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Background: Non-apoptotic programmed cell death, including autophagy, ferroptosis,
and pyroptosis, newly discovered in recent years, plays an important role in hepatocellular
carcinoma (HCC). So, this study attempted to explore the relationship between non-
apoptotic programmed cell death-related genes and the molecular characteristics, tumor
microenvironment, and prognosis in HCC patients.

Methods: The transcriptomic and clinical data of HCC samples were downloaded from
various public datasets, followed by acquiring non-apoptotic programmed cell death-
related genes from the database. A gene signature model was then constructed using
univariate and multivariate Cox regression analyses and validated in other cohorts as well
as our institution sequencing data. Kaplan–Meier survival curves and time-dependent
receiver operating characteristic curves were generated to evaluate the model’s predictive
capability. Furthermore, the relationships among the gene signature, TP53 mutation,
stemness, immune status, and responsiveness of transarterial chemoembolization (TACE)
were analyzed.

Results: The gene signature model was constructed based on five autophagy-, three
ferroptosis-, and two pyroptosis-related differentially expressed genes. The model
accurately predicted that patients classified as low risk would have better overall
survival than high-risk patients, which was robustly consistent with data from other
cohorts as well as our institution sequencing data. The comprehensive results
indicated that a high-risk index was correlated with a high TP53 mutation rate, high
cancer cell stemness, high infiltration of immunosuppressive cells and low
immunophenoscore, and low TACE responsiveness of HCC patients.

Conclusion: Collectively, the established non-apoptotic programmed cell death-related
gene signature was shown to accurately predict prognosis, associated with the TP53
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mutation and liver cancer cell stemness, reflect the tumor immune microenvironment, and
predict TACE responsiveness in HCC patients.

Keywords: hepatocellular carcinoma, programmed cell death, gene signature, TP53 mutation, stemness, tumor
microenvironment, transarterial chemoembolization

INTRODUCTION

In 2020, liver cancer represented the sixth most common cancer
type worldwide, accounting for 4.5% of all new tumors and the
third leading cause of cancer-related death (over 8.3%) (Sung
et al., 2021). Among the primary types of liver cancer,
hepatocellular carcinoma (HCC) is the most common,
accounting for approximately 75–85% of all liver cancer cases.
Even patients who are diagnosed early and undergo radical liver
resection still experience a high recurrence rate (Famularo et al.,
2018; Fujiwara et al., 2018). Transarterial chemoembolization
(TACE) is the preferred first-line regimen for patients with
unresectable local lesions and good liver function, which is
also the most widely applied treatment regimen not only in
intermediate stage HCC recommended by guidelines but also
in advanced stages according to the BRIDGE study (Park et al.,
2015; Sieghart et al., 2015; European Association for the Study of
the Liver, 2018; Chang et al., 2020). Due to the high recurrence of
HCC even after surgical resection, postoperative adjuvant TACE
is commonly used (Kudo 2011; Wang et al., 2018). Although
objective tumor response rates after transarterial
chemoembolization are generally favorable and may exceed
60%, more than 40% of patients have no response to TACE
therapy (Gaba et al., 2015; Martin et al., 2020). Recently,
immunotherapy has gradually become a hot spot in the
treatment of liver cancer, whose characteristic is to stimulate a
specific immune response, following inhibiting and killing tumor
cells, so as to reduce the recurrence rate and metastasis rate of
tumor (Inarrairaegui et al., 2018; Llovet et al., 2018). Due to the
complex etiology and high heterogeneity of hepatocellular
carcinoma, prognosis and treatments for HCC remain
unsatisfactory despite these currently available therapies in a
real-world scenario (Cancer Genome Atlas Research Network,
2017). To overcome this, there is an additional need for the
development of novel prognostic models to tailor more
personalized treatment regimens resulting in improving
treatment outcomes in patients with HCC.

