Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6
https://doi.org/10.1186/512918-018-0533-6

Counting motifs in dynamic networks

BMC Systems Biology

@ CrossMark

Kingshuk Mukherjee*, Md Mahmudul Hasan, Christina Boucher and Tamer Kahveci

From The Sixteenth Asia Pacific Bioinformatics Conference
Yokohama, Japan. 15-17 January 2018

Abstract

Background: A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is
important since they uncover functions and local properties of the given biological network. Finding motifs is
however a computationally challenging task as it requires solving the costly subgraph isomorphism problem.
Moreover, the topology of biological networks change over time. These changing networks are called dynamic
biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the
frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible,

particularly for large and fast evolving networks.

Results: In this article, we design and develop a scalable method for counting the number of motifs in a dynamic
biological network. Our method incrementally updates the frequency of each motif as the underlying network’s
topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of
magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more
frequently, the margin with which our method outperforms the existing static methods, increases.

Conclusions: We evaluated our method extensively using synthetic and real datasets, and show that our method is
highly accurate(> 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the
utility of our method in revealing interesting insights on the evolution of biological processes.

Keywords: Biological networks, Dynamic networks, Motif finding

Background

Biological networks capture complex interactions among
molecules (e.g., genes, proteins, etc.) which perform var-
ious cellular functions [1]. These networks can be rep-
resented as graphs where the set of nodes represents
the set of molecules and the set of edges represents
the set of known interactions among these molecules.
Depending on what the nodes and edges represent (e.g.,
proteins and signalling events), we classify a biological
network as either a protein-protein interaction network,
a gene regulatory network, or a signalling network—just
to name a few. Interactions among these nodes can be
undirected (e.g., protein-protein interaction network) or
directed (e.g., gene regulatory network). To understand
how cells perform diverse functions, we need to study

*Correspondence: kingdgp@ufl.edu
Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL, USA

( BioNed Central

the networks that model these interactions. Analysing
biological networks has proved to be useful in many appli-
cations, such as identifying functionally similar pathways
in multiple species [2, 3], reconstructing metabolic net-
works from newly sequenced genome [4] or identifying
drug targets [5].

One of the fundamental problems in analyzing biologi-
cal networks is identification of network motifs. A network
motif is a small subnetwork that occurs frequently in a
given network [6, 7]. These motifs can be viewed as the
basic building block of a biological network [6] and thus,
uncover functions and local properties of it [8]. Finding
network motifs is a computationally hard problem [9].
One way to identify the topological structure of a motif of
n nodes is to generate all possible subnetwork topologies
of n nodes and search these topologies in the given target
network. This problem becomes intractable as the value
of n increases since the number of possible topologies
grows exponentially with this value. Furthermore, given

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-018-0533-6&domain=pdf
mailto: kingdgp@ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

a motif topology, counting the number of embeddings of
this topology is identical to the subgraph isomorphism
problem, which is NP-complete [10].

One common formulation to count the number of
embeddings of a given motif in a given network is to allow
overlap between the subnetworks (i.e. share nodes or
edges). Most existing methods for motif counting use this
overlap assumption [11-16]. An alternative formulation
is to count only disjoint embeddings of each motif—i.e.,
no two embeddings of the same motif share an edge—
in the target network [17]. A third and more restric-
tive formulation requires that no two embeddings of the
same motif share a node in the target network. Counting
non overlapping embeddings in a given network requires
solving the maximum independent set problem which is
NP-complete [9]. The complexities of the motif count-
ing methods also grow rapidly as the number of nodes
in the motif and the underlying network increases. Since
all these methods try to solve the subgraph isomorphism
problem, scaling these methods to large networks remains
to be a difficult task.

The motif counting problem, when applied to biologi-
cal networks, introduces a subtle, yet massive challenge,
which is often ignored by most existing studies. This chal-
lenge arises due to evolving nature of biological networks.
The topology of biological networks change over time.
For instance, human embryonic stem cell differentiates
into hematopoietic stem cell, then to various other cell
types such as liver, kidney, etc. during the development
process. Even without cell differentiation, as the chromo-
somes’ chromatin structures change through folding and
unfolding events, different sets of genes get exposed for
transcription and thus for interaction. As the network
evolves, frequency of each motif in the current network
topology can also change. Thus, even if we know the
count of a given motif prior to the topological alteration
of the network, this number becomes invalid after the
alteration. To resolve this issue, we need to update the
frequency of each motif such that it effectively mirrors
the current snapshot of the network. Methods that com-
pute frequency of motifs assume that the topology of
the network remains unchanged once the computation
is performed. One trivial way to adopt these methods to
dynamically evolving network topologies is to re-compute
the frequency of motifs from scratch each time the net-
work evolves. This strategy however renders to be very
expensive and impractical particularly for large and highly
evolving networks. We need new strategies that quickly
adapt to the topological changes as the network evolves.

Our Contributions. In this article, we design and
develop a scalable method for counting the number
of embeddings of given motifs in a dynamic biological
network. Briefly, our method first computes the num-
ber of embeddings of each motif in the initial network

Page 2 of 122

topology. For each motif, we store its embeddings in
a list. As the topology of the network evolves through
network edit operations (i.e., node (edge) insertion (dele-
tion)), we dynamically process the list of embeddings
and update the count of motifs. Lastly, we demon-
strate that our method can dynamically update the fre-
quency of each motif in orders of magnitude faster than
existing methods, and that it has very high accuracy
(e.g., >96%).

Preliminaries

Basic definitions and notation

We restrict our interest to biological networks that can be
modeled as a undirected graphs. That said, the methods
we develop here can be applied to directed graphs as well.
We denote a graph as G = (V, E) with a set of nodes V'
connected by a set of edges E. A graph G’ = (V/,E') isa
subgraph of G = (V,E) if V/ C V and E' is a subset of
edges of E connecting the nodesin V' (i.e., E' € ENV x V).

A path is a sequence of edges in a graph that consti-
tutes an ordered sequence of distinct nodes. For example,
the sequence of nodes [ 4, b, ¢, f] is a path that is shown in
Fig. 1a. We define the length of a path as the number of
edges on that path. We define the distance between two
nodes in a graph as the length of the shortest path which
connects them.

