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ABSTRACT
Over the last three decades, the appeal for monoclonal antibodies (mAbs) as therapeutics has been steadily 
increasing as evident with FDA’s recent landmark approval of the 100th mAb. Unlike mAbs that bind to 
single targets, multispecific biologics (msAbs) have garnered particular interest owing to the advantage of 
engaging distinct targets. One important modular component of msAbs is the single-chain variable 
fragment (scFv). Despite the exquisite specificity and affinity of these scFv modules, their relatively poor 
thermostability often hampers their development as a potential therapeutic drug. In recent years, engineer-
ing antibody sequences to enhance their stability by mutations has gained considerable momentum. As 
experimental methods for antibody engineering are time-intensive, laborious and expensive, computa-
tional methods serve as a fast and inexpensive alternative to conventional routes. In this work, we show two 
machine learning approaches – one with pre-trained language models (PTLM) capturing functional effects 
of sequence variation, and second, a supervised convolutional neural network (CNN) trained with Rosetta 
energetic features – to better classify thermostable scFv variants from sequence. Both of these models are 
trained over temperature-specific data (TS50 measurements) derived from multiple libraries of scFv 
sequences. On out-of-distribution (refers to the fact that the out-of-distribution sequnes are blind to the 
algorithm) sequences, we show that a sufficiently simple CNN model performs better than general pre- 
trained language models trained on diverse protein sequences (average Spearman correlation coefficient, ρ, 
of 0.4 as opposed to 0.15). On the other hand, an antibody-specific language model performs comparatively 
better than the CNN model on the same task (ρ ¼ 0.52). Further, we demonstrate that for an independent 
mAb with available thermal melting temperatures for 20 experimentally characterized thermostable muta-
tions, these models trained on TS50 data could identify 18 residue positions and 5 identical amino-acid 
mutations showing remarkable generalizability. Our results suggest that such models can be broadly 
applicable for improving the biological characteristics of antibodies. Further, transferring such models for 
alternative physicochemical properties of scFvs can have potential applications in optimizing large-scale 
production and delivery of mAbs or bsAbs.

ARTICLE HISTORY 
Received 16 June 2022  
Revised 14 December 2022  
Accepted 26 December 2022 

KEYWORDS 
Antibody design; 
thermostability prediction; 
machine learning; 
unsupervised and supervised 
learning

1. Introduction

Monoclonal antibodies (mAbs) represent a large class of 
therapeutic agents, with more than 100 FDA-approved 
products marketed in the US (www.antibodysociety.org). 
Despite their widespread prevalence in drug development, 
mAbs are limited in biological scope because they bind 
only a single target. Multispecific biologics (bsAbs) enga-
ging more than one target or epitope on the same target 
are of growing importance for accessing novel, therapeuti-
cally relevant pathways and mechanisms of action. In 
recent years, several multispecific biologics are approved 
for use and many more are in clinical and preclinical 
development.1,2

A common building block for the construction of multi-
specific biologics is the single-chain variable fragment (scFv), 
consisting of the target-engaging variable heavy chain (VH) 
linked to the variable light chain (VL) via a flexible linker. 
Multispecific format platforms such as the BiTE,3 IgG-scFv,4 

and XmAb5 incorporate scFv modules. Although scFvs are 
prevalent in multispecific biologic candidates, they may dis-
play sub-optimal physical properties relative to conventional 
mAbs and generally require sequence modifications to pro-
duce a developable asset. One property that is used to gauge 
the potential developability of a scFv module or scFv- 
containing multispecific is thermostability – scFv candidates 
are experimentally screened and/or optimized for thermo-
stability to identify suitable modules.6,7 However, these 

CONTACT Kathy Y. Wei kwei@amgen.com Therapeutic Discovery, Amgen Research, Amgen Inc, South San Francisco, CA 94080, USA
*Work performed during internship at Amgen Research, Amgen Inc
1A.H and R.R share equal author contribution

Supplemental data for this article can be accessed online at https://doi.org/10.1080/19420862.2022.2163584

MABS                                                           
2023, VOL. 15, NO. 1, 2163584 
https://doi.org/10.1080/19420862.2022.2163584

© 2023 Amgen, Inc. Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-6863-9634
http://orcid.org/0000-0003-4412-3742
http://orcid.org/0000-0003-1664-9114
http://orcid.org/0000-0001-7856-789X
http://orcid.org/0000-0002-4165-4241
http://orcid.org/0000-0002-6179-0435
http://orcid.org/0000-0001-6380-2324
http://orcid.org/0000-0002-8794-1385
http://www.antibodysociety.org
https://doi.org/10.1080/19420862.2022.2163584
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19420862.2022.2163584&domain=pdf&date_stamp=2023-01-21


experiments are resource intensive and time-consuming. 
Accurate computational methods to predict scFv thermostabil-
ity from primary amino acid sequence for scFv candidate 
selection/deselection (and to predict mutations to guide ther-
mostability engineering efforts) would be invaluable to multi-
specific drug development.

Over the past decade, the use of computational tools to 
predict stability-enhancing mutations has gained considerable 
momentum, albeit with limited success. Protein consensus 
design, a state-of-the-art approach, uses phylogenetic informa-
tion from multiple sequence alignments (MSAs) to obtain the 
most frequent amino acid for a residue position.8 However, 
these residues have improved thermostability in only 50% of 
the cases, with even poorer performance for antibody 
sequences with highly conserved framework regions. 
Structure-based approaches, such as PROSS9 and AbLIFT,10 

have used thermodynamic energies (Rosetta ΔΔ G) and struc-
tural information (CDR-dependent PSSMs) to improve bind-
ing and stability, however their application to scFvs is often 
limited by the relative scarcity of structural data. Alternatively, 
machine learning approaches have employed large datasets 
such as ProTherm,11,12 that collate mutant effects on protein 
stability from mesophilic and thermophilic sequences, to pre-
dict thermostability.13–15 Unfortunately, the plethora of pub-
licly available thermostability data excludes mAb or scFv 
sequences, limiting their generalization. Predicting thermally 
enhancing scFv sequences or designing thermostable muta-
tions within approved scFv candidates is still a challenge. 
Currently, there is a need for computational approaches to 
leverage sequence information to predict biophysical attri-
butes, such as thermostability, with high accuracy and general-
izability enabling efficient protein design. We address this 
critical need by equipping unsupervised and supervised learn-
ing approaches over a thermostability prediction task tuned 
specifically for generated scFv sequences.