Programmed cell death (PCD) plays a fundamental role in
animal development and tissue homeostasis. Abnormal
regulation of this process is associated with a wide variety of
human diseases, including immunological and developmental
disorders, neurodegeneration, and cancer (Fuchs and Steller,
2011). Three new mechanisms of PCD, including autophagy,
ferroptosis, and pyroptosis, which are different from traditional
apoptosis and play a double-edged sword role in the development
and progression of tumors under the regulation of related genes,
were recently discovered and collectively play critical roles in
HCC tumorigenesis and progression (Mishra et al., 2018; Fritsch
et al., 2019; Tang et al., 2019; Bedoui et al., 2020). Autophagy, or
type II programmed cell death, is a process in which HCC tumor

cells may utilize it as a protective mechanism in order to adapt to
external stress, thereby enhancing the tumor’s proliferation,
metastasis, and resistance to treatment under the regulation of
autophagy-related genes (Toshima et al., 2014; Yu et al., 2017;
Levine and Kroemer 2019). Ferroptosis is an iron-dependent
form of programmed cell death that has been confirmed that
ferroptosis affects the development of HCC through the GPX4,
P53, and MT1G signaling pathways and related genes (Dixon
et al., 2012; Nie et al., 2018; Tang et al., 2021). Pyroptosis, also
known as cell inflammatory death, is mediated by intracellular
inflammasomes and caspase-1, which may also affect the
development of HCC under the regulation of related genes
(Xia et al., 2019; Al Mamun et al., 2020; Fang et al., 2020).
Several studies have shown that autophagy- or ferroptosis- or
pyroptosis-related gene signatures can potentially predict the
prognosis of HCC or other tumors (Huo et al., 2020; Liang
et al., 2020; Ju et al., 2021; Ye et al., 2021). While prognostic
models have been constructed independently for each PCD-
related group of genes, a prognostic model integrating all three
non-apoptotic programmed cell death-related genes has yet to be
developed.

In this study, we used the gene expression profile of public
datasets to find three non-apoptotic programmed cell death
genes related to the prognosis of HCC and then used these
genes to construct a prognostic model of HCC to predict the
survival of HCC patients. While first tested in other public
cohorts, this prognostic model was then also verified in our
cohort. Meanwhile, we also explored the relationships among
gene signature, TP53 mutation, liver cancer cell stemness, and
immune status, as well as the responsiveness of TACE in
HCC. In the present work, it is demonstrated that an
alternative prognostic model is tightly correlated with
TP53 mutation, liver cancer cell stemness, and immune
status, as well as TACE responsiveness and the prognosis
of HCC patients.

MATERIALS AND METHODS

Patients and Datasets
Data on HCC patients were accessed from The Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium
(ICGC), and Gene Expression Omnibus (GEO). The
transcriptome data of 374 hepatocellular carcinoma (HCC)
and 50 normal samples were obtained from TCGA to analyze
expression differences of the autophagy-, ferroptosis-, and
pyroptosis-related genes. Inclusion criteria of patients in
follow-up analysis were based on the following: 1) HCC
diagnosis confirmed via pathology; 2) available RNA
expression data; and 3) complete clinical data and follow-up time.
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A list of 232 autophagy-, 60 ferroptosis-, and 40 pyroptosis-
related genes were accessed from the HADB database (http://
www.autophagy.lu/), FerrDb database (http://www.zhounan.org/
ferrdb/), and the pyroptosis gene sets in the molecular signature
database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/),
respectively. Other previously published literature was also used.

Construction and Validation of the
Prognostic Gene Signature
The R package “limma” in R software was used to identify the
differentially expressed genes (DEGs) between tumor tissues and
adjacent non-tumorous tissues, according to the criteria of | log 2
(Fold Change) | > 1 and a false discovery rate (FDR) < 0.05. Next,
autophagy-, ferroptosis-, and pyroptosis-related DEGs were
extracted from all DEGs. The association between autophagy-,
ferroptosis-, and pyroptosis-related DEGs and patient survival
was evaluated by univariate Cox regression analysis using the R
package “survival.” Autophagy-related DEGs with a p < 0.001,
ferroptosis-related DEGs with a p < 0.01, and pyroptosis-related
DEGs with a p < 0.05 were considered candidate variables in a
univariate Cox regression analysis. An interaction network for the
prognostic DEGs was generated by the STRING database (https://
www.string-db.org/) and entered into a stepwise multivariate Cox
regression analysis to identify covariates with independent
prognostic values for patient survival. Each patient was assigned a
risk index (RI) based on the expression of predictive genes and the
multivariate COX regression risk model coefficients. The risk score
was calculated as follows: risk score =
∑n

i�1(GeneExpressioni × Coefi). In order to standardize and
normalize the risk score, the risk index was introduced and
calculated as follows: risk index = (risk score-min)/(max-min).