We next define the concept of connectedness of nodes
and graphs. Nodes u and v of graph G are connected if
there is a path between u and v in G. Thus, a graph G =
(V,E) is connected if all node pairs #,v € V in G are con-
nected. Figure la depicts a connected graph. This paper
only considers connected subgraphs as motifs. Therefore,
in the rest of this article, the term subgraph implies that it
is a connected subgraph.

In a given graph G = (V,E), we define the k-
neighborhood of an edge e = (u,v) as a subgraph G’ =
(V',E'), where E' C E contains all edges which have at
least one incident node whose distance to either « or v is
at most k. The set of nodes, V' C V contains all nodes
connected by E'.

g
f
Fig. 1 An example to demonstrate pattern and its frequencies




Mukherjee et al. BVIC Systems Biology 2018, 12(Suppl 1):6

Graph isomorphism

We say that two graphs G = (Vg,Eg) and H = (Vy, Ep)
are isomorphic if there is a bijection function 7 : Vg —
Vy such that edge (4,v) € Eg < (w(u),7n(v)) € En.
Let us denote the graph in Fig. 1la with G. Figure 1b
presents a graph that forms a triangle. Let us denote
this with P. There are four subgraphs in G which are
isomorphic to P. These subgraphs consist of the follow-
ing sets of edges {(a,b), (a,e), (b,e)}, {(a,e), (a.f), (e,./)},
{(a,0),(a,d),(c,d)}, and {(a,d), (a,g),(d,2)}. We denote
these subgraphs with S;, So, S3 and Sy respectively. We
denote the set of all subgraphs in G which are isomorphic
to Pwith S = {81, Sy, S3, S4}

Isomorphism is a transitive relationship. This indicates
that all subgraphs in S are isomorphic to each other. Thus
S defines a topological equivalence class of subgraphs. We
represent subgraphs in an equivalence class with a pat-
tern. For example, the triangle pattern P represents the
equivalence class S. Notice that the nodes of a pattern are
unlabeled and it only defines the topology of the subgraph
in an equivalence class.

We say that two subgraphs of a given graph overilap if
they share at least one edge. Otherwise, we call them dis-
joint. For example, in Fig. 1a subgraphs S; and S, overlap
since they share the edge (4, e). Subgraphs S; and S4 on
the other hand are disjoint.

The frequency of a pattern P in a graph G is a function of
the set of subgraphs of G which are isomorphic to P. We
call these subgraphs as the embeddings of P in G. The fact
that these subgraphs may overlap with each other has led
to alternative definitions to the frequency function. The
classic definition of frequency ignores overlaps between
isomorphic subgraphs. It thus reports the frequency of a
pattern as the cardinality of its equivalence class. This fre-
quency function is denoted as the F1 count of a pattern
[18]. For example, each subgraph in S is an embedding of
the pattern P in G. Therefore, the F1 count of pattern P in
G is four. An alternative measure counts only the disjoint
embeddings of a pattern. This frequency is denoted as the
F2 count. For example, in Fig. 1a the F2 count of P in G is
two (e.g., {S1, S3}). A more restrictive version of frequency
definition of a pattern does not allow two embeddings to
have a common node. This is denoted as the F3 count of
a pattern. For example, F3 count of pattern P in G is one
since node a is common to all embeddings in S.

Dynamic biological networks

Biological networks are inherently dynamic structures.
Their topologies change with time through network edit
operations. There are four possible network edit opera-
tions that perturb the topology of a network, namely (i)
node insertion, (i) node deletion, (iii) edge insertion, and
(iv) edge deletion. It is easy to represent node insertion
(deletion) using edge insertion (deletion). For example, a

Page 3 of 122

node insertion can be represented as a set of edge inser-
tions between existing nodes and the new node. Similarly,
a node deletion is equivalent to deleting all edges con-
nected to the deleted node. Formally we define a dynamic
network as follows: a sequence of edge deletions and addi-
tions ey, ex,, €. €; Yer, € V x V are performed on
G = (V,E) such that
G — {(V»Ei =Ei-1U{er)}), ifer, € Eix
"7 |(V,Ei = Ei_1 — {ex,}), otherwise

where G; represents the topology of the network after the
ith edge insertion or deletion and Go=G

Related work

We classify existing methods that are related to our work
in two categories: methods for static networks and meth-
ods for dynamic networks. The methods on static net-
works can be broadly divided into two categories: (1)
those that count motifs in a single network, and (2) those
that count motifs in a set of networks. SUBDUE [19]
and GREW [20], for example, find the most frequent
subgraphs in a given large network. Complete subgraph
finding algorithms are those which are guaranteed to find
all subgraphs that satisfy some constraints in a given net-
work. Most subgraph finding algorithms are complete;
however, their efficiency falls when they operate on large
dense graphs. Algorithms such as SUBDUE and GREW
are scalable to an extent but they find only a small number
of subgraphs than those discovered by complete algo-
rithms.

The meaning of frequency changes when we consider
methods finding frequent subgraphs in a set of networks.
If a subgraph exists in a network, the frequency of that
subgraph increases by one, irrespective of the number of
embedding found in that particular network. FSG [21],
gSpan [22] and SPIN [23] fit in this category. FSG gen-
erates possible subgraphs by growing them one edge at
a time. The number of graphs that contains a certain
subgraph is referred to as the support of that subgraph.
Frequent subgraphs are reported which exceeds a certain
set support threshold. The method becomes expensive as
it computes the canonical labels of many redundant sub-
graphs. gSpan performs a DFS(Depth First Search) and
finds out the minimum representation of vertex orderings
and then organizes the canonical labels into a hierarchi-
cal spanning tree. The frequent subgraphs are discovered
by traversing the tree and finding subgraphs which exceed
the minimum support. In this way gSpan avoids gen-
erating canonical labels for redundant subgraphs. SPIN
improves on gSpan by reducing the mining area as it only
looks at maximal frequent subgraphs which are not part
of larger frequent subgraphs. As mentioned, these meth-
ods do not count the number of occurrences of a subgraph
in a network but rather check is the subgraph appears at
least once in a given network.



Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

CODENSE [24] finds coherent, dense subgraphs in large
biological networks. GraphSig [25] mines significant and
frequent subgraphs in which graphs are represented as
feature vectors. SiS [26] finds subgraphs with the largest
probability to appear in a set of biological networks. Most
of these methods only focus on the F1 count of the
patterns (e.g., [11-16]). Others such as MAVISTO [18]
computes both F2 and F3 counts of motifs.

