolinium 0.1 mmol/kg.m.c.). MRI data were assessed by
experienced radiology specialists blinded to the identity of the study participants and OCT
findings.

Our NSWMLs patients were distinguished from radiologically isolated syndrome
(RIS) patients following careful visual inspection. According to the exclusion criteria
of RIS [24,25], all of our NSWMLs patients were classified as non-RIS patients. The
quantification of the amount of NSWMLs was based on the Fazekas score [26] by two
trained and certified radiologists who were blinded to the patients’ clinical information.
All NSWMLs were classified as grade 1. Examples of MRI images in MS and NSWMLs
patients are presented in Figure 1.
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Figure 1. MRI images of multiple sclerosis (MS) and nonspecific white matter lesion (NSWMLs) patients. (A) Axial fluid-
attenuated inversion recovery (FLAIR) images of NSWMLs patients showing a subtle white matter lesion located in deep 
white matter (white arrow). (B–D) Axial FLAIR images with hyperintense lesions in typical locations for MS (arrowhead). 

Figure 1. MRI images of multiple sclerosis (MS) and nonspecific white matter lesion (NSWMLs) patients. (A) Axial
fluid-attenuated inversion recovery (FLAIR) images of NSWMLs patients showing a subtle white matter lesion located
in deep white matter (white arrow). (B–D) Axial FLAIR images with hyperintense lesions in typical locations for MS
(arrowhead).

2.2.2. Optical Coherence Tomography

Optical coherence tomography was performed using spectral-domain OCT (S-OCT)
(Copernicus Plus device, software version 5.0, OPTOPOL Technology, Zawiercie, Poland,
center wavelength: 840 nm, bandwidth: ±50 nm, resolution 5 µm). OCT was performed
on the same day as neurological examination by one of the co-authors (M.O.), a blinded
ophthalmologist with long-term experience in OCT examination (without pupil dilatation
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on both eyes in each patient). Each scan was assessed for proper fixation and quality. The
retinal layers were also checked for errors in segmentation. To ensure proper quality of the
image and reliability of the results, the following selection criteria were adopted:

- Quality index of the scan > 6—all scans included in the study;
- Quality index of the scan < 6—only scans with a clear and complete examination area

included; and
- Quality index of the scan < 4—scan repeated or excluded from the study.

OCT imaging of the optic disc and the peripapillary area and macula was acquired
with the 3D scanning protocol. The scan dimensions for the optic disc and peripapillary area
were 5 × 5 mm, and those for the macula were 6 × 6 mm. To assess pRNFL thickness the
middle of the ring scan (an internal diameter of 2.4 mm, width of 0.4 mm) was positioned
automatically in the centre of the optic disc (Figure 2A). To measure average macular volume
(MV), volumes of 3 subfields obtained using inner (diameter 1mm), intermediate (diameter
2.22 mm) and outer (diameter 3.45 mm) rings were summarized (Figure 2B). Copernicus
Plus device, software version 5.0 automatically analysed the thickness of the retinal layers
from the inner limiting membrane (ILM) to the retinal pigment epithelium (RPE). Detailed
information concerning segmentation is provided in Supplementary Material and Figure S1.
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Figure 2. Representative optical coherence tomography (OCT) images of inspected regions (A).
Position of the ring scan to measure peripappilary retinal nerve fiber layer thickness with superior (S),
temporalis (T), inferior (I) and nasalis (N) quadrants. (B). Position of the macular subfields with
inner, intermediate and outer rings to calculate average macular volume.

Using available software, the following OCT parameters were calculated:

- Average thickness in pRNFL;
- pRNFL thickness in the superior, inferior, nasal, and temporal segments;
- Average GCIPL thickness (because of the low contrast between the ganglion cell

layer and the inner plexiform layer, these two layers were combined to form the
GCIPL [27,28]);

- Average macular RNFL thickness (mRNFL); and
- Average MV.

RNFL scans were performed using a pre-set protocol launched by the OCT user
interface. The examined eye was fixed on an internal light, and a high-speed circle scan
with a 3.40 mm diameter and 0.55 mm thickness centred on the optic nerve head was
performed (automatic real-time AR 100). Only subjects with OCT measurements of both
eyes were included in the study. Final values for all parameters were assessed as the
mean from the values of both eyes. OCT results are referred to as the normative base for
Caucasians. All examinations were checked for sufficient quality using the OSCAR-IB
criteria [29] and APOSTEL recommendations [30].

