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Abstract

Two classical multivariate statistical problems, testing of multivariate normality and the k-

sample problem, are explored by a novel analysis on several resolutions simultaneously.

The presented methods do not invert any estimated covariance matrix. Thereby, the meth-

ods work in the High Dimension Low Sample Size situation, i.e. when n� p. The output, a

significance map, is produced by doing a one-dimensional test for all possible resolution/

position pairs. The significance map shows for which resolution/position pairs the null

hypothesis is rejected. For the testing of multinormality, the Anderson-Darling test is utilized

to detect potential departures from multinormality at different combinations of resolutions

and positions. In the k-sample case, it is tested whether k data sets can be said to originate

from the same unspecified discrete or continuous multivariate distribution. This is done by

testing the k vectors corresponding to the same resolution/position pair of the k different

data sets through the k-sample Anderson-Darling test. Successful demonstrations of the

new methodology on artificial and real data sets are presented, and a feature selection

scheme is demonstrated.

Introduction

In practice, it is frequently assumed that a data set can be described by a multivariate normal

distribution. Many common statistical procedures rely on the data being multinormal, some-

thing which is often not adequately checked before using the procedures [1–3]. Often, this

assumption is false for either the whole data set or parts of it. Another classical problem is the

testing of whether k multivariate data sets originate from the same distribution. For each of the

two problems, a scale-space inspired algorithm that tests all resolutions and positions simulta-

neously, is presented. See the “Materials and methods” section for definitions of “resolution”
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and “position”. The two presented algorithms are very similar apart from the type of one-

dimensional tests used. A weighted summation is performed across the dimensions/positions

in both algorithms. The notion of resolution is connected to the number of dimensions being

summed across, while the different dimensions/positions typically are temporal or spatial

samples.

Scale-space theory is a framework for representing signals on multiple scales/resolutions,

developed by the computer vision, image processing and signal processing communities.

The development of scale-space methodology is typically regarded to start with two papers by

Witkin [4, 5]. A recent review by Holmström and Pasanen [6] shows how scale-space method-

ology has been extended to a large number of areas. The goal of statistical scale-space method-

ology is to extract features from noisy data at several levels of resolution. Typically, the data is

an observed time series or a digital image where features at different temporal or spatial scales/

resolutions might be of interest. Since the scale-space idea is important in the present paper,

we introduce the scale-space idea through the SiZer methodology developed by Chaudhuri

and Marron [7]. To this end, we produce the output from SiZer in Fig 1 when applied to an

artificial data set. SiZer is based on nonparametric smoothing and the upper panel shows the

artificial data points as dots and a large number of curves obtained for different values of the

smoothing parameter. In this setting, the scale/resolution corresponds to the value of the

applied smoothing parameter. A rough curve in the upper panel corresponds to a small

smoothing parameter and hence to a short scale. Long scales correspond to smooth curves

obtained by large values of the smoothing parameter. The SiZer map in the lower panel reveals

what features the observed data contain at different scales. In this context, a black pixel means

that the curve is significantly increasing, a white pixel corresponds to a significantly decreasing

feature, and a gray pixel corresponds to a situation where the curve is considered to be flat.

Fig 1. SiZer map of artifical data. The upper panel shows the artifical values as dots and a set of smoothed curves with

different smoothing bandwidths. The solid line, which is very close to the true underlying signal, corresponds to a

computer-chosen optimal bandwidth. In the lower panel, the vertical axis corresponds to, from top to bottom, wider to

narrower smoothing bandwidths (the horizontal line corresponds to the computer-chosen optimal bandwidth). White

and black pixels correspond to significant decrease and increase, respectively. Gray pixels correspond to situations

where the background signal can be assumed constant.

https://doi.org/10.1371/journal.pone.0211044.g001
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From Fig 1, it can be seen that SiZer flags regions as significantly decreasing and/or increasing

for different positions and smoothing parameters.

In the present paper, we will adapt the SiZer methodology to our situation and develop a

scale-space methodology that can be useful for the k-sample problem and for testing of

multinormality.

The presented algorithms have two aspects that make them useful in many situations. As

will be shown, the algorithms avoid the need to estimate the covariance matrix, leading to

algorithms that can handle the High Dimension Low Sample Size (HDLSS) situation. Fur-

thermore, the algorithms allow an evaluation of the data set for all resolutions and all posi-

tions simultaneously. By this approach, it may, for the multinormality testing, be detected if

only some parts of the data set originate from a multinormal distribution. For the k-sample

case, the scale-space approach can detect if one or more of the k samples differ on different

resolutions and/or positions. By not estimating the covariance matrix, the presented scale-

space tests potentially loose some power compared to tests that incorporate the information

from the estimated covariance matrix. This loss of power is acceptable on the grounds of

being able to handle the HDLSS situation. As a result of the summation, the algorithms will

include a large number of one-dimensional tests. Two versions of the Anderson-Darling

(AD) test (see the “Anderson-Darling testing” section) are applied as one-dimensional tests

for the multinormality testing problem and the k-sample problem. The choice of using the

AD test is a result of its excellent power against all alternatives and existence of very good

approximations for the asymptotic distribution and formulas adjusting for the finite sample

sizes [8–10].