Based on the median risk index (RI), HCC patients were
divided into high- and low-risk groups. The survival analysis was
analyzed via Kaplan–Meier (K–M)methods to compare the high-
and low-risk groups according to predictive signatures. In
addition, the predictive value of prognostic prediction models
was evaluated by areas under the curve (AUC) of the receiver
operator characteristic (ROC) curve using the R package
“survivalROC.” The principal component analysis (PCA) was
performed to examine the clustering efficacy of the selected
signatures with the “prcomp” function of the R package
“stats.” The ICGC cohort was used to verify these results.

Association Between the Risk Model and
Clinicopathological Factors and
Construction of a Prognostic Nomogram
Univariate and multivariate analyses of clinical pathology were
performed with Cox regression and then used as an independent
predictive risk factor for overall survival in the TCGA cohort. In
order to quantitatively predict the survival risk for HCC patients,
the nomogram was further constructed on the basis of the risk
index as well as clinical parameters. The calibration curve was
used to evaluate the accuracy of the nomogram. The nomogram
and calibration curves were both plotted via R package “rms.”

Comprehensive Analysis of Molecular
Characteristics in Different Subgroups
For TP53 mutation analysis, the information on genetic alterations
was obtained from TCGA and ICGC, and the quantity of TP53
mutation and tumor mutation burden (TMB) was calculated by
using the R package “Maftools.” Based on the reported
“YAMASHITA_LIVER_CANCER_STEM_CELL_UP and DN”
gene set (Yamashita et al., 2009) (the LCSCs_UP gene set
includes genes upregulated in liver CSCs, which is positively
correlated with stemness phenotype of HCC, whereas the
LCSCs_DN gene set is the opposite), the liver cancer stemness
score of HCC samples was further inferred from transcriptomes
using single-sample Gene Set Enrichment Analysis (ssGSEA) by the
R package “gsva.” The stemness score was calculated as follows:
stemness score = ScoreSTEM_CELL_UP + (1 - ScoreSTEM_CELL_DN).

Assessment of the Tumor Immune
Microenvironment
Immune cell infiltration was estimated from RNA-sequencing data
using xCell (https://xcell.ucsf.edu/, Charoentong or Rooney), which
is an excellent online tool for analyzing the expression matrix of
immune cell subtypes based on the principle of deconvolution
algorithm. The infiltrating score of 16 immune cells and the
activity of 13 immune-related pathways were further calculated
with single-sample Gene Set Enrichment Analysis (ssGSEA) by
the R package “gsva.” The immunophenoscore (IPS) score can
well predict the response of immune checkpoint inhibitors (ICIs),
which are derived from The Cancer Immunome Atlas (TCIA)
(https://tcia.at/home) and calculated based on the expression of
important components of tumor immunity.

The Relationship Between the Gene
Signature and Transarterial
Chemoembolization Treatment
In order to analyze the relationship between the gene signature and
TACE treatment, GSE104580, a comparative analysis of gene
expression datasets of TACE responders and non-responders
among HCC patients, was obtained from GEO. The HCC
patients of GSE104580 were divided into high- and low-risk
groups according to the median risk index, and then, the TACE
response of the subgroups was compared. The survival analysis of 96
HCC patients treated with TACE (including a list of 69 adjuvant
TACE and 27 post-recurrence TACE) inGSE14520was estimated to
compare the high- and low-risk groups according to predictive
signatures.

Verifying the Relationship Between the
Gene Signature and TP53 Mutation,
Stemness, Immune Status, and
Transarterial Chemoembolization
Treatment in Our Institution
The transcriptome sequencing data of 12 HCC patients
(collected tumor samples were sent to MyGene Diagnostics
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(Guangzhou) for targeted next-generation sequencing
analysis), who were diagnosed with HCC from 2015 to 2020
and admitted to The First Affiliated Hospital of Sun Yat-sen
University in Guangzhou, China, were obtained to analyze the
relationships among the gene signature, survival, TP53
mutation, stemness, immune status, and TACE treatment.
TACE procedures were performed by two experienced
interventional radiologists (W-Z. F and J-P. L). Patients
were included in our study if they 1) underwent TACE
treatment, 2) had an Eastern Cooperative Oncology Group
(ECOG) performance status (PS) of 0 or 1, and 3) were
Child–Pugh class A or B and had a total bilirubin
<34 μmol/L. The survival analysis of these HCC patients
was assessed via K–M methods. Our cohort study was
approved by the Institutional Review Board of the Research
Institute and Hospital National Cancer Center and the
institutional review board of The First Affiliated Hospital,
Sun Yat-sen University. All patients provided written
informed consent.