2.3. Statistical Analysis

Analyses were carried out using statistical software R (version 3.5.2; a language and
environment for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria). Data were assessed for normality using the Shapiro–Wilk test. Nominal variables
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are presented as n (%) and continuous variables are presented as the mean (±SD) or median
(Q1; Q3), depending on the distribution of data. The primary analysis of interest included
a comparison of MS and NSWML patients. For group comparisons, we used the chi-square
test for nominal variables and the independent samples t-test or nonparametric Mann–
Whitney U-test for continuous variables, as appropriate. Two-sided p < 0.05 was considered
to indicate significant differences. Additionally, logistic regression was used to identify a
combination of variables that differentiated the MS and NSWML groups. Only variables
that were significantly different between groups were used as predictor variables in regres-
sion models. Age was included in the models as a covariate. Because logistic regression
was used, model coefficients are in log odds form, so when the predictors increased by
one unit, the outcome increased by log odds. These odds, in turn, were exponentiated into
odds ratios (ORs), so when the predictors increased by one unit, the expected change in
outcome was described in terms of odds. Model assessment was conducted with the χ2

test, Nagelkerke’s R2 coefficient, and the Hosmer–Lemeshow goodness-of-fit (GOF) test.

3. Results
3.1. Patient Characteristics

This was a prospective cohort study of 60 patients, 41 with MS (male/female = 10/31)
and 19 with NSWMLs (male/female = 5/14). There were no significant differences between
groups as a function of age (p = 0.418) and sex distribution (p > 0.999). The clinical
characteristics of MS and NSWML patients are presented in Table 1.

Table 1. Clinical characteristic of MS and NSWMLs patients.

. MS NSWMLs p-Value

Subjects, n 41 19
M/F 10/31 5/14 >0.999

Number of eyes 82 38
Age, years, mean (±SD) 41.9 (±13.3) 43.8 (±12.0) 0.418

Disease duration, years, median (Q1; Q3) 3.0 (1.0; 7.0) - -
EDSS score, median (Q1; Q3) 1.0 (0.0; 3.0) - -

Groups were compared with the t-test for age and the chi-square test for sex. Abbreviations: MS, multiple
sclerosis; NSWMLs, patients with nonspecific white matter lesions; M/F, male/female ratio; EDSS, Expanded
Disability Status Scale; SD, standard deviation.

3.2. OCT Results

Analysis of OCT data in MS and NSWMLs patients revealed lower average GCIPL
thickness in MS patients than in NSWMLs patients (p = 0.024). Moreover, in our MS pa-
tients, the average macular RNFL thickness was significantly lower than that in NSWMLs
patients (p = 0.030). Analysis of the average and segmental pRNFL thickness and aver-
age macular volume did not show any significant differences between MS and NSWML
patients (p > 0.05). A summary of the OCT data and statistics is provided in Table 2 and
Figure 3. Additionally, representative OCT and MRI image of MS and NSWMLs patients
was provided in Supplementary Material (Figure S2).

Figure 3 Results of OCT examination for each measured layers in MS and NSWMLs
patients.
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Table 2. Differences in OCT parameters of MS and NSWMLs patients.

Characteristic MS (n = 41) NSWMLs (n = 19) p-Value

pRNFL average, µm 107.5 (99.5; 116.0) 109.5 (107.5; 119.0) 0.185
pRNFL superior, µm 128.0 (114.0; 136.5) 128.5 (122.0; 142.0) 0.293
pRNFL inferior, µm 123.0 (110.5; 137.0) 131.5 (127.5; 140.0) 0.088
pRNFL nasal, µm 70.0 (64.5; 75.0) 73.0 (68.5; 74.0) 0.579

pRNFL temporal, µm 69.5 (65.5; 75.5) 73.5 (68.0; 76.5) 0.218
Average GCIPL, µm 80.0 (75.0; 85.5) 85.5 (84.5; 86.5) 0.024 *

Average mRNFL, µm 28.0 (27.0; 30.5) 30.0 (28.5; 32.5) 0.030 *
Average MV, mm3 6.90 (6.43; 7.17) 7.03 (6.93; 7.19) 0.110

Data are presented as the median (Q1; Q3). * p < 0.05. Groups were compared with the Mann–Whitney U-test for
continuous variables and the χ2 test or Fisher’s exact test for nominal variables. Abbreviations: MS, multiple
sclerosis; NSWMLs, nonspecific white matter lesions; pRNFL, peripapillary retinal nerve fiber layer; GCLIPL,
ganglion cell inner plexiform layer; mRNFL, macular retinal nerve fiber layer; MV, macular volume.
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Figure 3. The boxplots of OCT parameters measured in MS and NSWMLs groups. Abbreviations:
MS, multiple sclerosis; NSWMLs, nonspecific white matter lesions; pRNFL, peripapillary retinal
nerve fiber layer; GCIPL, ganglion cell inner plexiform layer; mRNFL, macular retinal nerve fiber
layer; MV, macular volume. p values were obtained from the Mann–Whitney U test for continuous
variables and χ2 test or Fisher exact test for nominal variables. * indicate significant difference
(p ≤ 0.05).