For the results presented, the Anderson-Darling (AD) test (see the “Anderson-Darling test-

ing” section) is used for both the multinormality testing and the k-sample problem as the one-

dimensional test used on the summations. The choice of using the AD test is a result of its

excellent power against all alternatives and existence of very good approximations for the

asymptotic distribution and formulas adjusting for the finite sample sizes [8–10].

A simple artificial example is presented to illustrate the main ideas of the paper. The data

set is generated to have a distribution that is multivariate normal for some of the dimensions

and a mixture of two different normal distributions for the rest of the dimensions. In particu-

lar, the population is a mixture of two different underlying true signals. In the first population,

20 signals are sampled from a zero mean Gaussian autoregressive process of order 1, more spe-

cifically cov(Xi, Xj) = 0.51+|i−j|. The remaining 20 signals have the same covariance structure,

but a different mean. In particular, the mean of the second population is equal to −2.15 for

position 6 to 12 and −3.5 for position 20. For indices 26, . . ., 40, the expected value increases

linearly from 0.1 to 2.5, while the rest of the dimensions have expectation equal to zero. Fig 2

shows all the 40 signals of length 50.

Fig 3 shows the resulting significance map from the proposed multinormality test of the

data in Fig 2. The horizontal axis is the same as in Fig 2 and shows the position, while different

window widths are given on the vertical axis. These different window widths represent the res-

olution part of the presented algorithms. Resolution 1 corresponds to testing the marginal dis-

tribution of each dimension. Higher resolutions are results of normality tests of local averages

at a corresponding position and corresponding window width. For a distribution to be multi-

normal, all marginals and all local averages must be normally distributed. By going through

the test results for all resolution/position pairs, the significance map is produced. Red pixels

mark Bonferroni [11] adjusted rejections of the null hypothesis of normality, i.e. indicating

that the part of the data matrix that is summed across cannot be considered as a sample from a

multinormal distribution. Note that the abrupt deviation from normality at dimension 20 is

found on low resolution values, while the more gradual departure from multinormality at
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dimension 6 to 12 and dimensions 25 to 40 are found on larger resolution values. This example

shows that both low and high resolutions may be of importance in the same data set.

The “Materials and methods” section presents the concept of scale/resolution and space/

position as used in this paper, the statistical problems being investigated and the details of the

two presented algorithms. Some investigations into the power of the tests are also presented.

In the “Results” section, the algorithms are applied to some real data sets, comparisons with

other algorithms are done, and a feature selection scheme is presented and tested on real data.

Finally, the “Conclusions” section sums up the presented methods.

Materials and methods

Recall that an important motivation for applying a scale-space approach is the fact that differ-

ent phenomena can be visible/detectable on different resolutions and/or positions of the data

set. In classical nonparametric smoothing schemes, some sort of bandwidth parameter has to

Fig 2. All 40 artificial signals of length 50.

https://doi.org/10.1371/journal.pone.0211044.g002

Fig 3. Significance map of the test for multinormality of an artificial data set. Red indicates rejection of the null

hypothesis (multinormality) for that window width/position. For a given resolution, the horizontal distance between

the two gray lines equals the width of the summation window of that resolution.

https://doi.org/10.1371/journal.pone.0211044.g003
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be chosen [12]. By selecting one bandwidth only, features detectable on other bandwidths will

not be found. However, using a scale-space approach, one can look at all bandwidths simulta-

neously. Scale-space ideas have proven useful in many areas and have been applied to feature

detection in curves and images [7, 13], density estimation [14], curve fitting [15], Bayesian

time series analysis [16] and spectral feature detection [17].

Assumptions

For the multinormality testing case, let X1, X2, . . ., Xn be a set of p-dimensional vectors. The

null hypothesis assumes that these vectors originate from a p-dimensional multinormal distri-

bution N ðμ;ΣÞ, i.e.

H0 : Xi � N ðμ;ΣÞ 8 i;

where the mean vector μ and the covariance matrix Σ are unknown. For the presented algo-

rithm, the parameters of this assumed multinormal distribution do not have to be estimated.

Note that by avoiding the need for an estimate of the covariance matrix, the algorithm can be

applied to data sets with any combination of sample size and sample dimension, as long as the

sample size is high enough for the one-dimensional normality test to be applicable.