We demonstrate the use of deep learning approaches to 
infer thermostability attributes from scFv sequences generated 
experimentally and screened for their temperature sensitivity. 
First, with pre-trained language models (PTLMs), we assess 
the ability of unsupervised networks to predict thermostability 
with zero-shot and fine-tuned predictions. Then, we utilize 
supervised learning to train simple, predictive CNN architec-
tures. To provide structural context to the supervised net-
works, we also feed the network with thermodynamic 
information via Rosetta energies. Further, we examine whether 
these networks could provide insights toward design of ther-
mostable mutants, thereby improving biologics engineering. 
With this work, we present a proof-of-concept study of utiliz-
ing PTLMs and thermodynamic features toward relatively 
niche problems in protein informatics.

Results

Machine learning tasks can be tuned to identify scFv 
thermostability

The biological problem of thermostability prediction at 
the sequence-level involves identifying which sequences 
could result in a highly thermostable biomolecular 

structure; for antibodies and scFvs, this implies conserva-
tion of the folded structural state and/or antigen binding 
upon high-temperature stress (Figure 1a). Thermal stabi-
lity of proteins depends on residue-level biophysical attri-
butes. However, for antibodies and scFvs, owing to the 
high consensus in sequences, deciphering heuristic or 
empirical rules based solely on sequence patterns for dis-
tinguishing thermostable and unstable sequences is chal-
lenging. Machine learning (ML) models have shown 
potential to extract higher-order relationships mapping 
sequences to function in the absence of underlying bio-
physical pathways, and they perform well on classification 
tasks. Leveraging sequence and structural information as 
features, ML approaches applied on a plethora of predic-
tion tasks, e.g., fluorescence landscapes,16–18 intrinsic 
stability,19,20 missense variant effects,21 protein fitness,22 

antigen-specificity,23 have shown high success rates. With 
the availability of an explicit dataset with temperature- 
level information, we could extrapolate ML methods for 
thermostability prediction tasks.

To learn temperature-specific contextual patterns in 
sequence-data, we sought to develop and train machine- 
learning models for thermostability prediction using scFv 
sequences. We collected temperature data (TS50, temperature 
at half-max binding) from various engineering studies for 
developing thermostable single-chain variable fragment 
(scFv) molecules. The experimental data used in this study 
were curated from historical therapeutic programs, and data 
collection was not devised with the explicit intent of training 
a predictive thermostability model, resulting in non-uniform 
distributions in our data. The sequence data contained scFv 
sequences assembled by performing mutations to heavy and 
light chains from multiple germlines (Methods and Sup. 
Figure. S1). We collated 2,700 scFv sequences from 17 projects 
that target different antigens (further referred to as experi-
mental sets) to constitute the sequence data. Additionally, 
sequences from another scFv study (currently under clinical 
trials) and an isolated scFv dataset form out-of-distribution, 
blind test sets. For each sequence, thermostability is evaluated 
with a TS50 measurement representing the temperature at 
half-maxima of target binding, and this measurement serves 
as the temperature annotation (Figure 1(b)). For the isolated 
scFv dataset, thermostability is evaluated with a Tm measure-
ment representing the first transition from folding to unfold-
ing as temperature is increased.

The temperature measurement (TS50) for 2,700 scFv 
sequences is used for two thermostability prediction tasks: 
(1) Regression: Prediction of TS50 measurement of a scFv 
sequence and (2) Classification: Prediction of whether 
a given sequence corresponds to a thermally stable scFv. For 
the regression task, absolute values of TS50 measurements are 
used, whereas, for the classification task, the TS50 data are 
divided into four bins, namely under-50°C, 50°C–60°C, 60°C– 
70°C and 70°C-up. With these training data, we have trained 
two models (Figure 1c): (1) Pre-trained language models 
(PTLMs), unsupervised BERT-like model architectures,24,25 

trained over large sequence corpus spanning evolutionary 
diversity. These models are trained to extrapolate learned 
representations of protein structures, function and biological 
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activity at a sequence-level, and they can make zero-shot pre-
dictions or be fine-tuned with thermal stability data. (2) 
Supervised convolutional models that equip simple deep- 
convolutional networks utilizing annotated thermostability 
data with feature encodings at a sequence-level (i.e. one-hot 
encoded amino-acid types) and an energy-level (i.e. thermo-
dynamic energies obtained from putative three-dimensional 
structural models generated with DeepAb.26)

With both models, our aim is to predict thermostability of 
a given scFv sequence. By developing a model that can effec-
tively filter and screen scFv sequences, we could significantly 
accelerate the identification of better variants for stable, man-
ufacturable, multispecific biologics.