To identify a combination of variables differentiating the MS and NSWMLs groups,
logistic regression was used. Parameters that were significantly different between MS
and NSWML patients were used in the logistic regression model with MS as an outcome
variable, including age as a covariate. The first step involved building a range of simple
regression models with one predictor variable in each. According to the simple regression
models, two parameters significantly influenced the risk of MS: GCIPL (p = 0.024) and
mRNFL (p = 0.028). All parameters increased the risk of MS when they decreased in
value by 1. GCIPL alone increased the risk of MS by 18.6% (95% CI 2.7%, 25.3%), and
mRNFL alone increased the risk of MS by 27.4% (95% CI 4.5%, 62.3%). The next step
involved a stepwise logistic regression including all the variables. According to this model,
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a decline in GCIPL is the best predictor of MS. Validation of the stepwise model with
the χ2 test confirmed that the model was significant (p = 0.023). Model assessment with
Nagelkerke’s R2 coefficient showed that the model explained 25.8% of the data variation.
The Hosmer–Lemeshow goodness-of-fit (GOF) test (p = 0.008) also confirmed a suitable
fit of the model to the data. The results of the logistic regression model are presented in
Table 3 and Figure 4.

Table 3. Logistic regression model for MS and NSWMLs patients.

Characteristic
Simple Regression Stepwise Regression

Coeff. (SE) p OR (95% CI) Coeff. (SE) p OR (95% CI)

Average GCIPL, µm −0.11 (0.05) 0.024 0.894 (0.798; 0.974) −0.11 (0.05) 0.024 0.894 (0.798; 0.974)
Average mRNFL, µm −0.24 (0.11) 0.028 0.785 (0.616; 0.957) - - -

Constant 11.68 (4.73) 0.014

Abbreviations: Coeff., beta coefficient of logistic regression; SE, standard error for coefficient; CI, confidence interval; OR, odds ratio,
GCIPL, ganglion cell inner plexiform layer; mRNFL, macular retinal nerve fiber layer.
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Figure 4 Results of the logistic regression model.

4. Discussion

The highly heterogeneous and fluctuating symptomatology of MS and the lack of
specific disease biomarkers make the diagnosis of MS challenging and complicated in
many cases. In clinical practice, among various conditions that should be taken under
consideration in the differential diagnosis of MS, an important and constantly growing
group consists of patients with asymptomatic NSWMLs detected on MRI [6,7,31]. Although
MRI is a widely accepted paraclinical tool in the diagnosis of MS, its main limitation is its
low specificity [4,5]. In recent years, OCT has proven to be a promising diagnostic method
and has been gradually incorporated in MS scientific and clinical research [12,32]. In this
cross-sectional study, we aimed to investigate the applicability of OCT in the differential
diagnosis of MS and NSWMLs patients. To our knowledge, this is the first study analysing
the use of OCT in such clinical situations.