The algorithm works with any covariance structure and there are no requirements for

smoothness of expected values of neighboring dimensions. As will be presented later, the algo-

rithm performs a weighted summation across neighboring dimensions. A motivation behind

this summation is that neighboring dimensions frequently have some sort of logical connec-

tion to each other, as for example in a time series. When the data set consists of a time series,

the different dimensions are equivalent to the different sampling times. If the dimensions are

shifted around, the algorithm could produce different results. Therefore, interpretations of the

results are easier when the different dimensions have a natural ordering, as for example with

spatial or temporal data.

For the k-sample case, each of the k samples consist of a given number (which can be differ-

ent for each k) of p-dimensional vectors with unknown cumulative distribution functions

(CDF), given by F1, F2, . . ., Fk, respectively. The null hypothesis is then stated as

H0 : F1ðxÞ ¼ F2ðxÞ ¼ � � � ¼ FkðxÞ; 8 x 2 Rp
: ð1Þ

Since this methodology only tests whether or not the CDFs all are the same, the CDFs can

take any form or belong to any class of distributions. Again, the interpretations of the results

are easiest when working with data having a natural ordering.

Concept of resolution and summation across dimensions

One of the main ideas of this manuscript is testing simultaneously for many different resolu-

tions and positions. The resolution value equals the number of different dimensions being

summed across. The lowest resolution value of 1 corresponds to a test of the marginal distribu-

tions. At resolution 3, the result of the summation for position/dimension d is a weighted (see

Eq (2)) summation of the sample values with position index d − 1, d and d + 1. For other reso-

lutions, completely analogous summations are performed. Note that by this summation, small

differences within the data can be detected, even though this difference might not be detected

for lower resolutions. The set of default resolutions is chosen to be {1 3 5 7 9 11 15 21 29 39 51

65 81 99 . . . smax}, i.e. for i� 5 the resolution values are given as si+1 = si + 2 � (i − 4) up to a

maximum resolution smax� p, where s5 = 9. Alternatively, one can choose to only include res-

olutions up to some upper resolution.
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For each of the different resolutions s, a weighted summation across different dimensions/

positions is performed, producing Ls,d, where d is the position index ranging from 1 to p and

Ls,d is a vector of length n. The resulting Ls,d’s form a matrix L with size [ns, p, n], where ns is

the number of resolutions being used. A discrete Epanechnikov [12] window function is used

as summation weights. For a given pair of s and d, the Epanechnikov summation window is a

column vector given by

ws;dðiÞ � K � 1 �
i � d
ds=2e

� �2
" #

þ

; i ¼ 1; . . . ; p; ð2Þ

where K is some normalizing constant, d�e is the ceiling function, and the plus function is

defined as [f(x)]+�max[0, f(x)] for some functional value f(x). The Ls,d vector is generated

through

Ls;d ¼ X � ws;d;

where the data matrix X has size [n, p], with the n samples of length p along each row, and �

indicates normal matrix multiplication. The resulting vector Ls,d is thereby a weighted summa-

tion across the s dimensions centered on the d-th dimension. Fig 4 shows how the algorithm

generates the L matrix and how it is used to generate the output matrix, that is the significance

map R, with different resolutions on the vertical axis and position on the horizontal axis.

As an example one can calculate the vector elements of the L matrix corresponding to the

resolution/position pairs (1, 1), (2, 2) and (3, 4) of the data matrix

X ¼

0 0 0 1 1

0 1 1 3 2

1 1 0 1 1

2 1 1 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

The Epanechnikov weights for the given resolution/position pairs equal w1,1 = [1, 0, 0, 0, 0]T,

w2,2 = 1/10 � [3, 4, 3, 0, 0]T, and w3,4 = 1/30 � [0, 5, 8, 9, 8]T, where T indicates the transpose. The

resulting vector elements are

L1;1 ¼ ½0; 0; 1; 2�
T
; L2;2 ¼

1

10
� ½0; 7; 7; 13�

T
; L3;4 ¼

1

30
� ½17; 56; 22; 13�

T
:

Normality testing

From the matrix L, the actual one-dimensional normality test statistics are calculated. For each

of the (s, d) pairs, the p-value of the AD test statistic of the vector Ls,d is stored. To address the

problem of multiple testing, the algorithm outputs two significance maps, one based on the

Bonferroni approach and one based on False Discovery Rate (FDR) [18]. The p-dimensional

vector of p-values of each resolution is fed into FDR, generating the FDR-based significance

map resolution by resolution. For the Bonferroni approach, the critical value is obtained from

the nominal significance level α divided by the number of dimensions p, producing on average

one false alarm every 1/α resolution. This follows the usual SiZer recommendation of adjusting

the significance for each resolution separately. The alternative, adjusting the output map for all

the resolution/position pairs simultaneously, is known from the SiZer literature to be overly

conservative [7]. The nominal significance level is by default equal to α = 0.05.
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The k-sample problem

For the k-sample problem, the k data matrices X i; i ¼ 1; . . . ; k are all put through the summa-

tion procedure of Fig 4, producing L i; i ¼ 1; . . . ; k. For each resolution/position pair (s, d),

Fig 4. Workflow chart. The data matrix X has dimensions [n, p] = [4, 5]. The summation matrix L has dimensions

[ns, p, n] and each Ls,d is a vector of length n. The significance matrix R has dimensions [ns, p]. The red box, which only

spans one dimension, indicates that for the lowest resolution value, no summation is performed across the dimensions.