Fine-tuning pre-trained sequence models with 
thermostability data improves classification performance 
over zero-shot predictions

Unsupervised models trained on a large corpus of protein 
sequences are reported to infer evolutionary relationships 
and statistical patterns about protein structure and 
function.25,27 PTLMs have reportedly shown successful perfor-
mance in downstream prediction tasks (e.g., predicting muta-
tional landscapes, secondary structure and tertiary contacts24) 
without any additional supervision i.e. in a zero-shot setting 
where inference is performed directly on the input sequence. 
To assess whether zero-shot learning from the PTLMs could be 
extrapolated for the thermostability tasks, we evaluate 

Figure 1. A pipeline to identify scFv thermostability using deep learning. (a) The biological challenge of antibody thermostability prediction from sequences. 
Antibody thermostability can determine the manufacturability of antibodies in downstream processes. The biological question that we AIM to tackle is whether we can 
predict the thermal characteristics of an scFv, given its sequence. Available data for this challenge can comprise of the amino acid sequences, structures and calculated 
energetics. Leveraging antibodies with pre-determined temperature characteristics is paramount, however, the availability is scarce for such a dataset. (b) 
Thermostability data generation. To generate a dataset of scFv sequences with known temperature-specific features, we determined the loss of target binding of 
the scFv post high temperature stress to obtain a TS50 measurement. (c) Training a classification network for predicting TS50 bins. One of the approaches is transfer 
learning with unsupervised models (top branch). We utilized pre-trained BERT-like models (such as ESM1-b, ESM1-v, etc) to make (1) Zero-shot predictions and (2) Fine- 
tuned predictions with the labeled TS50 dataset. Another approach is to train a supervised model with calculated thermodynamic energies (bottom branch). We used 
sequence and structure-based features for supervised learning using simple convolutional models to train a classifier. The outcome of such trained ML models can be 
employed either for predicting thermostability of generated antibody sequences or to computationally validate experimental designs.
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likelihood-based zero-shot predictions25 from the ESM-1 v25 

and UniRep20 language models trained on diverse protein 
sequences and the AntiBERTy language model28 trained on 
antibody sequences from the Observed Antibody Space (OAS) 
(Figure 2a).29 Figure 2c,e show that zero-shot predictions do 

not in general correlate well with thermostability, either on 
TS50 data or on blind test sets. These results are contrary to 
those reported in prior work.25,27,30 It is important to note that 
the setting is quite different; prior work largely evaluates single 
mutations of a parent protein, whereas our datasets consist of 

Figure 2. Fine-tuning over pre-trained unsupervised models improves correlation on withheld targets. (a) Zero-shot and (b) Fine-tuned sequence scoring 
methods for thermostability prediction. (c) Zero-shot likelihood-based predictions with pre-trained models do not correlate strongly with the TS50 datasets. (d) Fine- 
tuning the pre-trained models on TS50 data from n � 1 targets significantly improves correlation on the held-out target. (e) Zero-shot likelihood-based predictions on 
blind test sets. (f) Models fine-tuned on TS50 data do not generalize well to blind test sets.
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multiple mutations (including insertions and deletions) and 
are derived from multiple parent proteins. For the antibody- 
specific language model, the correlation is worse than the other 
PTLMs trained on diverse protein sequences. This is in agree-
ment with the recent work by Nijkamp et al., demonstrating 
that large-scale, antibody-specific language models are rela-
tively poor predictors for general properties such as 
thermostability.31

Next, we fine-tuned the pre-trained features from the ESM- 
1b, UniRep and AntiBERTy language models (Figure 2b) spe-
cifically on our downstream thermostability prediction task to 
assess if that improves performance. For this task, we froze the 
pre-trained weights for the models and trained the parameters 
of the classification head – a multilayer perceptron (Methods) 
that predicts the TS50 temperature bins. Fine-tuning the 
PTLMs on ðn � 1Þ sets significantly improve correlation for 
the held-out target as evident in Figure 2d. Fine-tuned predic-
tions from ESM-1b, UniRep and AntiBERTy models achieve 
moderate-to-high average Spearman correlation on held-out 
targets when trained on TS50 data (0.63, 0.45 and 0.71 respec-
tively) (Figure 2d). However, the ESM-1b and UniRep predic-
tions do not generalize well to blind test sets (Figure 2f). On 
the other hand, the AntiBERTy-finetuned model generalizes 
better on the out-of-distribution dataset. Unlike ESM-1 v and 
Unirep language models, AntiBERTy encodes antibody- 
specific features, which can be then fine-tuned for prediction 
on antibody-specific landscapes, as demonstrated here for scFv 
thermostability. By clustering the embeddings from the 
AntiBERTy-finetuned model via t-distributed stochastic 
neighbor embedding (t-SNE), we found that even after fine- 
tuning, the sequences stay clustered by their experimental sets 
(Sup. Figure. S2). This suggests that the model exploits some 
underlying relationship in the sequences to make predictions. 
Even though the performance generalizes to new datasets, it 
might serve as a potential caveat when utilizing the fine-tuned 
model for designing/validating new thermostable sequences.

Supervised network trained with energy features 
improves generalizability across out-of-distribution 
datasets

Unlike pre-trained models utilizing large sequential informa-
tion, Shanehsazzadeh et al. demonstrated that small supervised 
models could achieve competitive performance on down-
stream prediction tasks benchmarked in TAPE.18 Similar pre-
dictive performance was also reported for antigen-specificity 
prediction with supervised convolutional networks.23 To eval-
uate whether small, supervised networks would perform and 
generalize better, we built a supervised convolutional model 
with the scFv sequences for the thermostability prediction task. 
Figure 3a shows the detailed architecture of our supervised 
CNN deep-learning model. Since the sample size of the experi-
mental dataset was relatively small (2,700 scFv sequences), we 
decided to supplement the network with structure-specific 
information. Conventional structure-based approaches (such 
as evaluating based on Rosetta Δ G) showed poor correlation 
with TS50 (Sup. Fig. S3), primarily owing to a variable 
sequence length and structural contributions affecting global 

energies. To feed the network in a localized structural context, 
we incorporated the energetics as a two-dimensional i-j resi-
due energy matrix. The residue energy matrix serves as 
a contact map that provides a reduced representation of pro-
tein-free energies rather than a global-free energy estimation. 
For each scFv sequence, we generated a structural model with 
DeepAb26 and evaluated the thermodynamic features (total 
energy split into one-body, i-i, and two-body, i-j, residue 
energies) calculated using Rosetta ref2015 energy function.32 

The contributions of ith residue with every jth residue (where 
j 2 1;N such that N ¼ total number of residues) were tabu-
lated and binned in an i-j matrix that constituted the energy 
features. Finally, we equipped the model with two branches: 
(1) sequence branch with one-hot encoded amino-acid 
sequences and (2) energetics branch with pairwise i-j residue- 
residue energy matrix. The final model architecture and hyper- 
parameters are reported in Figure 3a, and this model was 
trained (Sets A-O) and evaluated with the available sequences 
(held-out sets P and Q and two scFv sets from different 
studies). The model architecture was built such that contribu-
tions from either of the two branches could be turned off to 
obtain sequence or energy dependence over the classification 
performance.