In our study, we demonstrated lower thickness of the GCIPL and mRNFL in MS
compared with NSWMLs patients. Moreover, we found that thinning of the GCIPL and
mRNFL increased the risk of MS diagnosis in our group of patients, while GCIPL thickness
was the best OCT marker discriminating MS from NSWMLs patients.
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pRNFL thickness represents the most intensively studied and widely used OCT
parameter in MS [32–35]. The results of longitudinal studies showed the prognostic
value of pRNFL thickness for the prediction of clinical progression (disability worsening
and relapse) and its high sensitivity to inflammatory changes and damage caused by
ON [33,36–38]. The unique structural composition of the pRNFL (the innermost retinal
layer, composed of unmyelinated axons) makes the assessment of this structure an attractive
marker of brain axonal degeneration [39,40]. This assumption is already supported by
the results of studies evaluating the correlation between pRNFL thickness and brain and
spinal cord atrophy [41–44]. One retinal structure that is less prone to the influence of
changes associated with acute or remote (≥6 months) ON is GCIPL [45–47]. On the other
hand, in the acute stage of ON, GCIPL thinning progresses faster than pRNFL thinning [48].
The available data also suggest that GCIPL thinning is more specific for MS [32]. A
reduction in GCILP thickness in MS patients has been described in many studies [32,48].
The results indicate that GCIPL atrophy may act as a surrogate for an accurate estimate
of neurodegeneration, neuroprotection, and/or remyelination in clinical practice and
clinical trials [32,35,39]. It is also commonly accepted that GCIPL seems to be a promising
marker of disease progression [49]. In a recently published study, Bstech et al. found
that baseline macular GCPIL thickness ≤ 77 µm was associated with an increased risk of
disability progression, and annual thinning of macular GCIPL cut-off ≥ 1 µm identified
clinically progressing patients [49]. Assessment of MV is another standard parameter in
OCT examination [32,39]. Recently published results indicate that MV loss may represent
brain grey matter atrophy arising from retrograde degeneration from lesions in the optic
nerves, chiasm, or tracts, which places the measure of the MV among possible markers of
brain neuronal damage [39,50].

Although intensively studied, the application of OCT in the differential diagnosis
of MS is not well established. The majority of published studies evaluate the role of
pRNFL and GCIPL thickness measurements in the differential diagnosis of MS and other
inflammatory CNS conditions, e.g., NMOSD, MOG antibody-associated disease, SLE,
neurosarcoidosis, and Behcet’s disease [13–17,51]. In our recently published work, we
assessed whether OCT measurements can provide a useful biomarker for distinguishing
MS patients from patients with CNS involvement in the course of CTD [17]. Although
there were no significant differences between MS and CTD patients, our analysis revealed
clear differences in multiple OCT parameters between healthy controls and CTD patients.

To our knowledge, only few studies have analysed the use of OCT to evaluate retinal
pathology in NSWMLs patients. Kim et al. [52] assessed the pRNFL on fundus photographs
in patients with cerebral small vessel disease (SVD) with NSWMLs. They detected pRNFL
damage in 5.4% of SVD patients. The risk of pRNFL damage was associated with the
occurrence of MRI white matter lesions, hypertension, older age, and male sex. In another
study, the authors investigated the thickness of retinal layers in patients with NSWMLs and
healthy controls [53]. Thicknesses of the mRNFL and the GCIPL were significantly reduced
in NSWMLs patients compared to healthy controls. Factors increasing the risk of macular
RNFL thinning were older age, higher body mass index, and more advanced brain damage,
as measured by the Fazekas score. A reduction in GCIPL thickness was associated with
older age, a higher Fazekas score, and a history of smoking. The results from this study
showed that degeneration of the retina measured by mRNFL and GCIPL thickness was
associated with NSWMLs and deteriorated with the number of the lesions. Another recently
published study, performed with OCT angiography, demonstrated correlations between
pRNFL thickness and macular microvascular damage and the number of white matter
lesions assessed on the Fazekas scale [54]. Although OCT is widely used in MS research
and, as indicated above, few studies have addressed OCT in patients with NSWMLs, to our
knowledge, there are no data concerning OCT application in the differential diagnosis of
these two clinical conditions. In our study, we found that GCIPL thickness was significantly
lower in MS patients than in NSWMLs patients. Although Knier et al. [20] described lower
GCIPL thickness in RIS patients than in subjects with NSWMLs, in more recent literature,
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there are no reports describing a direct comparison of GCIPL between MS and NSWMLs
patients.

One explanation of our finding is based on the well-recognised phenomenon of
trans-synaptic degeneration [55–59]. Lesions in the optic radiation and visual cortex may
prompt retrograde axonal degeneration and changes in deeper layers of the retina. An
accurate analysis of lesion locations on MRI images of our population was not within the
scope of this study, but we included MS patients with MRI images characteristic of MS
(dissemination in space) with possible lesion locations in optic radiation and visual cortex.
Another interpretation of the differences in GCIPL thickness between MS and NSWMLs
patients is based on the commonly accepted theory that GCIPL thickness may provide an
estimate of axonal neurodegeneration in MS patients [60–62], and we can assume that this
pathomechanism has no application in NSWMLs patients.