For the green and blue boxes, summation is performed across dimensions 1–3 and 2–5, respectively. The blue box is

adjusted to not extend outside the data matrix. Note that two significance maps are produced, one each for the

Bonferroni/FDR approaches, with ones in R marking rejections of the null hypothesis for the corresponding

resolutions and positions. When plotting the significance maps, the vertical axis is inverted.

https://doi.org/10.1371/journal.pone.0211044.g004
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the k corresponding vectors (of size ni, i = 1, . . ., k) from the L i matrices are fed into the k-

sample AD test [9, 19]. The distributions of the sums along the dimensions will in general be

different from the marginal distributions. Nevertheless, if the k data sets do have the same mul-

tivariate distribution, for a given resolution/position pair (s, d), the distributions of the k differ-

ent summation vectors will be the same. The p-values of the tests are stored and used in the

generation of the FDR-based significance map, while the Bonferroni approach finds the critical

value as for the multinormality testing. If the null hypothesis is rejected, the (s, d)-element of

the output matrix is marked as a significant element, indicating that at least one of the empiri-

cal distributions are significantly different from the others for this resolution/position pair.

Anderson-Darling testing

The two algorithms presented use three different AD tests. The AD goodness-of-fit test is used

in the case of checking for multinormality [20–22]. For the two-sample/k-sample case, the ver-

sions of the AD test suggested by [9] and [19], respectively, are used.

The AD goodness-of-fit test checks the simple null hypothesis that a sample is from a distri-

bution with a known continuous CDF, F(x). Let x1� x2� � � � � xn be the ordered sample of

size n, and let ui = F(xi), i = 1, . . ., n. The AD test statistic is defined as

A2
n � � n �

1

n

Xn

i¼1

ð2i � 1Þ ln uið1 � un� iþ1Þ
� �

: ð3Þ

This clearly shows that the AD test is distribution free, as long as the null distribution is

fully known. Approximate expressions for the asymptotic distribution of the AD test are given

by [8, 10].

When testing for multinormality with unknown distributional parameters, i.e. testing a

composite hypothesis, F(x) is some unknown normal CDF, something which changes the dis-

tribution of the AD test statistic. In this case, the sorted data are normalized, producing zi,
i = 1, . . ., n. Then, u0i ¼ F0ðziÞ is produced, where F0(�) is the standard normal CDF. These u0i
values are fed into Eq (3), and the final test statistic is obtained by applying the correction fac-

tor for finite sample sizes given on page 123 of [23]. The p-values and critical values are calcu-

lated from the approximations given on page 127 of [23]. Following page 373 of [23], the

presented algorithm requires n� 8. The presence of ties in the data is a good indicator of non-

normality, something which the AD test will reflect too. For instance, if normally distributed

data is in some way rounded off, the rejection rate will be higher than the rate expected from

the prescribed significance level.

For the k-sample case, there is no need to estimate any parameters, and the test statistic

reduces to a rank statistic. Hence, under the null hypothesis, the distribution of the test statistic

is independent of the distribution of the k samples. The two-sample case and the k-sample case

are treated separately, even though the k-sample reduces to the two-sample case in [9] when

k = 2. The correction factor in [9] is used to produce the final two-sample test statistic. [9]

shows that the distribution of the sample-size adjusted two-sample AD test statistic can be

approximated well by the asymptotic distribution of the AD goodness-of-fit test for a fully

known null distribution. The presented algorithm uses Equation (3.6) in [10] to produce the

approximate p-value of the test statistic when k = 2.

The general k-sample AD test statistic in [19] is given as

AkN �
1

N

Xk

i¼1

1

ni

XN� 1

j¼1

ðNMij � jniÞ
2

jðN � jÞ
;
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where N = n1 + n2 + � � � + nk, and Mij is the number of observations in the i-th sample that are

not greater than the j-th observation of the pooled sample of all k samples. Equation (6) in [19]

modifies the expression for AkN, to be able to handle ties in the data. The presented algorithm

uses the expression adjusted for ties, both for the two-sample and k-sample cases. Thereby,

Fi(x) in Eq (1) can be connected to a continuous or discrete random vector. The interpolation

scheme of [19] is used to determine the p-value of AkN when k> 2. Inspired by [9], it is

required that all ni� 8, i = 1, . . ., k.