Statistical Analysis
Data management and statistical analysis were performed using
the R software (version 4.1.0) and GraphPad Prism (version
8.3.0). The Wilcoxon test was used to compare gene
expression between the two groups. Differences in proportions
were compared by the chi-squared test. Kaplan–Meier curves
were plotted, and a log-rank test was applied to check for
statistical differences between the survival curves. If not
specified, a p value <0.05 was considered statistically
significant, and all p values were two tailed.

RESULTS

Datasets
The process for data collection and analysis is depicted in
Figure 1. In this study, we included a total of 343 HCC
patients from TCGA, 231 HCC patients from ICGC, and 96
HCC patients treated with TACE from GSE14520. The detailed

FIGURE 1 | Flow chart of data collection and analysis.
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clinical characteristics of these patients are summarized in
Supplementary Table S1.

Identification of Prognostic Autophagy-,
Ferroptosis-, and Pyroptosis-Related
Genes
Using the R package “limma” for the differentially expressed
gene (DEG) analysis, we extracted 62 autophagy-, 27
ferroptosis-, and 18 pyroptosis-related DEGs in the 374
HCC samples and 50 normal liver samples from TCGA. We
performed a univariate Cox regression analysis to extract a list
of thirteen autophagy-, nine ferroptosis-, and seven
pyroptosis-related DEGs that were significantly correlated
with OS and found that all of these prognostic DEGs were
high-risk factors for poor prognosis in HCC patients
(Supplementary Figures S1A–C). PPI network and
correlation heatmap and network suggested that there was a
potential connection among autophagy-, ferroptosis-, and
pyroptosis-related prognostic genes (Supplementary
Figures S1D–F).

Construction and Validation of a Prognostic
Model
To determine the independent prognostic genes, multivariate
Cox regression analysis for OS was performed among the
prognostic thirteen autophagy-, nine ferroptosis-, and seven
pyroptosis-related DEGs. Finally, we identified five autophagy-
, three ferroptosis-, and two pyroptosis-related DEGs
(Supplementary Table S2) to establish a predictive model.
The corresponding coefficients and gene expression were used
to calculate the risk score. The risk score was calculated as
follows: (0.1450955 × expression level of BIRC5 + 0.19642991
× expression level of SQSTM1 + 0.37106235 × expression level

of HDAC1 + 0.3770679 × expression level of RHEB
+0.34668129 × expression level of ATIC +0.16196511 ×
expression level of G6PD + 0.4035343 × expression level of
ACACA +0.20555184 × expression level of SLC1A5 +
0.28470975 × expression level of BAK1 + 0.44820065 ×
expression level of GSDME). Risk index = (risk score–min)/
(max–min). Following this, the patients in the TCGA, ICGC,
and the two GEO datasets were divided into high- and low-risk
groups based on median risk index (RI). Interestingly, it was
found that the expression of 10 model genes in the high-risk
group of four datasets was significantly higher than in the low-
risk group (Supplementary Figure S2). Besides this, K–M
survival curves based on each of the 10 model genes show that
the predicted overall survival time of the low-expression group
was significantly longer than that of the high-expression group
(p < 0.05) (Supplementary Figure S3).

From the comparative analysis of patient baseline
characteristics of the patients in different risk groups of the
TCGA and ICGC cohort, we found that the high-risk group
was significantly associated with higher tumor grade and
advanced TNM stage in the TCGA or ICGC cohort
(Table 1). The relationships among the clinicopathological
characteristics, RI, and 10 model-gene expressions were
displayed in the form of a heatmap. Patients with higher RI
had higher expression of 10 model genes and higher
probability of death compared to patients with low RI in
the TCGA cohorts (Figure 2A). K–M survival curve
outcomes based on median RI values showed that the
predicted survival time of the low-risk group, including
overall survival (Figure 2B) and disease-free survival (DFS)
(Supplementary Figure S4) times, was significantly longer
than that of the high-risk group. The predictive performance of
RI for OS was evaluated with time-dependent ROC curves. The
area under the curve (AUC) reached 0.800 at 1 year, 0.709 at
2 years, and 0.675 at 3 years, respectively (Figure 2C).

TABLE 1 | Baseline characteristics of the patients in different risk groups of the TCGA and ICGC cohort.