We also found lower mRNFL thickness in MS patients than in NSWMLs patients. The
previously mentioned study [20] reported a lower mRNFL volume in clinically isolated
syndrome (CIS) and RIS patients than in NSWMLs patients. Lower mRNFL volume in RIS
patients was associated with subsequent MRI activity and in CIS patients with conversion
to clinically definitive MS. Interestingly, the authors did not observe any differences in
OCT results between NSWMLs patients and healthy controls [20].

Surprisingly, we did not observe any differences in segmental and average thickness
of the pRNFL between MS and NSWMLs patients. Thinning of the pRNFL has been
observed in MS-ON and also in MS-NON eyes [39,60,63,64]. However, some results did
not confirm these observations [39,64–67]. Data comparing pRNFL thickness in MS and
NSWMLs patients are scarce. In the study by Knier et al., the authors did not find any
differences in the pRNFL among RIS, CIS, and NSWMLs patients and healthy controls [20].
Accordingly, it was postulated that other OCT parameters, such as GCIPL or mRNFL
thickness, may have greater value than pRNFL in the assessment of neuroaxonal damage in
MS [39,60,66,67]. Anatomically, the pRNFL, macular RNFL, and GCIPL constitute one unit
of the visual pathway. Any damage to this pathway gives rise to retrograde trans-synaptic
degeneration, which causes atrophy of the inner retinal layers, mainly the GCIPL [39,60,66].
Moreover, growing evidence indicates that neuroaxonal damage is detectable faster as
GCIPL thickness decreases with than changes of pRNFL [39,48,60,66]. The observed
dissociation between changes in pRNFL thickness and other OCT parameters in MS
patients may at least partially explain the results of our study. Support for this concept
also comes from a study performed by Lotfy et al. [64], who found lower macular RNFL
thickness in MS patients without ON compared with healthy controls, and no differences
in pRNFL thickness between the two groups. Based on published results that show a better
correlation of visual function and disability in MS patients and macular ganglion cell layer
thickness than pRNFL [68], we can assume that in our MS patients, axonal degeneration
may be more pronounced than in NSWMLs patients, and that the measurement of GCIPL
and mRNFL thickness is more reliable than pRNFL in the differential diagnosis of MS.

Surprisingly, we noticed that in our MS patients, MV was not different from that in
NSWMLs patients. The evaluation of MV is a standard parameter in OCT examination [39,60].
In many studies, MV was lower in both MS-ON and MS-NON eyes than in healthy control
eyes [17,39,60]. To the best of our knowledge, there is only one study comparing MV
between NSWMLs patients and other groups. In the study performed by Knier et al.,
MV was comparable among RIS, CIS, and NSWMLs patients and healthy controls [20].
Additionally, in our recently published study [17], we did not detect a difference in MV
between MS and CTD patients with CNS involvement and between the CTD and control
groups. With respect to our actual findings, we postulate that assessment of MV is not
specific enough to differentiate MS from NSWMLs patients.

The final step of our study was to identify an OCT parameter or combination of
parameters that best discriminate MS from NSWMLs patients. We found that GCIPL
thickness had the strongest value in the differentiation of MS and NSWMLs patients. The
predictive value of GCIPL was investigated in different studies [60,66–68]. In the majority
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of studies, GCIPL was described as a suitable predictive marker of visual function after
ON and neurological deterioration, as measured by the EDSS [66–68]. Additionally, in a
recently published study [69], the inter-eye difference in GCIPL thickness differentiated MS
patients in a large community cohort not only from healthy subjects but also from patients
with other diseases. However, there is no information concerning patients with NSWMLs.

The main limitation of this study is the cross-sectional design and small sample size.
We are also aware that we did not assess other retinal sublayers due to technical limitations
of the software installed on our OCT device (reliably distinguishing between the GCL and
the internal plexiform layer). Finally, we did not include a healthy control group in our
analysis; however, OCT was performed by an experienced ophthalmologist using S-OCT,
and the results were automatically compared with a normative database.

5. Conclusions

Despite the indicated limitations, we would like to stress that this is the first study
to apply OCT in the differential diagnosis of MS and NSWMLs patients in a real-world
setting. We conclude that OCT may be helpful as an easily accessible diagnostic tool in the
differential diagnosis of MS, which may have implications for future therapeutic decisions.

Supplementary Materials: Detailed information concerning segmentation, representative OCT and
MRI image of MS and NSWMLs patients, Certificate of English language editing. The following are
available online at https://www.mdpi.com/article/10.3390/s21217127/s1, Figure S1: Example OCT
macular scan and segmentation by available Copernicus Plus software, Figure S2: Representative
OCT and MRI images of patients with MS and NSWMLs.
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