In theory, any omnibus, univariate test that achieves a specified significance level can be

used in the presented framework for testing the results of the weighted summations. Relying

on power studies by [24–26], the well-known, univariate Shapiro-Wilk test [24, 27, 28] is seen

as the best alternative to the univariate AD test used for multinormality testing. Other tests

that were considered include Watson’s U2 test [29], Kuiper’s test [30], Lilliefors’ test [31], the

Cramér-von-Mises test [32], the Shapiro-Francia test [33], D’Agostino-Pearson’s K2 test [34,

35], the Jarque-Bera test [36], and Doornik’s test [37]. Other tests considered for the k-sample

case include the Kolmogorov-Smirnov test [38], the Cramér-von-Mises test [38], and Watson’s

U2
k test [39].

Cramér-Wold

The Cramér-Wold theorem states that two random column vectors X and Y have the same dis-

tribution if and only if for all row vectors a, the random variables a � X and a � Y have the same

distribution [40]. In the presented algorithms, the different summation weights of the Epa-

nechnikov window take the role of a. Thereby, when doing the summation and testing for nor-

mality/difference between samples for many resolutions, a set of a vectors are applied to the

single or many data sets. The Cramér-Wold theorem requires that the distribution of a � X and

a � Y are equal for all possible a vectors. In the presented setting, only a finite number of vectors

are tested. Since the presented algorithms are most suitable for data with some sort of neigh-

boring structure (e.g. time series or spatial data), the important a vectors should be those that

look at dimensions close to each other to a varying degree. Hence, following the Cramér-Wold

theorem, a lack of rejection for (almost) all resolutions/positions should be seen as a good indi-

cation of the null hypothesis actually being true for the whole data set.

Significance of rejections

The p-value is available for all the resolution/position pairs. The lower the p-value of a “rejec-

tion pair”, the more significant the rejection of the null hypothesis is on that resolution/posi-

tion. By changing the significance level, one can determine on which resolution/position the

null hypothesis is most significantly rejected. In Fig 5 the example of the Introduction is revis-

ited, where significance levels of 0.005 and 0.001 are used, compared to 0.05 in the Introduc-

tion. By comparing Fig 5 to Fig 3, it is clear that for this realization, the most significant region

is the single non-normal dimension of position index 20, and the region from index 26 to 40 is

the second most non-normal.

Power of the scale-space tests

There are no clear templates for power studies of the proposed scale-space tests. After the sum-

mations are done, the tests use the well-documented AD tests. Thereby, the power of the scale-

space tests is connected to the power of the AD tests. Instead, it can be informative to illustrate

how the power varies over the different resolution/position pairs of the output matrix for a

given example. Assume that the data set has the same structure as in the motivational example

of the Introduction. Fig 6 shows the rejection ratio (from 1000 data sets) of the scale-space test

Scale-space approach for multinormality testing and the k-sample problem in the HDLSS scenario
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for multinormality. As can be seen, one finds the highest powers for the resolution/position

pairs that best fit the non-normal dimensions. Similar results would be obtained for the test

for comparing k data sets.

To investigate the effect of increased number of dimensions, a number of normally distrib-

uted dimensions are added to the right side of the signal of the Introduction. Table 1 shows the

Fig 5. Significance maps of the scale-space multinormality test for the data of the Introduction. Left/Right:

Significance level of 0.005/0.001.

https://doi.org/10.1371/journal.pone.0211044.g005

Fig 6. Rejection ratios of all resolution/position pairs for 1 000 replications of the motivational example.

https://doi.org/10.1371/journal.pone.0211044.g006

Table 1. Power of test for multinormality when the signal of the Introduction is augmented with a number of normally distributed dimensions.

Window width/position pair

1/20 7/9 9/37

Dimensions in total FDR Bonf. FDR Bonf. FDR Bonf.

50 0.735 0.687 0.863 0.684 0.808 0.563

100 0.619 0.583 0.773 0.596 0.668 0.440

250 0.457 0.443 0.578 0.433 0.481 0.272

500 0.331 0.312 0.411 0.295 0.334 0.197

1000 0.264 0.248 0.298 0.219 0.227 0.116

https://doi.org/10.1371/journal.pone.0211044.t001
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power of the multinormality test for different number of dimensions and for the FDR/Bonfer-

roni correction. The case of 50 dimensions in total corresponds to the power of the pairs of Fig

6. From this it is clear that the power decreases as the number of dimensions grows, which is

to be expected as adjustments for multiple testing are enforced.

Results

The presented algorithms are tested on a number of different data sets. A five percent signifi-

cance level is used for all the figures, unless otherwise stated. First, the initial example of the

Introduction is investigated in more detail.

Introductory example revisited

For larger resolutions, the scale-space test for multinormality can be shown to increase the

mode separation if the distribution has more than one mode. This is demonstrated through

some simple examples. Assume that all the dimensions of some data set are unimodal normal

with different means and/or variances for different dimensions. The result of the summation

will then be some other normal distribution.