Elhesha et al. [17] finds the F2 count of large motifs in
a biological network by first computing the F2 counts of
4 basic motifs and then joining those basic motifs itera-
tively to generate larger motifs. Since this paper is one of
the most recent papers which computes the F2 count of a
given motif in a static network, we have used this method
for the initial computation of the F2 counts and have also
compared the running time and accuracy of our method
against this method. We explain this in more detail in
“Evaluation criteria” section.

There are few methods which focus on dynamic net-
works and none aim to solve motif counting. Wack-
ersreuther et al. [27] discover frequent subgraphs in
dynamic networks. From a time series of graphs they
generate a union graph which they call dynamic graph.
Each edge in the dynamic graph is denoted with an edge
existence string which contains the label of that edge at
different points of the time series. From the dynamic
graph they find subgraphs which share the same common
dynamic pattern i.e. they appear and disappear together
from the time series of graphs. Qin et al. [28] solve a sim-
ilar problem but they label the edges 1 or O depending
on whether that edge exists in a given time point or not.
The algorithm finds significant substructures whose edge
labels show some fixed properties (patterns of appearance
and disappearance from the network) and are within a
user defined distance of each other in the dynamic graph.

These methods require the networks at different time
points as input and they do all their processing on a union
graph constructed from this sequence of networks. Also,
these methods only look at the F1 counts and do not
consider the F2 frequency of subgraphs.

Methods

We begin by describing a method that computes the count
of F1 and F2 for a given motif in a static network. Next,
we describe possible network operations that change the
topology of the networks, and discuss how to dynami-
cally update the count of F1 and F2 for each of these
operations.

Motif counting in static networks

Assume that we are given a motif topology denoted with P.
Given a graph G, we want to compute the count of F1 and
F2 of pattern P in G. Let us denote the set of all embedding
of P in G with S. We denote the cardinality of the set S (i.e.,

Page 4 of 122

F1 count of P) with |S|. Recall that the F2 count of pattern
Pis the cardinality of the maximal set of embedding where
two embeddings do not share edges. We denote such set
with S'. To compute the F2 count of P, we introduce the
concept of an overlap graph, which is unique to P and G.
Let us denote the overlap graph with G° = (V°, E°). Here,
each node in V? corresponds to an embedding of P listed
in S. Let us denote the relationship between the nodes
in V° and the embeddings in S with a bijection function
¢ : V° — S. Each edge (4,v) € E° indicates that the two
embeddings ¢ (1) and ¢ (v) share at least one edge.

We use the overlap graph to generate the maximal, non-
overlapping embedding set S in an iterative fashion. First,
we find the node u € V° with the smallest degree. If
there are multiple nodes with the same smallest degree,
we randomly select one of them. We insert the corre-
sponding embedding ¢ (x) into S'. Since S’ only contains
non-overlapping embeddings, we remove node u from V°
along with all the nodes v € V?, such that (4, v) € E°. We
repeat this process to populate S’ until V° becomes the
empty set.

Motif counting in dynamic networks

Let us denote the given network with G = (V, E). Also, let
us denote the topology of the network after the ith edge
insertion or deletion with G; = (V,E;). Thus, we have
Go=Gand Vi > 0, |[E; — E;_1]| = 1. Given a motif topol-
ogy denoted with pattern M, we compute the F1 and F2
counts of M in the initial network Gg by using the method
described in “Motif counting in static networks” subsec-
tion. As the network G evolves (i.e., new edges are added
and/or deleted), the count of F1 and F2 of M can change.
Next, we will show an algorithm for efficiently updating
the F1 and F2 counts as the network evolves from G; to
Giy1 Vi > 0. By repeatedly applying our algorithm, after
each network edit operation, the motif count is updated
for arbitrarily large sequence of network updates.

Updating the F1 count

We now describe our method for updating the count of
F1 of M as G; evolves into G;;1. We assume that F1 for G;
is known. Our algorithm for updating F1 relies on initially
constructing and maintaining an auxiliary data structure
that allows for the embeddings containing an edge to be
efficiently queried. Thus, at the beginning of our algo-
rithm, we find all embeddings of a given motif M in the
initial network Gy. After finding these embeddings, we
create a list of embeddings for each edge e € E, denoted
as D, which stores all embeddings that contain e. That is,
for a motif M, let m be an embedding in a given network.
Then m € D, if e € m. This data structure, which we refer
to as the edge compressed bitmap, is updated each time an
edge is either added or deleted. The F1 is then updated
based on the edge compressed bitmap.



Mukherjee et al. BVIC Systems Biology 2018, 12(Suppl 1):6

Suppose that as the network G; evolves to G;4; the e €
E; is deleted. This reduces the F1 count of motif M, if the
deleted edge is a part of embeddings of M. From the edge
compressed bitmap, we find the set of embeddings of M
which contain e. We remove this set (D,) from the edge
compressed bitmap and reduce the F1 count of M by the
cardinality of this set.

Next, assume that an edge e ¢ E; is added to G;.
Unlike the edge deletion, prior to this update, we do not
know whether e is a part of an embedding of M in G;4;.
We locate such embeddings of M in G;;; as follows.
Let us denote the diameter of M with k. We search the
k-neighborhood of e in Giy;. The set of embeddings of
M which contains e can be formed with its neighboring
edges. We add this set to the edge compressed bitmap and
increase the F1 count of M by the cardinality of the set of
new embeddings.

Updating the F2 count

After updating the F1 count, we proceed to update the
F2 count. Updating the F2 count is more challenging
than updating F1 because computing the count of F2 is
NP-complete [9] and the methods used are heuristics.
As a result, the F2 count we compute even for a single
static network may deviate from the optimal result. We
would like to minimize the additional errors introduced
by dynamic updates.

First, we assume that we have already computed the F1
and F2 counts of the given motif M in G; and the F1 count
of M in Gj;1. Next, we describe how we update the F2
count for G;11. There are following two possible scenar-
ios: (1) an edge has been deleted from G;, and (2) and edge
has been added to G;. In the first scenario, the removal of
an edge e from G; will cause the F2 count to either remain
the same or decrease by one. The former case occurs when
none of the embeddings in the set D, contribute to the
F2 count in G;. The latter case occurs when one of the
embeddings from the set D,, contributes to the F2 count
of G;. Let us denote that embedding with X (X € D).
After removing e, the embedding X does not exist in G;41.
This reduces the F2 count of M by one. However, it is
possible that there is another embedding (say Y), which
can be included in the F2 count for G;4 to replace X. For
this to happen, ¥ must satisfy two conditions: (i) Y over-
laps with X, and (ii) Y does not overlap with any other
embedding included in the F2 count of M in G;. If such
an embedding Y exists, we include it in the F2 set. Thus
the F2 count remains unaltered. Otherwise the F2 count
decreases by one.