In spite of the sequence diversity in the experimental data, 
we wanted to investigate whether there was an underlying 
relationship between the sequences; whether the experimental 
sets from which the sequences were derived had an impact 
over prediction accuracies. We analyzed the representation 
learned by the sequence-only model and the energetics-only 
model by projecting the embeddings from the dense layer for 
each sequence into two dimensions via t-distributed stochastic 
neighbor embedding (t-SNE) Figure 3b. The sequence-only 
model embeddings were clustered by their experimental set, 
as evident by the aggregation of colored points in Figure 3b.iv. 
On the other hand, the energetics-only model embeddings 
were independent of any clustering based on the experimental 
set as demonstrated by the noisy embedding for energetics 
(Figure 3b) ii. Thus, fine-tuned and supervised models trained 
only on sequence-features are able to infer the underlying 
experimental origin of the sequences and skew thermostability 
predictions, making them less generalizable toward newer, 
blind datasets.

Since the energetics-only model is independent of any 
sequence-specific information, we assessed the performance 
of this supervised model by constructing a receiver- 
operating-characteristic (ROC) curve derived from the pre-
diction of the 70-up bin (Figure 3c). As we aim to identify 
thermostable sequences, the prediction accuracy of the 70- 
up bin is most important. We evaluated the ROC for four 
test datasets: two held-out (Sets P and Q) and two blind 
datasets representing a test scFv and an isolated scFv. The 
area under ROC is over 0.7, denoting a high classification 
accuracy. Figure 3d shows the Spearman correlation coeffi-
cient for all four test datasets, with the energetic-only, 
sequence-only and energetics + sequences models, respec-
tively. On held-out datasets (Set P and Q), among the 
supervised models, the coefficients are over 0.5 for ener-
getics-only model, with energetics + sequences model 
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showing a slightly better performance. However, on blind 
datasets, the performance drops for energetics + sequences 
and sequences-only (coefficients under 0.1). The energetics- 
only model shows better correlation for the blind datasets 

(0.2 and 0.4 respectively) than the other supervised models. 
In comparison with the PTLM performance in Figure 2c-f, 
the AntiBERTy-finetuned model shows better correlation 
(average correlation of 0.52 versus 0.29 for SCNN trained 

Figure 3. Energy features can extract ’generalizable’ information of thermostability. (a) The supervised convolutional network architecture for classification of 
antibody sequences. The input scFv sequences pass a structure-generation module with DeepAb followed by Rosetta-based evaluation to estimate per-residue 
energies for each amino acid residue in the scFv structure. The sequences are one-hot encoded (top branch) and the energetic features, represented as an i-j matrix 
(bottom branch), are provided to the network. The output from the sequence branch and the energy branch are passed through a dense-layer to generate the 
probabilities of the sequence to lie in each of the temperature bins. (b) t-stochastic neighbor embeddings from the energetics-only model colored by the temperature 
bins. (c) Receiver-operating characteristic curve to demonstrate the classification of the test sequences for the above-70 bin with the energetics-only model. Note that 
Test scFv and Isolated scFv have a smaller sample size, explaining the relatively less rugged nature of the curves. (d) The model’s performance metrics for the 
classification task on completely blind test scFv sequences is reported with the Spearman's correlation coefficient.

6 A. HARMALKAR ET AL.



on Sets A-Q and 0.4 for ensemble of SCNNs, see Sup. Fig. 
S6-S7). However, it is important to note that the language 
models are inherently skewed toward the experimental 
datasets.

Finally, as a control, we randomly initialized the weights in 
the SCNN for the classification task and found that it is unable 
to distinguish sequences based on thermostability (Sup. Fig. 
S1). Further, on the test sets, we performed weighted random 
predictions, i.e. we predicted the classification bin label with 
a weighted random choice, with sample size in each bin set as 
the weights (Sup. Fig. S4-S5). In both these tests, where the 
energetics-only SCNNs were able to decipher some relation-
ship between the energetics of the scFv and the thermostabil-
ity, the randomly initialized models could not demonstrate any 
discernible relationship, demonstrating the significance of 
learned representations from supervised data.

Networks trained with experimental TS50 data can 
distinguish thermal stability-enhancing designs

With improved thermal stability predictions on scFv 
sequences, we aspire to optimize and engineer antibody or 
scFv molecules for specific biomolecular applications. Thus, 
we sought to evaluate the ability of our predictive models in 
discriminating between thermostable and thermally degener-
ate mutations. Prior studies by Koenig et al.33 and Warszawski 
et al.10 detail thermal aggregation experiments on point muta-
tions for an anti-VEGF antibody (PDB ID: 2 FJG/2FJF34). In 
both the studies, a deep mutational scanning (DMS) experi-
ment was performed for the antibody and selected point muta-
tions that improved binding enrichment over wildtype were 
analyzed for their fragment antigen-binding (Fab) melting 
temperature (Tm). These point mutants (20 mutations com-
piled from both studies) serve as a test case to evaluate whether 
the networks trained on TS50 temperature measurements 
could obtain insights about related temperature-dependent 
attributes such as thermal aggregation and whether they dis-
tinguish the thermally enhancing and thermally hampering 
mutations. Although the model is better suited to classify 
diverse sequences rather than point mutations, with this test, 
we sought to understand the generalizability of our models 
trained on scFv sequences and TS50 measurements to anti-
body sequences and melting temperature measurements.