A short example of this is given. Assume that the data matrix X has dimensions [10, 3] and

that column 1, 2, and 3 contain N ð0; 1Þ, N ð4; 1Þ, and N ð8; 1Þ, distributed variables, respec-

tively. The summation (for simplicity, assuming even weights of 1/3) over these three columns

would produce a 10-element long vector with distribution N ð4; 1=3Þ, which the AD test

would detect as normal, i.e. the test would not reject it.

Now assume that the ten samples of a given dimension do not have the same distribution.

Assume that the five first samples of the three columns are distributed as N ð1; 1Þ, while the

last five are distributed as N ð0; 1Þ. When checking the columns separately, the 10-element

vector might not “look” enough different from a unimodal normal distribution to be rejected

by the AD test. When summing (again, assuming even weights of 1/3) over the three columns,

the distribution of the sum of the first five samples is given by N ð1; 1=3Þ, while the last five

have a N ð0; 1=3Þ distribution. This shows that the peaks have larger separation (both vari-

ances have decreased) as a result of the summation.

Multinormality of temperature data

A data set obtained from the Norwegian Meteorological Institute is analyzed. The data show

daily mean temperature for the 92 days of June–August for the period 1937 to 2008 at Blin-

dern, Oslo. This gives a data matrix of dimensions [n, p] = [72, 92], making algorithms that

rely on inversion of the estimated covariance matrix impossible to use. A plot of all the 72

years is given in Fig 7.

Fig 8 gives the multinormality check results. Note that significant features are found both

for the FDR and Bonferroni correction. To see what is going on, the period around time point

75 (i.e. in the middle of August) is shown in Fig 9. From this figure it seems that the mean tem-

perature is around 15˚C, but the temperature distribution around this time is skewed upwards.

This means that Oslo at this time of the year experiences larger positive than negative devia-

tions from the mean, which is not a surprising result if you have knowledge about the climate

in that area.

Comparison of temperature records

Temperature data sets from two different meteorological stations in the Oslo area are com-

pared. One is located at Ferder lighthouse at the start of the 100 km long Oslo fjord, while the
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other is located at Fornebu, which is at the very inner part of the Oslo fjord. The two data sets

consist of more or less overlapping yearly records, with 64 and 45 complete years, respectively.

Years with missing data in the months of interest have been removed. Fig 10 shows the two

data sets, and Fig 11 shows the resulting significance maps. It is clear that the temperature

Fig 7. Daily mean temperatures at Oslo, Blindern, for the period 1937-2008.

https://doi.org/10.1371/journal.pone.0211044.g007

Fig 8. Significance maps for summer temperatures in Oslo. See Fig 3 for annotation details.

https://doi.org/10.1371/journal.pone.0211044.g008
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distribution at the two stations differ early and late in the summer. From a closer inspection,

it is clear that Fornebu is warmer in early summer, while the opposite effect takes place a few

months later.

Comparison to other methods

Just about all methods for testing for multinormality rely in some way on inverting the esti-

mated covariance matrix. When the number of samples is less or equal to the number of

dimensions (HDLSS setting), i.e. when n� p, the estimated covariance matrix is non-invert-

ible. The projection methods of [41] and the method based on Srivastava’s graphical method

in [42] are applicable in this HDLSS setting, but no open implementations of the methods

Fig 9. Mid-August temperatures in Oslo for the years 1937–2008.

https://doi.org/10.1371/journal.pone.0211044.g009

Fig 10. Temperature data from Ferder (blue) and Fornebu (red) and mean values marked by thick lines.

https://doi.org/10.1371/journal.pone.0211044.g010
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exist for power evaluation. The methods of Liang in [43, 44] are also applicable in the HDLSS

setting and open implementations exist. The preferred method of Liang [43] first transforms

the data matrix, and then projects it onto some lower-dimensional space of dimension d�
min(n − 2, p). The transformed data will under the null hypothesis be distributed as a d-

dimensional standard multinormal vector, something which is checked using the skewness

and kurtosis test of [45]. Asymptotic distributions are given, but in the setting of interest (n is

not large compared to p), the use of the Liang test [43] relies on a permutation procedure for

generating p-values.

It is not straightforward to compare the presented scale-space method to the Liang proce-

dure since the presented scale-space method does not produce one single answer to the

hypothesis testing problem. A simple example is analyzed to illustrate that the presented

method outperforms the Liang test in some settings. Assume the same data set structure as in

the example of the Introduction, except that the only non-normal part is the mixture of dimen-

sions 6 to 12, the other dimensions are zero mean normally distributed. This setup results in

the optimal resolution/position pair being (4, 9), i.e. summing over dimensions 6 to 12. When

the non-zero mean value in this area is 2.35, the presented scale-space method has a detection

ratio of 0.884/0.918 (Bonferroni/FDR) for the pair (4, 9) (based on 1000 Monte Carlo repeti-

tions). The Liang test has for the same data sets a rejection ratio of 0.659. For the Liang test

only the kurtosis test and only the optimal projection dimension (d = 1) are used. In a real set-

ting, the optimal projection dimension would not be known and both the skewness and kurto-

sis test would be used, leading to a significantly lower power when the correction for multiple

testing is done. In the same way, when the non-zero mean value is 2.05, the presented scale-

Fig 11. Significance maps from comparing the temperature data of Ferder and Fornebu with the scale-space

method. See Fig 3 for annotation details.

https://doi.org/10.1371/journal.pone.0211044.g011
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space method has a rejection ratio of 0.569/0.628 for the pair (4, 9), while the Liang test has for

the same data sets a rejection ratio of 0.480.