In order to identify any embedding Y that satisfies the
two condition above, we explore the neighbors of X in the
overlap graph. Recall that the neighbors of an embedding
in the overlap graph are those embeddings of M which
share at least one common edge with that embedding. If

Page 5 of 122

say, X consists of edges e1, e and e3 then the neighbors of
X will be the union of sets D,,, D,, and De,.

From the set of meighbors of X, we consider each
embedding and check if they can be included in
the updated F2 count. If an embedding Y in that
set, has all of its edges free then we include it in
the F2 set for Gj;;. Therefore, if such an embed-
ding Y exists, the F2 count remains unaltered as the
inclusion of Y compensates for the deletion of X.
Otherwise we decrease the F2 count by one.

Assume that an edge e, where E;y; — E; = {e} is added
G;.This addition will either increase the F2 count of M in
Git+1 by one or has no influence. The new edge can form
new embeddings of M in G;1;. We explain how we obtain
such new embeddings in “Updating the F1 count” section.
We then check if any of these new embeddings can be
included in the updated F2 count. To do this, we con-
sider each new embedding, and check if all of its edges are
uninvolved in the F2 count (they could be involved in the
F2 count with other embeddings). If such an embedding
exists, we include it in the F2 set and increase the F2 count
by one.

Results

Datasets

We use synthetic and real datasets to evaluate our method.
First, we describe our synthetic dataset. We use synthetic
networks to observe the performance of our method by
varying a broad suite of parameters, namely the num-
ber of nodes, the average number of edges per node in
the network and the topology model. We call the num-
ber of nodes in the networks and average number of edges
per node as network size and degree respectively. We
generate undirected random networks using three gener-
ative models, namely (i) Erdgs-Rényi (ER) [29], ii) Watts-
Strogatz (WS) [30] and (iii) Barabdsi-Albert (BA) [31]. We
experiment with networks of different sizes and degree
values. We generate networks with sizes ranging from
1000 to 5000 at increments of 1000. For each network size,
we set the network degree to ten, fifteen and twenty. For
each parameter combination, we randomly generate 10
undirected synthetic networks for each model. In total, we
generated 450 (i.e., 3 x 5 x 3 x 10) synthetic networks.

Next, we describe our secondary dataset. We generate
gene co-expression network using the transcription data
from Rivera-Mulia et al. [32]. This dataset contains the
gene expressions for 19 human cell lines obtained at var-
ious stages of development from embriyonic stem cell to
various cells. Table 1 lists these cell lines. From these cell
lines, we construct co-expression networks at three differ-
ent stages of development (i) Post stem cell uses all the cell
lines except the stem cells. (ii) Pre-pancreatic cell includes
all cell lines but the pancreas cells. (iii) Pre-liver cell con-
tains all cell lines except liver cells. We use the datasets
(i) and (ii) above to build a pathway of two networks for



Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

Table 1 Cell lines used in our experiments

Cell line Cell type

ESC_Cyt49 ESC

ESC_H9 ESC

NC_Cyt49 Neural crest

NC_H9 Neural crest

MSC_H9 MSCs

NPC_H9 NPCs

LPM_H9 Lateral plate mesodem
Splanc_Cyt49 Splanchnic mesoderm
Splanc_H9 Splanchnic mesoderm
Epic_Cyt49 Mesothelium

Epic_H9 Mesothelium

SM_H9 Smooth muscle
DE_Cyt49 Definitive endoderm
Liver_d5_Cyt49 Immature hepatic
Liver_d8_Cyt49 Hepatoblast
Liver_d16_Cyt49 Liver

Panc_d5_Cyt49 Primitive gut
Panc_d8_Cyt49 Posterior foregut
Panc_d12_Cyt49 Pancreas

pancreas cell development. We use (i) and (iii) to build a
second pathway for liver development. For the first path-
way above we construct two networks as follows. We com-
pute the Pearson’s correlation between the transcriptions
of all gene pairs in the two datasets ((i) and (ii)). We use
two correlation thresholds; stringent cutoff set to 0.95, and
a relaxed cutoff set to 0.75. Assume that the post stem cell
dataset is the primary and the Pre-pancreatic cell dataset
is the secondary dataset. Given a pair of genes # and v
we include an edge between them in the primary dataset
network if one of the two conditions hold: (1) correlation
between u and v within the primary dataset is above the
stringent cutoff, or (2) correlation between # and v within
the secondary dataset is above the stringent cutoff while
that within the primary dataset is above the relaxed cut-
off. We then construct the network for the Pre-pancreatic
dataset similarly by assuming it to be the primary and the
post stem cell dataset as the secondary one. We repeat
the same process to construct another sequence of two
networks for the liver pathway. The details of the three
simulated networks and two pathways are summarized in
Fig. 2.

Page 6 of 122

Evaluation criteria

We simulate dynamic changes in the synthetic networks
as follows. For each network, we perform a sequence of
1000 edit operations (i.e., edge insertion and deletion). We
conduct the topological perturbations using the degree
preserving edge shuffling method [33]. Each shuffle takes
two edges (a4, b) and (u, v), such that they share no nodes.
It then replaces these edges with (a,v) and (&, b). Thus,
one edge shuffling introduces two edge insertions and two
edge deletions in a random order. Such edge shuffling
ensures that all the nodes in the network preserves their
degrees.

In our experiments, we use a small set of motifs that
have been used frequently in literature. Figure 3 shows
these motifs. Note that these are all possible topologies
with two and three edges. We call these topologies the
basic motifs. Having said that, our method is generic
and can be employed to count any motif topology. Given
a sequence of network edit operations, we first com-
pute the number of embeddings for each motif in Fig. 3
before applying these edit operations. We do this using
the method presented in Elhesha et al. [17] as it is one of
the most recent papers which compute the F2 frequency
of motifs in a static network. We then apply each edit
operation in the order it was given to update the net-
work topology. After each edit operation, we dynamically
update the count of each motif using our method.