To perform an unbiased analysis, we performed point 
mutations over the antibody (a computational DMS) and 
analyzed the classification performance of our PTLM models 
(zero-shot and fine-tuned) and our SCNN model (ensemble of 
energetics-only CNNs) on these point mutations. Out of the 
language models, the UniRep and AntiBERTy fine-tuned 
models failed to differentiate between point mutations and 
attributed over 99% mutants to the 70-up bin. Only the 
ESM-1b model could differentiate between the point mutants 
well, i.e. had predictions for all temperature bins. Figure 4 
compares our 70-up bin predictions with the experimental 
thermostable mutants for the heavy and light chains with the 
two models (SCNN and ESM-1b fine-tuned PTLM). The 20 
mutation positions that were validated experimentally are 
highlighted as spheres in the cartoon representations. Our 
networks identify five out of the 20 mutations correctly 

(highlighted in magenta, 4 mutants identified by SCNN and 
one by ESM-1b finetuned model). Surprisingly, all five of these 
mutations comprise the framework residues. Further, for 18 
out of 20 mutations, the SCNNs could identify the residue 
position correctly, albeit predicting different amino-acid 
mutations as most thermostable.

Out of 4540 point mutations analyzed (Nres = 227 residues, 
20 amino acids per residue), experimental data were available 
for only 20 point mutations. Since only 0.44% of the total 
possible mutations in the anti-VEGF antibody were assessed 
for melting temperatures experimentally, the validation dataset 
for thermostability is sparse. Further, in spite of being tem-
perature-specific attributes, TS50 and Tm are different experi-
mental measurements and do not correlate exactly. 
Conventional structure-based approaches, such as ΔΔ 
G from Rosetta35 or FoldX,36 could hardly predict thermo-
stable point mutations (Sup. Fig. S8). It is, therefore, remark-
able that our networks could predict the thermostable residue 
positions in 90% of the cases, with 25% successful predictions 
(correct residue positions as well as amino-acid residues).

By extrapolating the networks trained on TS50 measure-
ments over alternative thermal aggregation experiments (Tm in 
this case), we demonstrate that intrinsic thermal attributes 
could be captured by such models. Moreover, on comparing 
the residue positions violating the germline consensus 
sequence for the anti-VEGF Ab, we observed different amino 
acid mutations, highlighting the ability of these models to 
provide mutations orthogonal to traditional germlining 
approaches (Sup. Fig. S9-S10). With a more diverse and larger 
training dataset, it would be possible to develop a more robust 
model. Our results suggest that these networks could serve as 
a useful tool for screening or filtering scFv (or even antibody) 
sequences for temperature-specific antibody design pipelines.

Discussion

Thermostability is an important determinant of developability. 
To address the limitations in developing thermostable biolo-
gical candidates, antibody engineering efforts are directed 
toward identifying and screening for sequences that can 
improve thermostability. In this work, we have tested two 
approaches for prediction of thermostable scFv sequences 
from features learned with a sequential and thermodynamic 
context. As the corpus of sequence databases is vast (billions of 
sequences from diverse protein families), we equipped the 
unsupervised learned representations via pre-trained language 
models to classify sequences into temperature-specific bins 
quantifying their thermostability. Unlike conventional 
machine-learning approaches that use sequence or structural- 
coordinate features, we incorporated enriched information 
with thermodynamic features. Further, we tested the perfor-
mance of using energetic features on small, supervised CNN 
models for the classification tasks. Finally, we demonstrated 
the applicability of our work for antibody engineering efforts 
by identifying experimentally validated melting temperature 
(Tm) enhancing mutations on an anti-VEGF antibody. While 
the primary objective of this work was to study proof-of- 
principle for scFv thermostability classification with machine- 
learning models, the secondary objective was to identify 
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‘generalizable’ feature representations that can aid in creating 
a pipeline for rapid, computational screening and validation of 
scFv and antibody sequences based on their thermal 
characteristics.

First, we extrapolated the zero-shot learning and fine- 
tuning principles of large-scale PTLMs for inferring tempera-
ture-dependent biophysical attributes of scFv sequences. We 
acknowledge the limitations of extrapolating language mod-
els trained on massive sets of protein sequences to scFv- 
specific sequence data. Unlike natural proteins that evolve 
across many species under selective or evolutionary 

pressures, antibodies are often selected for binding toward 
a particular antigen in one organism. Since models trained 
on a huge corpus of natural proteins might be unsuitable for 
capturing scFv or antibody sequence information, we also 
employed an antibody-specific language model, 
AntiBERTy,28 for the thermostability prediction task. We 
found that although zero-shot embeddings hardly clustered 
based on their thermal attributes, fine-tuning over the anti-
body-specific embeddings improved correlation with ther-
mostability and its generalizability to newer, blind datasets. 
By equipping antibody-specific language models (e.g. 

Figure 4. Computational deep mutational scan of an antibody variable fragment shows agreement with experimental thermal denaturation data. 
Validating all the point mutants with our SCNN and ESM-1b finetuned models for anti-VEGF antibody (PDB ID: 2FJG(bound) and PDB ID: 2FJF (unbound)), we 
observed synergies in mutants predicted in the over-70°C bin and the experimental thermal denaturation data available from prior work.10,33 Spheres indicate the 
experimentally validated mutants that improved Tm; pink indicates predictions from the network with the same residue position, but different amino acid mutation; 
red indicates the predictions matching experimental data and gray indicates mutations which were not observed in computational predictions. Thumbnails highlight 
the mutations in agreement with experiments and potential interactions. The table illustrates the comparison with the experimental and computational predictions.

8 A. HARMALKAR ET AL.



AbLang,29 Progen2-OAS,31 AntiBERTa,37) or AntiBERTy,28) 
we can gauge and fine-tune the antibody feature landscape to 
better explore the biophysical attributes for scFv and 
antibodies.