Variables Group TCGA cohort (n = 343) p value ICGC cohort (n = 231) p value

High-risk Low-risk High risk Low risk

Median survival time (days) 444 672 720 870
Survival status Alive 98 126 0.0022 85 104 0.0021

Dead 73 46 30 12
Gender Female 59 51 0.3562 30 31 >0.9999

Male 112 121 85 85
Age ≤60 88 77 0.2352 28 21 0.2636

>60 83 95 87 95
Grade G1+G2 83 131 <0.001 — —

G3+G4 85 39 — —

Unknown 3 2 — —

Race Asian 67 66 0.9120 — —

Others 104 106 — —

TNM stage I + II 108 130 0.0137 57 84 <0.001
III + IV 53 30 58 32
Unknown 10 12 0 0

Hepatitis B/C status Yes 59 69 0.0827 — —

No 71 78 — —

Unknown 41 25 — —
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FIGURE 2 | Prognostic value of the 10-gene signature model. (A,E) The heatmap of clinicopathological features and 10 model-gene expressions between two
subgroups. (B,F) Kaplan–Meier curves for OS of patients. (C,G) AUC of time-dependent ROC curves. (D,H) The results of PCA plot analyses. A–D: TCGA cohort. E–H:
ICGC cohort.
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Additionally, the PCA (Figure 2D) analyses confirmed that
HCC patients in different risk groups were distributed in two
directions. To test the robustness of the gene signature model
constructed from the TCGA cohort, the patients from the
ICGC cohort were also categorized into high- and low-risk
groups based on the median RI value. The results of the ICGC

cohort were similar to the ones from TCGA (Figures 2E–H).
In addition, we compared this gene signature with those
previously reported PCD-related gene signatures (including
autophagy, ferroptosis, and pyroptosis) and found it had
displayed comparable or even better in AUCs for OS under
certain conditions (Supplementary Table S3).

FIGURE 3 | Independent prognostic role of gene signature in the TCGA Cohort. (A) Univariate and (B) multivariate Cox regression analysis of the associations
between risk index (RI) and clinical parameters and OS. (C) ROC curve for comparing the prognostic accuracy of RI, age, gender, race, grade, and TNM stage. (D)
Nomogram for predicting 1-, 3-, and 5-year survival. (E) Calibration curves of nomogram on consistency between predicted and observed 1-, 3-, and 5-year survival.
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Independent Prognostic Role of the Gene
Signature
Both univariate Cox and multivariate Cox regression analyses
showed that race, TNM stage, and risk score were significantly
associated with the prognosis of HCC in the TCGA cohort
(Figures 3A,B). Then, HCC patients were stratified according
to TNM stage and race, and the correlation between RI and OS
was analyzed. The results showed that RI also had a good
prognostic effect on HCC patients under different TNM stages
and races, indicating that our gene signature could even
distinguish the ones with poor survival among the different
TNM stage or race patients (Supplementary Figures S5, S6).
ROC curve analysis showed that risk score had better predictive
accuracy of prognosis than other clinicopathological factors
(Figure 3C). Based on race, TNM stage, and risk index (RI),
HCC patients with complete clinical information were selected to
develop a prognostic nomogram that can be used as a quantitative

analysis tool to predict the survival risk of individual patients
(Figure 3D). Notably, the calibration curves of the prognostic
nomogram showed good consistency between predictive and
actual 1-, 3-, and 5-year survival outcomes in the TCGA
cohort (Figure 3E).

Molecular Characteristics of Different
Subgroups
TP53 mutation analysis was performed in different subgroups.
The high-risk subgroup had a significantly higher TP53
mutation frequency than that of the low-risk subgroup in
the TCGA cohort (47 vs. 14%, p < 0.001, Figures 4A,
Supplementary Figure S7). Furthermore, the expression of
these 10 model genes and risk index (RI) in the TP53 mutation
group were significantly higher than those of the non-
mutation group (Figures 4B,C). Results from the ICGC
cohort were similar to those from TCGA (Figures 4D–F).