We compare our method against Elhesha et al. [17] as
it also computes the F2 count of the four basic motifs.
We evaluate our method in terms of its accuracy and run-
ning time. All experiments were performed on a server
with 3 GB RAM and AMD Opteron dual core processors
(2.2 GHz) running Linux. Notice that unlike our method,
Elhesha et al. computes the F2 count from scratch when
the network topology changes. Thus, at any point in the
evolution, we consider their count as the ground truth.
We report the accuracy of our method as the ratio of the
F2 count of our method to the F2 count returned by their
method at that instance of the network. We measure the
running time of the static method for the initial network
topology and denote it with static time. We also measure
the running time of our method after each edit operation
and denote it with dynamic time.

Running time on the synthetic dataset

Effect of network model

We first investigate the effects of different network models
on the running time of our algorithm. We set the network
size to 5000 nodes and the average node degree to 15. We

Pre-pancreatic cell network 3,111 edit operations

(1.962 nodes: 13.524 edges) Pathway 1

Fig. 2 Summary of simulated networks from real data

Post-stem cell network
(2.118 nodes: 14,143 edges)

2258 edi srations .
2,258 edit operations Pre-liver cell network

Pathway 2 (2.051 nodes; 14,134 edges)




Mukherjee et al. BVIC Systems Biology 2018, 12(Suppl 1):6

O
O O

(motif 1) (motif 2)
OLO O—0O0——0—~20
(motif 3) (motif 4)

Fig. 3 Motifs used in the experiment

perform 1000 random edit operations and dynamically
update the motif counts for all motif topologies in Fig. 3.
Figure 4 presents the results.

We observe that the running time of our method for
all three models are significantly less than that of the
static method. The static method needs to recompute the
F2 count from scratch every time the network topology
changes. To illustrate this, we plot the cost of running
the static algorithm twice, i.e., one for initial topology and
the other for an arbitrary intermediate topology as the
network evolves. We observe that, despite the additional
cost our method incurs for initialization, the total cost
of our method for 1000 dynamic topologies is less than
that of the static method for only two topologies. More
specifically our method updates the motif count for 1000
evolving topologies more than four times faster than the
static method on a single network topology.

We observe that both static and dynamic methods incur
the largest running time for the BA model. This is because
the degree distribution in the BA model forces motif
counting algorithms to evaluate many possibilities not
encountered in other models, hence the increase in the

Page 7 of 122

running time. We observe much faster running time for
the other two models.

Effect of network Size

In this experiment, we fix the average degree of the net-
works to 15, and vary the number of nodes from 1000
to 4000 with increment of 1000. We perform the exper-
iments for each motif and random network model com-
bination. We process 1000 random edit operations and
dynamically update the motif counts. We compute the
total update time as the processing time starting from the
first edit operation until the end of the last edit operation.
We compute the average update time as the total update
time divided by the number of edit operations. Figure 5
shows the results.

We observe that the average update time of our method
is very small even for the largest network size. This shows
the effectiveness of using dynamic update in the motif
counting problem.

Effect of average degree

In this experiment, we fix the network size to 4000
nodes and set the average node degree to 10, 15 and 20
respectively. We perform experiments for each motif and
random network model. We process 1000 random edit
operations and dynamically update the motif counts. We
report the average update time for the edit operations.
Figure 6 presents the results.

We observe that the average update time of our method
is very small for all degree values. Average update time
increases as the node degrees increase. Among the three
models, we observe that the BA model takes longer time
to update and the other two models show similar perfor-
mance.

These experiments support our conjecture that dynamic
update time per edit operation is very small for all param-
eter combinations. It scales well to networks with large
sizes and node degrees. The potency of our method is
important in evolving biological networks where running

o X X

staticx 2 oo
dynamic
static

25 -

Time [s]

20

30 ;/’/ 400 F ]

450 freerenee s e

staticx 2 -------- A
dynamic

static
300 - |

static x 2 oo+
dynamic
static

350 -

Time [s]

! ! ! ! ! !

! ! 200 ! ! ! !

Number of operations

them as the network evolves from Gg to Giggo. @ ER, b WS, € BA

0 200 400 600 800 1000 0 200 400
Number of operations
Fig. 4 Effect of network models on the running time. The three models are (i) Erdds-Rényi (ER), ii) Watts-Strogatz (WS) and (iii) Barabasi-Albert (BA).
The lower dotted line represents the running time for the static algorithm and the upper dotted line represents the twice the running time for the
static algorithm. The solid line shows the running time for our dynamic algorithm as it computes the counts of the initial network and then updates

600 800 1000 0 200 400 600 800 1000
Number of operations




Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

ER WS K X BA KRR

0.04 T T T T

0.035 f
@,
o 0.03 |- i
E
o 0025 R
©
g 0.02 R
]
g 0.015 - f
Y
) 0.01 |- f
>
<

0.005 R

[RE re [ R (R
1000 2000 3000 4000
Number of nodes

Fig. 5 Effect of network size on average update time for different
random network models

static method after each topological change is not

practical.

Accuracy on the synthetic dataset

In the previous section, we show that our method dynam-
ically updates the motif count very fast in all parameter
combinations. Recall however that it is possible that our
dynamic method may yield fewer F2 count as compared to
the static method. Faster running time is desirable only if
our method produces accurate results. Here, we evaluate
the accuracy of our method as compared to the static one.
We run our experiments with network size and degree
set to 5000 and 15 respectively. To compare with static
method, we also run static method [17] after every 100
edit operations. Figure 7 presents the results.

We observe that our method is highly accurate for
all motifs and random network models. The F2 count
reported by our method is very close to that of the static
method. As the number of edit operation increases, the

ER WS KXXX BA RN

0.045 T T T

0.04 R
)
o 0035 R
£ o03f .
o)
® 0.025 | B
el
S o002 g
S
8 0.015 - R
2 o001 i
) 1

0.005 |- R

10 15 20
Network degree

Fig. 6 Effect of node degree on average update time

Page 8 of 122

gap between the two F2 counts gradually grow. This is
expected since the static method computes the number of
embeddings from scratch, whereas our method dynami-
cally updates the count from the initial computation. That
said, the gap remains to be negligible even after applying
1000 edit operations.

Effect of network size

In this experiment, we fix the average degree of the net-
works to 15, and vary the network sizes from 2000 to 5000
with increment of 1000. In this experiment, we dynam-
ically compute the motif counts after each of the 1000
edit operations. In the final topology, we also compute
the results using the static method. We report the accu-
racy of our method for each motif and random model
combinations. Figure 8 shows the results.