Recent studies have demonstrated that structure-specific 
information improves prediction quality for antigen–anti-
body binding tasks.38,39 Extrapolating this for thermostability 
prediction, we incorporated structural context to our super-
vised models. To better learn generalizable representations, 
we sought to enrich the structural context of scFv sequences 
with thermodynamic (energy) features. We focused on the 
residue–residue energy features for each putative structure 
generated from the scFv sequence and used these energy- 
dependent features to train our CNN model. Validation of 
this small, supervised CNN network demonstrates the ability 
of energy-features to be more generalizable and predictive 
toward thermostability. For the relatively small dataset of 
2,700 scFv sequences, we found that thermodynamic context 
could infer biophysical attributes independent of sequence 
origin (i.e. experimental sets from different germlines). Note 
that our training data are non-uniform, with some experi-
mental sets skewed largely toward higher temperature bins 
owing to the selection procedure for generating the scFv 
sequences. With stringent selection and screening of 
sequences for uniform distribution in the temperature bins, 
along with incorporation of negative data (i.e. variant 
sequences that did not express, showed drastically low 
TS50 values or unfolded at room temperature), we could 
generate more well-distributed datasets for training ML 
models. Additionally, utilizing accurate three-dimensional 
antibody structures could refine the energetic input and 
potentially improve performance. Better quality of experi-
mental and structural data may provide better predictions of 
thermostability.

In spite of the networks being trained for classification tasks, 
there are avenues to extend these models toward biologics engi-
neering and design. With this work, we demonstrated how we 
could use this classification network to filter and suggest thermo-
stability-enhancing point mutations. Although the temperature 
point mutant dataset was sparse, our models demonstrated sub-
stantial predictive accuracy toward mutants with higher thermal 
aggregation (Tm). One might argue that our network is trained 
on TS50 measurements, and so evaluating mutants with 
improved melting temperature is not plausible. However, as 
both the metrics evaluate the thermal attributes of the sequence, 
we can extend the patterns learned by our networks over alter-
native temperature-dependent data (i.e. thermal aggregation). 
Among the PTLMs and the SCNNs, we observed that the lan-
guage models failed to strongly discriminate the point mutants. 
As language models utilize the underlying relationship in 
sequences, the small changes from point mutations might go 
unpenalized. On the other hand, SCNNs trained with energy 
features showed a significant effect of point mutations on ther-
mostability prediction, as each point mutation affects local pair-
wise interactions in its vicinity.

With this work, even with training on sparse experimental 
data, we want to highlight the use of ML models toward 
evaluating an essential biophysical characteristic. Energy fea-
tures represent a refined, information-rich resource that can 

add thermodynamic context that ML models are often 
deprived of. We have demonstrated a proof-of-concept of 
using PTLMs and SCNN architectures for thermostability 
prediction. Moreover, these models can also be equipped 
with experimental information derived from alternate physical 
properties (e.g. viscosity, binding enrichment, etc.), thereby 
enabling the engineering and design of antibodies and broad- 
scale biologics.

Materials and methods

Experimental methods

Generation of scFvs
scFvs with a (G4S)3 linker were cloned as a single construct 
into a pTT vector with a puromycin selection marker. 
Constructs were transfected into a mammalian CHO-K1 cell 
line and stably expressed at a 4 mL scale. After 21 days post 
transfection, VCD and viability were measured and the expres-
sion level of secreted proteins in conditioned medium were 
analyzed by non-reduced SDS PAGE gel. Cells were further 
incubated with magnetic beads coupled with either proA (for 
scFvs with lambda variable domains) or proL (for scFvs with 
kappa variable domains) overnight. The beads were separated 
from cell media and followed by washed with PBS for three 
times and water for 2 times. scFvs were eluted from the 
magnetic beads with a low pH buffer (100 mM glycine, 
pH2.7) and neutralized with 3 M Tris (pH11). Differential 
Scanning Fluorimetry (DSF) was carried out to determine 
the melting temperature of the purified material. Briefly, mole-
cules were heated at 1.0°C/min on a nanoDSF instrument. 
Changes in tryptophan fluorescence were monitored to evalu-
ate protein unfolding and aggregation. The Tm is reported as 
the midpoint between the unfolding onset and the max 
unfolded state.

TS50 screening assay
The thermostability of scFvs was screened by determining the 
loss of target binding after high-temperature stress. To this 
end, soluble scFvs (VH-(G4S)3-VL) containing a C-terminal 
FLAG-tag (DYKDDDDK) and a 6xHis-tag were produced in 
E. coli TG1 (Agilent, Santa Clara, USA) in 10 mL LB cultures. 
Protein production was induced with 1 mM IPTG. Bacteria 
were then centrifuged, and the cell pellet was re-suspended in 
1 mL Gibco™ DPBS. Cells were lysed with four freeze/thaw 
cycles, and residual cells and cell debris were removed by two 
centrifugation steps. 100 μ L of these crude extracts were 
transferred into 0.2 mL tubes and subjected for 5 min to 
different temperatures in water-baths (4°C, 50°C, 60°C, 
70°C). After incubation, the tubes were directly transferred 
on ice and human target transfected CHO-cells were incubated 
with 50 μ L of the lysates. Bound scFvs were detected and 
analyzed by flow cytometry. Median fluorescence intensity 
values were determined and plotted. The temperature corre-
sponding to half maximal binding of each scFv was calculated 
(TS50). The scFv sequences were further binned into sets based 
on the identity of the antigen they bind (not random). Note 
that since the sets were not curated for an ML task, there is 
a lack of a uniform distribution across sets.
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nanoDSF Tm method
Thermal melting (Tm) temperatures were determined by run-
ning a Trp Shift Study on the Prometheus, NT.48. A thermal 
ramp was applied at 1.0°C/min with start temperature 25°C 
and stop temperature with 95°C. Unfolding was measured by 
the fluorescence ratio 350 nm/330 nm. Data analysis and Tm 
determination were performed using PR. ThermControl 
v2.0.4. Samples were normalized to 1.0 mg/mL in formulation 
buffer prior to Tm analysis.