For the comparison of two or more data sets, there are several methods that handle the n�
p situation. Many of these methods use some kind of distance measure between the data vec-

tors [46–49]. From these distances, the test statistics are generated, without estimating any

covariance matrices. The test by Székely and Rizzo [49] is a k-sample extension of the two-

sample test suggested by Baringhaus [50]. A similar two-sample test was suggested by Aslan

[51]. The Aslan test performed very similar to, but not better than, the Székely-Rizzo/Barin-

ghaus test in the two-sample test case of Table 2. Different projection methods that handle the

n� p situation also exist, e.g. Random Projection (RP) [52] and DiProPerm [53] (see paper for

more methods). For the case of interest (n� p), the tests all rely on permutation procedures to

determine the p-value of the test statistic.

The case of two data sets X and Y is first investigated. The expected value of X is zero for all

dimensions, while Y has one region of a number of neighboring dimensions with a non-zero

expected value. Both X and Y have the same covariance structure as the example of the Intro-

duction. The number of dimensions of Y that have a non-zero mean value is varied, along with

this non-zero value. The upper part of Table 2 shows the results. The result of the scale-space

algorithm refers to the resolution/position pair with the highest rejection ratio.

Of the alternative tests, the method of Székely and Rizzo [49] consistently shows the greatest

power in the tested settings. When the difference between X and Y is across many dimensions,

the power of the Székely and Rizzo test is higher than the power of the scale-space approach. If

there instead is only one dimension with a different distribution of X and Y, the power of the

scale-space approach is greater than for the Székely test. This means that the Székely is a good

alternative approach, but by using the scale-space approach one can determine where in the

data set the difference is located.

For the case of k = 3, the presented scale-space method is only compared to the method of

Székely and Rizzo (the Hall-Tajvidi, RP and DiProPerm tests cannot be extended to k> 2). The

same covariance structure as for the two-sample case is used for the three data sets X, Y and Z. X

Table 2. Power of comparing a number of different data sets with a varying number of dimensions (“Dim”) for

which there is an expected value difference δ in the tested data sets. For the Hall test, the T and S tests gave very sim-

ilar results. Three nearest neighbors were used in the Nearest Neighbor test. The results of the Friedman-Rafsky test

are for three trees, which consistently performed better than one and two trees in this setting. The scale-space results

are for the Bonferroni/FDR correction, respectively. A 0.10 significance level is used and 2000 Monte Carlo samples

are used.

Dim: 1 Dim: 3 Dim: 5 Dim: 7

Two-sample δ = 0.85 δ = 0.75 δ = 0.65 δ = 0.55

Scale-space 0.579/0.591 0.725/0.746 0.722/0.782 0.612/0.725

Friedman-Rafsky [46] 0.273 0.513 0.588 0.570

Hall-Tajvidi [47] 0.166 0.394 0.515 0.513

Nearest Neighbor [48] 0.256 0.487 0.543 0.531

Székely-Rizzo [49] 0.400 0.789 0.866 0.843

RP [52] 0.286 0.410 0.425 0.408

DiProPerm [53] 0.465 0.551 0.518 0.444

Three-sample δ = 0.45 δ = 0.35 δ = 0.325 δ = 0.30

Scale-space 0.608/0.631 0.605/0.633 0.697/0.759 0.719/0.805

Székely-Rizzo 0.330 0.575 0.740 0.807

Seven-sample δ = 0.15 δ = 0.11 δ = 0.10 δ = 0.09

Scale-space 0.731/0.745 0.611/0.633 0.695/0.740 0.672/0.757

Székely-Rizzo 0.295 0.468 0.622 0.675

https://doi.org/10.1371/journal.pone.0211044.t002
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is zero mean, while Y has for some neighboring dimensions a non-zero expected value of δ, and

Z has for the same dimensions a non-zero expected value of −δ. See the middle part of Table 2

for the results. The case of k = 7 is finally investigated in the lower part of Table 2. Here, the dif-

ferent data sets have the same structure as for the case of k = 3, but the different data sets Xi, i = 1,

2, . . ., 7 have mean values equal to i � δ for the non-zero dimensions. From these results, the

scale-space method seems to improve compared to the Székely-Rizzo method when the number

of data sets increase, and the methods are giving comparable results in the tested settings.