Our results demonstrate that our method is highly accu-
rate for all network sizes, motifs, and random network
models. The accuracy of our method is over 95% in all
of our experiments. This shows the robustness of our
method.

Effect of average degree

In this experiment, we fix the network size to 5000 and
vary the degrees to 10, 15 and 20. We dynamically com-
pute the motif counts after each of the 1000 edit opera-
tions. In the final topology, we also compute the results
using the static method. Here, we report the accuracy of
our method in different random models. Figure 9 shows
the results.

Our method is highly accurate for all degree values.
For instance, accuracy values of motifs one, two and four
are over 97% for each network size. For all degree and
random network combinations, our method counts the
motifs with more than 95% accuracy.

In summary, our method yields highly accurate results
for all network sizes, density values, motif topologies,
and random network models. These results suggest that
our method is robust to a broad spectrum of parameter
settings.

Evaluation on the real dataset

We perform experiments on two pathways using
the gene co-expression dataset described earlier in
“Datasets” section. The first one is from post stem cell
network to Pre pancreatic cell network. The second one is
from post-stem cell network to pre-liver cell network. We
consider the first network in each pathway as the starting
network and the second one as the final network in the
dynamic evolution. The difference in the set of edges
between the starting and the final networks is the set of
edit operations that the starting network goes through
to evolve into the final network. As the order in which
these edit operations take place are not known, we rank



Mukherjee et al. BVIC Systems Biology 2018, 12(Suppl 1):6 Page 9 of 122
a 19800 : — b — C : — d : —
19600 - Static  + 540 Static  + 13000 | Static  + 13000 | Statc  +
Dynamic -------- Dynamic -------- Dynamic -------- Dynamic --------
19400 - 530 i 12800 L 12800 - b
. 19200 |- - - = 12600
c | c c | c o B
o~ ~ o~ 12400 ~
18600 [ i ™ o
18400 |- 12200 12200 |- ]
18200 - i 12000 B
500 12000
18000 L L L L L L L 11800 L L
Number of operations Number of operations Number of operations Number of operations
ER (Motif 1) ER (Motif 2) ER (Motif 3) ER (Motif 4)
€ 00 f " satc + f " Sttc |+ 9 Lol Static | + h 2000 " sac v A
18000 | Dynamic -------- 6200 |- Dynamic -------- T Dynamic - " Dynamic --------
17800 |- 6100 |- E 11800 |- 800
€ 17600 |- € i € L € 11600 B
§ 17400 Bt Ed t o H 1 4t § 6000 [t . g 11600 £ Ty § T T
o T . S 5900 | R S S 8 11400 | - S 11400 T 1
Q 17200 Q e N Q
17000 5800 1 11200 | 11200 - b
16800 5700 F i | | i
16600 | 11000 11000
16400 b1 . 5600 . b 10800 . . 10800 b1 . §
Number of operations Number of operations Number of operations Number of operations
WS (Motif 1) WS (Motif 2) WS (Motif 3) WS (Motif 4)
! " satc + J 20 " statc '+ k " st + I " sttc +
atic atic atic atic
20500 Dynamic -------- 2900 Dynamic -------- b 13800 Dynamic -------- 13600 - Dynamic -------- T
2850 |- 7 13600 13400 - 7
€ € T 13400 b €
3 20000 ok x4 4 4 o+ o+ o+ o+ 3 2800 Frt ek, 4 3 13200 L **+ +oF o+ o+ 3 13200 i
o e (5] —-t.,,f__”tmtw o e o
£ 19500 2780 - 1 & 13000 X
12800 B
2700 - 12800
19000 2650 |- J 12600 12600 i
‘ ‘ ‘ ‘ 12400 ‘ ‘ 12400 ‘ ‘

Number of operations

BA (Motif 1)

Number of operations

BA (Motif 2)

Number of operations

BA (Motif 3)

Number of operations

BA (Motif 4)

Fig. 7 Number of embeddings found by our dynamic method and static method as the network evolves through 1000 edit operations. a ER (Motif
1), b ER (Motif 2), ¢ ER (Motif 3), d ER (Motif 4), @ WS (Motif 1), f WS (Moatif 2), g WS (Motif 3), h WS (Motif 4), i BA (Motif 1), j BA (Motif 2), k BA (Motif 3),
1 BA (Motif 4)

a ER C—WS EXXX BA B9 b ER C—IWS EXXX BA R c ER C—WS EXXX BA Exx==R d ER C—WS EXXX BA Exxxx=R
100 [ 100 A ‘ ‘ 100 [ 100 ‘ ‘ ‘
3 B | K B
X 98} R X 98| MK K| B T 98| T 98| B | ok
< = 4 | BB | B < < B | bR
g o | b X g ot KR | B | ke g st bk | [ g % K | K | KB
2wl |bE L5 2wl b | B | o 2wl ok | ki 2wl KB KR
o 94 o5 X o 9% D RS o 9% 5] 0o 5 o 9% o) o B
& " b £ 5 B 2 & RE KRBT £ B | B | R
2r | KR ok %2 - R e 2 | KB | KE | KB
% S 3 | Mg % b 9 R | g | KR 90 SERRREN
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000
Number of nodes Number of nodes Number of nodes Number of nodes
Motif 1 Motif 2 Motif 3 Motif 4
Fig. 8 Accuracy found by our dynamic method and static method. a Motif 1, b Motif 2, ¢ Motif 3, d Motif 4
a ER C—IWS EXXX BA Bz ER C—WS EXXX BA Ex=2 c ER C—IWS EXXX BA Ex==9 ER C—WS EXXX BA B2
100 | ‘ ‘ ‘ 100 [ T 100 100 [ ‘
= % < B | = = ; %
X 98 < X 98t e X < 98 X 98 s
= | S | B = = g | BE
g o6 ke 3 06 % | K g 9% & 96 5 ke
S s [ B | <R S 5 Rk o
3 ol ke 3 o4t S | kS 3 o4 3 94t ] K
3 K 5] KIS B 5] o X K
< 8 < KD | KBS < < X s
92 | “ 92 :0‘ % 92 92 g‘ g‘
R KBS 5 X D
%0 o % M | K % % i | bk

20
Network degree

Motif 1

10
Network degree

Motif 2

Fig. 9 Accuracy found by our dynamic method and static method. a Motif 1, b Motif 2, ¢ Motif 3, d Motif 4

15

Network degree

Motif 3

o K

15
Network degree

Motif 4




Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

them randomly. We then use the static algorithm on the
starting network to find the motif embeddings for the
same motifs used in “Evaluation criteria” section. We then
apply the edit operations in the given order and update
the motif counts and embeddings. We also find all the
motif embeddings and the F2 count of the motif in the
final network using the static algorithm for comparison.