Dataset distribution
The thermostability data (TS50 measurements, thermal melt-
ing [Tm] temperatures) for this study was collected from 
historical single-chain variable fragment (scFv) therapeutic 
generation campaigns. The distribution of the scFv sequences 
across the experimental sets and the test dataset is illustrated 
in Sup. Fig. S1. Within the same experimental sets, there were 
occasional replicates (same sequence, different TS50 mea-
surements) which were excluded from the training data. 
There is no sequence redundancy across experimental sets 
i.e. same sequence does not show up in different sets. The 
range of TS50 measurements are illustrated in Sup. Fig. S1.B 
and span from 25°C to 75°C. Since the TS50 corresponds to 
half-max binding temperature, the TS50 values for the 
sequences are discrete (Sup. Fig. S1) and are amenable toward 
a classification task. For alternative physical property mea-
surements such as melting temperature which tend to be 
continuous, a regression model could be trained. For this 
work, owing to the discrete nature of the data, we have 
trained classification models to distinguish based on 
thermostability.

The test data (out-of-distribution dataset) includes test and 
isolated scFv sequences. Temperature measurements to test 
scFv sequences were performed with TS50, whereas, for iso-
lated scFv, melting temperatures were obtained. We also test 
the general protein language model on a set of protein 
sequences from ProTherm.13 Note that antibody-specific mod-
els, i.e. AntiBERTy-based language model and supervised lan-
guage models, are not trained on the general protein sequences 
from ProTherm.

Pretrained language models

We evaluate four large-scale pretrained language models on 
their ability to predict the stability of scFv sequences. The first 
model, UniRep,20 is an mLSTM40 with 1900 hidden units 
pretrained on the Pfam database.41 Following the “evotuning” 
methodology proposed by the authors, we collect MSAs for 
each sequence in our TS50 set, combine all sequences into 
a single dataset, and further pretrain the model on this evolu-
tionarily related set of sequences using the implementation 
from.42 Further, we consider both the ESM-1b24 and ESM- 
1 v25 transformer models. Both are 33 layer, 650 M parameter 
transformer models, pretrained with masked language model-
ing on the Uniref database.43 The primary difference is that 
ESM-1b is trained on a 50% sequence identity filtered dataset 
(Uniref50), while ESM-1 v is trained on a 90% sequence 
identity filtered dataset (Uniref90). ESM-1 v is specifically 
designed to improve zero-shot likelihood evaluation of protein 

sequences. Finally, we also evaluate an antibody-specific lan-
guage model, AntiBERTy28 – a bidirectional transformer 
trained on 558 M natural antibody sequences from the 
Observed Antibody Space.29

Zero-shot evaluation
One approach to predicting stability with pretrained language 
models is to directly use model likelihood or 
pseudolikelihood.25,27 Sequences which are more likely under 
a model are predicted to be more stable. Suppose x ¼
x1x2 . . . xn is a protein sequence with each xi representing 
a residue. UniRep models the probability of each residue 
given all preceding residues. As a result, the likelihood of 
a sequence can be efficiently evaluated as 

LUniRepðxÞ ¼
Yn

i¼1
pðxijxj"j< iÞ (1) 

ESM-1v models the probability of masked residues given 
unmasked residues. It is not possible to efficiently decompose 
this probability and obtain an exact likelihood. However, it is 
possible to obtain the pseudo-likelihood of a sequence: 

pseudo � LESM� 1vðxÞ ¼
Yn

i¼1
pðxijxj"j�iÞ (2) 

In practice, the log-likelihood and pseudo-log-likelihood are 
evaluated for numerical stability. Additionally, ESM-1v comes 
as an ensemble of five models trained with different random 
seeds. The predictions from all five models are averaged to 
obtain the final pseudo-log-likelihood.

For AntiBERTy, we use the final layer embeddings to obtain 
prediction logits by iteratively masking each residue. The logits 
for each masked residue are used to estimate the categorical 
cross entropy (CCE) loss with respect to the actual token 
(amino acid residue at the masked position) and summed 
over the sequence to evaluate the pseudo-log-likelihood. 
Since AntiBERTy inputs are limited to heavy and light chains 
of antibodies, we split each scFv sequence across the linkers 
into heavy- and light-chain sequences. Prior to evaluating CCE 
loss, the prediction logits are concatenated to obtain a pseudo- 
likelihood for the entire scFv sequence.

Finetuned evaluation
The other approach to predicting stability with pretrained 
language models is to finetune a task-specific model using 
supervised data. For the UniRep model, we use the methodol-
ogy suggested by the authors and take the final hidden state 
along with the average of previous hidden states as a fixed- 
length vector representation of 3900 hidden units. For the 
ESM-1b and the AntiBERTy model, we follow the methodol-
ogy suggested by Detlefsen et al.44 and downproject each per- 
residue representation to four dimensions, followed by 
a concatenation. This results in a fixed-length embedding of 
size 4L, where L is the maximum sequence length in the TS50 
dataset. If a sequence has length less than L, it is padded with 
zeros. Additionally, we also implemented attention-weighted 
pooling to summarize information from all residue positions 
into a fixed sized tensor thus skipping padding. However, the 
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performance of attention-weighted pool was relatively worse 
than concatenation.

These embeddings are passed through a linear layer with 
a hidden dimension of 512, followed by tanh activation, then 
to a final layer to predict class logits. Parameters of the 
UniRep and ESM-1b models are frozen during training. 
Parameters of the head model (including the initial down-
projection for ESM-1b) are trained with the Adam optimizer 
and a learning rate of 10� 3.

For TS50 data, models are trained on all but one target and 
evaluations are made on the held out target. For non-TS50 
data, an ensemble of TS50 models (one for each holdout 
target) is used to make predictions.