Feature selection

In a classification setting, the p-values of the different resolution/position pairs can be used to

find useful scale-space features. The pairs with the smallest p-values should be good candidate

features for classification algorithms. The p-values of neighboring pairs will be correlated (for

all resolution values larger than 1). An ad hoc strategy to avoid the selection of neighboring

pairs is used. That is, say that the most significant pair is at window width 7 (i.e. resolution

number 4) and position 5. Then, all pairs for two resolutions down (resolution number 2 and

3) and two resolutions up (resolution number 5 and 6) that sum over the data of position 5,

are excluded from being selected as a feature as a result of pair (4, 5) being selected as a feature.

The next feature to be selected corresponds to the resolution/position pair, which has not been

excluded in the steps before, with the lowest p-value of the pairs not already selected. This is

repeated until a wanted number of features are found or there are no good features left to pick

from, where a potential feature’s “goodness” is connected to its p-value.

The suggested feature selection algorithm is tested on a setting similar to the example of the

Introduction. Here, instead of having one data set with two parts, there are two data sets X and

Y. X is distributed as the 20 first samples of the motivational example, while Y is distributed as

the 20 remaining samples, except that the expected value equals −0.65 for position index 6 to

12 and −1 for position index 20. For indices 26, . . ., 40, the expected value increases linearly

from 0.05 to 0.75.

The suggested feature selection scheme is compared to using all dimensions as inputs to

classification algorithms. This is meant as a proof of concept, not a thorough comparison to

other methods. The tested sample sizes of both X and Y were 20, 30 and 60. For the classifica-

tion, k Nearest Neighbor classification (with k = 1 and k = 3), Linear Discriminant Analysis

(LDA) and Quadratic Discriminant Analysis (QDA) were used, when applicable [54]. For the

scale-space feature selection, the number of features selected ranged from 1 to 15. One pair of

X and Y data sets was used to find the training features. These features were then used to clas-

sify 500 X and 500 Y data sets. This was repeated 100 times, making up in total 100000 tests,

and the ratio of correct classification was averaged across these 100000 tests, as shown in Fig

12. The splitting up was done to average out the fact that different features will be selected

depending on the training data set. With three well-selected features, one can capture the main

differences in the two data sets, but as the figure shows, one needs on average more than three

features to have the maximum ratio of correct classification. The figure shows that using the

suggested scale-space features is better than using the raw data in this example.

Conclusions

The scale-space methodology is applied to the testing for multivariate normality and the k-

sample problem. The summation across dimensions/positions reduces the multivariate prob-

lem to a large number of one-dimensional tests. A significance map, showing where and for

which resolutions the null hypothesis is rejected, is generated by going through all combina-

tions of the position and resolution parameters. The summation throws away all information
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of the dependency structure of the data. When there are more multivariate observations than

dimensions, i.e. n> p, the discharging of covariance information will lower the power of the

scale-space tests compared to tests that use this information gained through estimation of the

covariance matrix. What is gained on the other hand, is the ability to check for multinormality

and compare data sets in the High Dimension Low Sample Size setting, something which

almost all other methods fail to handle.

The presented algorithms are tested on artificial data and real temperature data sets, show-

ing how both the check for multinormality and how the comparison of data sets can be done

through a scale-space approach.

Within the scale-space framework, to the authors’ best knowledge, there is no other algo-

rithm to compare the presented work with, even though a large number of tests for assessing

the multinormality of a given data set exist [26, 55–57]. To the knowledge of the authors, the

only multivariate methods for testing multinormality that handle the case when n� p, are

the methods [41–44]. The preferred Liang method [43] is inferior to the presented method in

some relevant aspects and cases.

In the case of comparing k data sets, there exist some methods that handle the case where at

least one of the sample sizes are less than the number of dimensions. In general, these methods

are based on some distance measure between the data vectors, and do not estimate the covari-

ance matrix, or projection onto lower-dimensional spaces. The suggested scale-space method

is compared to these methods. In the tested settings, the power of the method of Székely and

Hall [49] is comparable to the power of the scale-space approach. The Székely test does not on

the other hand provide any info about where the data sets differ, information that is essential

for doing feature selection. Selection of relevant features based on the presented scale-space k-

sample problem algorithm is demonstrated in the “Results” section.

Supporting information

S1 File. MATLAB-files for running the presented algorithms.

(ZIP)

Fig 12. Classifcation results when using scale-space features (solid lines) and all dimensions (dashed lines).

Classification methods are given as 1NN (blue), 3NN (red), LDA (black), QDA (magenta). The vertical axis shows the

ratio of correct classifications based on 100000 simulations. Sample sizes from left to right are: 20, 30 and 60.

https://doi.org/10.1371/journal.pone.0211044.g012
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