Evaluation of running time

Figure 10 presents the running time results for our
method on the two pathways. For comparison, it also
shows the running time of the static algorithm when it
is applied to only the starting network, and both starting
and final networks once. Our results demonstrate that our
dynamic algorithm takes less time to update the F2 counts
for over thousands of edit operations as compared to run-
ning the static algorithm once on two network instances
only (the starting and final networks). This is a dramatic
improvement as our method computes the motif count for
not only those two networks but also thousands of net-
work topologies in between these two states of networks.
In other words our algorithm can identify motif counts
for thousands of networks while the static algorithm fails
to do that without running it from scratch. We observe
that while the static algorithm takes around 60 s per net-
work to count motifs, our dynamic algorithm updates the
motif count in only a few milliseconds per intermediate
network.

Evaluation of accuracy

The performance improvement is desirable only if the
algorithm remains accurate. Here, we evaluate whether
our method correctly computes motif counts. We focus
on the final network of each pathway for this purpose.
We run our algorithm to dynamically update the F2 motif
count until we reach to the final network. Let us denote

Page 10 of 122

this count with cdynamic. We then compute the same count
using the static algorithm when it is applied on the final
network only. Let us denote this count with cgtatic. We
report the accuracy as the percentage of the motif count
our method finds over the static one (i,e., accuracy =
100 X Cdynamic/Cstatic- Figure 11 presents the results.

Similar to the synthetic datasets, we observe that our
dynamic algorithm is highly accurate on the real datasets
as well. For all the motifs tested, the accuracy is over 97%
for both pathways. We observe higher accuracy for the
second pathway. This is possibly because the number of
network edit operations for the second patway is lesser
than that of the first one (see Fig. 10). The results are very
promising for our method as both pathways are outcomes
of a large number of edit operations.

Discussion

From the results on the simulated dataset we observe
that the running time of our method for all three mod-
els are dramatically less than that of the static method.
For the initial network topology, the dynamic method
spends a little more time than the static method to com-
pute the F2 count. This is because it initializes the relevant
data structures which are needed to quickly update the
F2 count as the network evolves. Once the data struc-
tures are set up, however, the cost of dynamic update
becomes negligible. This demonstrates the key advan-
tage of our dynamic method over the static one. The
average update time grows very slowly as the network
size increases. This suggests that our method scales to
large networks and very large number of network edit
operations. Among the three models, we observe that
relative to the other two models, the BA model takes
longer time to update. This is because the networks in
BA model yields significantly more motif instances. The
potency of our method is important in evolving biological

a 130 | 1
T 1
110 // .

% 100 - static 1 + static 2 -~ ]

t | i —
80 - 1
70 1
60 = 1
50 ] ‘ ‘ ‘ L ‘

0 500 1000 1500 2000 2500 3000 3500

Number of operations

Pathway 1 (Post-stem cell to Pre-pancreas)

Fig. 10 Time analysis for real experiments. The lower dotted line represents the time taken by the Static algorithm to compute the counts in the
starting network in the pathway. The upper dotted line represents the time taken by the static algorithm to compute the counts in the starting
network plus the time taken by the static algorithm to compute the counts in the final network. The solid line represents the time taken by our
dynamic algorithm to update the counts from the starting network to the final network as it goes through the network edit operations (plotted in
X-axis). a Pathway 1 (Post-stem cell to Pre-pancreas), b Pathway 2 (Post-stem cell to Pre-liver)

b 130 - 1
120 T g
wp oo

% 100 |- static 1 + static 2 -~ ]

2wl i —
80 1
70 1
60 [ 1
50 ] ‘ L ‘

0 500 1000 1500

Number of operations

2000 2500

Pathway 2 (Post-stem cell to Pre-liver)




Mukherjee et al. BVIC Systems Biology 2018, 12(Suppl 1):6

Pathway 1 ——J Pathway 2 KXX=
T T T T

100 | N

98 ]

o

RRRKK

ERKKS

XS

<X

94 |-

Accuracy[%]

RRIRKS

RS

90 !
motif 1 motif 2 motif 3

motif #
Fig. 11 Accuracy of the dynamic algorithm for the real networks

motif 4

networks where running static method after each topolog-
ical change is not practical.

We also observe that our method is highly accurate for
all motifs and random network models. The accuracy of
our method remains stable with increasing network size
while the accuracy values for BA model increase as the
network size grows. Since the BA model represents the
biological networks well, these results promise the appli-
cability of our method in real networks. We also observe
that our method is stable for growing node degree values.

Our experiments with the real dataset shows that our
methods have similar efficacy on real data as well. There-
fore, it can be used on biological dynamic networks to
uncover interesting observations on the evolution of bio-
logical processes.

Conclusions

Several approaches exist to compute the number of
embeddings for a given motif in static network; however,
no such method exists for dynamic networks. In this arti-
cle, we address this problem and describe a method that
incrementally updates the motif count as the network
changes its topology. We evaluated our method exten-
sively using synthetic and real datasets, and show that our
method is highly accurate and that it can be scaled to large
dense networks. The results on real data demonstrate the
utility of our method in revealing interesting insights on
the evolution of biological processes.

Funding

This work was supported partially by US National Science Foundation (NSF)
under grant 1262451. The publication of this article was also sponsored by this
grant.

Availability of data and materials
Data from the research of Rivera-Mulia et al. is publicly available at http://
www.replicationdomain.org.

About this supplement
This article has been published as part of BMC Systems Biology Volume 12
Supplement 1, 2018: Selected articles from the 16th Asia Pacific Bioinformatics

Page 11 of 122

Conference (APBC 2018): systems biology. The full contents of the supplement
are available online at https://bmcsystbiol.biomedcentral.com/articles/
supplements/volume-12-supplement-1.

Authors’ contributions

KM, MMH and TK worked on the algorithmic development. KM implemented
the method, compiled the datasets and ran all experiments. KM, MMH, TK and
CB worked on writing the manuscript. All authors edited the manuscript. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 11 April 2018

References

1. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to
modular cell biology. Nature. 1999;402:47-52.