Supervised models

Dataset curation
Sequence inputs: Datasets for TS50 measurements of scFvs 
from all experimental sets were aggregated to form a single 
dataset. The scFv sequences comprised a heavy and a light 
chain linked together with a Glycine-Serine (G4S) x linker. 
We chose to create a dataset with the scFv sequences, split 
into their respective heavy- and light-chain sequences, and 
instead of classifying sequences based on their thermostability, 
we included their TS50 measurements. Sets P and Q were 
removed, along with the sequences of the test scFv and the 
isolated scFv to constitute the held-out set. The amino acid 
sequences were one-hot encoded to form an input of dimen-
sion (VH þ VL þ 3) � 21, where VH and VL correspond to the 
heavy- and light-chain sequences, respectively. The additional 
token to the amino acids’ one-hot encoding corresponds to the 
delimiter at the start and end positions of the scFv sequence 
and between heavy and light chains to indicate a chain-break.

Energetic inputs: To obtain the energetics input, the 
sequences were first passed through a structural module, i.e. 
the DeepAb protocol for antibody structure prediction. For 
each predicted structure, we ran a Rosetta Relaxation and 
Refinement protocol for side-chain repacking (XML scripts 
in the Supplementary). Energy estimation in Rosetta starts 
with an energy relaxation step to reduce steric clashes 
(Rosetta Relax) with constraints to the start coordinates so 
that the accuracy of backbone structure (predicted by 
DeepAb) is not diminished. The all-atom model is refined 
further with four cycles of side-chain packing to obtain 
a robust structure, and the lowest energy structure is chosen 
for further calculations. For each refined model, we then 
estimated the residue–residue interaction energies with the 
residue_energy_breakdown application. We converted these 
one-body and two-body energies to a two-dimensional i-j 
matrix that served as the energetic information for training 
in the supervised CNN models. The energy values in the i-j 
matrix were also further binned together in 20 bins between 
the lower-end and upper-end energies of ½� 25; 10� REU, 
respectively. We included an additional bin for the start, end 
and chain-break tokens, respectively. The dimension of the 
pairwise energy data is this, L� L� 21.

The energies are evaluated with the Rosetta ref2015 energy 
function.32 Each energy value in the i-j matrix represents 
a contribution of that interaction to the total energy. The 

Rosetta total energy is determined by a linear combination of 
energy terms dependent on physical (LJ attractive and repulsive 
energies,45 solvation,46 electrostatics,47); empirical (hydrogen 
and disulfide bond energies48,49); statistical (backbone and side- 
chain torsion preferences47,50); and knowledge-based (amino- 
acid propensities,50 rotamer energies51) parameters. Further 
details about the energy function and the energy terms are 
provided in Supplementary Methods (Energy contributions).

Model architecture
We evaluated supervised convolutional networks with 
sequence, energetics and sequence + energetic features to 
predict thermostability of scFv sequences. We use the scFv 
sequences to predict the structure (DeepAb26) and obtain 
energetic features with Rosetta. All the sequence and 
energy input is converted to a fixed length embedding of 
size L and L� L respectively, where L represents the 
maximum sequence length in the dataset, such that VH 
and VL are the maximum lengths of the heavy and light 
chains, respectively. The sequences less than L are padded 
with zeros. While padding the sequence and energy 
embedding are fed to two parallel branches of the 
model, one with a 1D convolutional layer and other with 
a 2D convolutional layer. The sequence and energetic 
input are fed to the network, such that sequences pass 
through a 1D CNN and energies pass through a 2D CNN, 
followed by concatenation. The output is then passed 
through another 2D convolutional layer, and then a final 
layer to produce the logits. We perform a softmax over 
the logits to obtain the class probabilities (Sup. Fig. S11). 
The parameters of the supervised model are trained with 
Adam optimizer with categorical cross entropy (CCE) loss 
and a learning rate of 10.–3

To estimate the predicted TS50 value (i.e. the regression 
task), the probabilities are weighed with the mean TS50 value 
in each bin. For the prediction of the temperature bins for 
a given sequence (prediction task), an argmax over the prob-
abilities gives the expected thermostability (temperature bin). 

TS50predictedðxÞ ¼
Xn¼4

i¼1
pðxÞ:TS50binðiÞ (3) 

Alternatively, we performed additional tests with different 
CNN architectures for the energy branch (1D-CNN by flatten-
ing the i-j matrix and 2D-CNN with absolute energy values, i.e. 
no binning). The architectures for these additional models 
were optimized by performing a randomized search for the 
parameters and variables, layers, dropout, batch size, number 
of filters, kernel size, strides, epochs and pooling size. The 
performance was assessed with Spearman’s correlation coeffi-
cient, and we found that the 2D-CNN binned architecture for 
the energy branch worked better than other architectures. The 
1D-CNNs resulted in loss of individual interactions as the 
average contribution by most of the residues is similar, and it 
was difficult for the network to discern useful context. For 2D- 
CNNs with absolute data, as better sequences are identified 
with lower, negative energies, the information was lost in the 
convolutions. 2D-CNN binned architecture resolves both the 
issues; it provided context of individual residue–residue 
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interactions and the binning ensured that relevant energy 
information is retained through the convolutional layers. 
A comparison of these methods is further illustrated in the 
Sup. Fig. S2. As the CNN models are trained on a smaller 
dataset, to reduce variance, we use three CNN models trained 
on different sets to obtain an ensemble of CNNs, which we use 
for our predictions with the anti-VEGF antibody thermal 
denaturation data.

Extrapolating trained predictive models for design

The anti-VEGF DMS dataset was generated to enrich bind-
ing by designing multi-point variants. To determine 
whether our predictive models have potential in protein 
design, we created a computational DMS on the anti- 
VEGF antibody (PDB ID: 2FJG). Each residue position in 
the sequence was mutated to 19 other amino acids to obtain 
mutant sequences. Each sequence was one-hot encoded to 
obtain the sequence data, and the energetics dataset was 
generated following the procedure mentioned prior. This 
sequence and energy input were fed to the models, and the 
point mutants classified in the 70-up temperature bin by our 
predictions were cross-verified with the experimental 
results.
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