2. Dost B, et al. QNet: A tool for querying protein interaction networks.

J Comp Biol. 2008;15(7):913-25.

3. Hasan MM, KahveciT. Indexing a protein-protein interaction network
expedites network alignment. BMC Bioinformatics. 2015;16(1):326.

4. Francke C, Siezen RJ, Teusink B. Reconstructing the metabolic network of
a bacterium from its genome. Trends Microbiol. 2005;13(11):550-8.

5. Sridhar P, Kahveci T, Ranka S. An iterative algorithm for metabolic
network-based drug target identification. Pac Symp Biocomput.
2007,88-99.

6. MiloR, et al. Network motifs: simple building blocks of complex networks.
Science. 2002;298(5594):824-7.

7. Wernicke S. A faster algorithm for detecting network motifs. In: Workshop
on Algorithms in Bioinformatics. Berlin, Heidelberg: Springer; 2005.
p.165-77.

8. Milenkovi¢ T, LaiJ, Przulj N. GraphCrunch: a tool for large network
analyses. BMC Bioinformatics. 2008;9(1):70.

9. Garey MR, Johnson DS. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman & Co.; 1979.

10. Cook SA. The complexity of theorem-proving procedures. In: Proceedings
of the Third Annual ACM Symposium on Theory of Computing. STOC '71.
New York: ACM; 1971. p. 151-8.

11. Grochow JA, Kellis M. Network Motif Discovery Using Subgraph
Enumeration and Symmetry-Breaking. In: Research in Computational
Molecular Biology. Berlin, Heidelberg: Springer; 2007. p. 92-106.

12. Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs.
Bioinformatics. 2004,20(11):1746-1758.

13. Omidi S, Schreiber F, Masoudi-Nejad A. Moda: An efficient algorithm for
network motif discovery in biological networks. Genes Genet Syst.
2009;84(5):385-95. http://doi.org/10.1266/qgs.84.385.

14. Wernicke S. Efficient detection of network motifs. [IEEE/ACM Trans
Comput Biol Bioinfo. 2006;3(4):347-59.

15. ChenJ, Hsu W, Lee ML, Ng S. NeMoFinder: Dissecting genome-wide
protein-protein interactions with meso-scale network motifs. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, vol. 2006; 2006. p. 106-15.

16. Kashani ZRM, et al. Kavosh: a new algorithm for finding network motifs.
BMC Bioinformatics. 2009;10(1):318.

17. Elhesha R, Kahveci T. Identification of large disjoint motifs in biological
networks. BMC Bioinformatics. 2016;17(1):408. http://doi.org/10.1186/
§12859-016-1271-7.

18. Schreiber F, Schwobbermeyer H. Frequency concepts and pattern
detection for the analysis of motifs in networks. In: Transactions on


http://www.replicationdomain.org
http://www.replicationdomain.org
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-1
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-1
http://doi.org/10.1266/ggs.84.385
http://doi.org/10.1186/s12859-016-1271-7
http://doi.org/10.1186/s12859-016-1271-7

Mukherjee et al. BMC Systems Biology 2018, 12(Suppl 1):6

20.

21

22.

23.

24.

25.

26.

27.

28.

29.
30.

31

32.

33

Computational Systems Biology ll. Berlin, Heidelberg: Springer; 2005.
p.89-104.

Cook DJ, Holder LB. Substructure discovery using minimum description
length and background knowledge. J Artif Int Res. 1994;1(1):231-55.
Kuramochi M, Karypis G. GREW - a scalable frequent subgraph discovery
algorithm. In: Fourth IEEE International Conference on Data Mining, 2004.
ICDM '04; 2004. p.439-42.

Kuramochi M, Karypis G. An efficient algorithm for discovering frequent
subgraphs. IEEE Trans Knowl Data Eng. 2004;16:1038-51.

Yan X, Han J. gSpan: Graph-based substructure pattern mining. In: IEEE

International Conference on Data Mining, 2002. ICDM '02; 2002. p. 721-4.

Huan J, Wang W, Prins J. SPIN: mining maximal frequent subgraphs from
graph databases. In: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD '04. New
York: ACM; 2004. p. 581-6.

Hu H, et al. Mining coherent dense subgraphs across massive biological
networks for discovery. Bioinformatics. 2005;21:213-21.

Ranu S, Singh AK. GraphSig: A scalable approach to mining significant
subgraphs in large graph databases. In: 2009 [EEE 25th International
Conference on Data Engineering; 2009. p. 844-55.

Hasan MM, Kahveci T. Color distribution can accelerate network
alignment. In: ACM BCB. New York: ACM; 2013. p.52-61.
Wackersreuther B, et al. Frequent subgraph discovery in dynamic
networks. In: Proceedings of the eighth workshop on mining and
learning with graphs. MLG "10. New York: ACM; 2010. p. 155-62.

Qin G, Gao L, Yang J. Significant substructure discovery in dynamic
networks. Curr Bioinform. 2013;8(1):46-55.

Erd6s P, Rényi A. On random graphs. I. Publ Math Debrecen. 1959;6:290-7.

Watts DJ, Strogatz SH. Collective dynamics of'small-world’'networks.
Nature. 1998;393:409-10.

Barabasi AL, Albert R. Emergence of scaling in random networks. Science.

1999;286(5439):509-12. https://doi.org/10.1126/science.286.5439.509.
Rivera-Mulia JC, et al. Dynamic changes in replication timing and gene
expression during human development. Genome Res. 2015;25(8):
1091-103.

Milo R, et al. On the uniform generation of random graphs with
prescribed degree sequences. 2003. Arxiv preprint cond-mat/0312028.

Page 12 of 122

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



https://doi.org/10.1126/science.286.5439.509

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Preliminaries
	Basic definitions and notation
	Graph isomorphism
	Dynamic biological networks

	Related work
	Methods
	Motif counting in static networks
	Motif counting in dynamic networks
	Updating the F1 count
	Updating the F2 count


	Results
	Datasets
	Evaluation criteria
	Running time on the synthetic dataset
	Effect of network model
	Effect of network Size
	Effect of average degree

	Accuracy on the synthetic dataset
	Effect of network size
	Effect of average degree

	Evaluation on the real dataset
	Evaluation of running time
	Evaluation of accuracy


	Discussion
	Conclusions
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