FIGURE 4 | TP53 mutation analysis of different subgroups. (A,D) Comparison of TP53 mutation proportion in different subgroups. (B,E) Risk index and (C,F) 10-
model gene expression between TP53 mutation and non-mutation group. A–C: TCGA cohort, D–F: ICGC cohort.
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Moreover, ssGSEA was performed to determine the
relationship between risk index and liver cancer cell
stemness score based on the reported “LCSCs_UP and
LCSCs_DN” gene sets (Yamashita et al., 2009).
Interestingly, we found that the high-risk or mutation
group had a significantly higher stemness score than the
low-risk or non-mutation group and had significant positive
correlations between RI and stemness (r = 0.638, p < 0.001) in

the TCGA cohort (Figures 5A–D). Similar results were
observed in the ICGC cohort (Figures 5E–H).

Tumor Microenvironment and Immune
Response Analysis
xCell was adopted for evaluation of the relative proportion of the
main types of immune infiltration cells. Patients in the high-risk

FIGURE 5 | The liver cancer stemness analysis. (A,E) The heatmap showed the relationships among risk index, TP53 mutation, stemness score, and survival. The
stemness score (B,F) in the high- and low-risk groups and (D,H) in the TP53 mutation and non-mutation group. (C,G) Spearman’s rank correlation analysis between RI
and stemness. A–D: TCGA cohort; E–H: ICGC cohort.
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group exhibited a higher level of macrophages and Treg cells,
while low-risk patients showed a higher percentage of NK cells
(Figures 6A,B). To further explore the tumor immune landscape
of high- and low-risk groups, the enrichment scores of different
immune cell subpopulations, related functions, and pathways
were quantified by ssGSEA. Interestingly, the activity of CCR
(cytokine–cytokine receptor), check-point, the scores of
macrophages and Treg cells in the high-risk group were
higher than those of low-risk patients, while the activity of
type I and II IFN response and the scores of NK cells were
just the opposite (Figures 6C,D). The results of comparisons in
the ICGC cohort were similar to those in the TCGA. The
Immunophenoscore (IPS) of the low-risk group was

significantly higher than that of the high-risk group, but there
was no difference in TMB score (Figures 6E,F). In addition, it was
found that the expression of immunosuppressive genes in the
high-risk group was higher than that of the low-risk group in both
TCGA (Figure 6G) and ICGC cohort (Figure 6H).

Transarterial Chemoembolization
Response Predictive Role of the Gene
Signature
A total of 147 patients of the GSE104580 cohort were divided into
high- and low-risk groups according to the median RI. It was
found that the TACE resistance frequency of the high-risk group

FIGURE 6 | Tumor immune microenvironment analysis. (A,B) The eight types of immune infiltration cells in different risk groups. (C,D) The ssGSEA scores of 16
immune cells and 13 immune-related functions between the high- and low-risk group. Adjusted p values were shown as ns, not significant; *, p < 0.05; **, p < 0.01; and
***, p < 0.001. The (E) IPS and (F) TMB in different risk subgroups. (G,H) The expression of CTLA-4, LAG-3, PD-1, TIGIT, TIM-3, CD276, and PD-L1 in different risk
subgroups.
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was significantly higher than that of the low-risk group (70 vs.
20%, p < 0.001) (Figure 7A). The predictive performance of RI
for TACE responsiveness was evaluated with diagnosis-
dependent ROC curves. The area under the curve (AUC)
reached 0.771 (95% CI: 0.692–0.850) (Figure 7B). Significantly
upregulated BIRC5, HDAC1, ATIC, G6PD, ACACA, SLC1A5,
BAK1, and GSDME expressions as well as elevated RI were also
observed in the non-responsive group; however, RHEB and

SQSTM1 showed no difference between the non-responsive
and responsive groups (Figures 7C,D). Moreover, the high-
risk or TACE non-responsive group had a significantly higher
stemness score than the low-risk or responsive group. Significant
positive correlations between the RI and stemness were observed
in the GSE104580 cohort (r = 0.463, p < 0.001) (Figures 7E–G).

To further verify the prognostic value of the gene signature for
HCC patients treated with TACE, a total of 96 HCC patients in

FIGURE 7 | TACE response analysis. (A)Comparison of TACE resistance frequency in high- and low-risk groups. (B) ROC curves for the predictive performance of
RI for TACE responsiveness. (C,D) The risk index and gene expression between TACE responsive and non-responsive groups. (E,G) The stemness score in different
subgroups. (F) Spearman’s rank correlation analysis between RI and stemness. (H) The heatmap showed the relationships among risk index, stemness score, 10-
model gene expression, and survival. (I) The Comparison of stemness score in high- and low-risk groups. (J) Spearman’s rank correlation analysis between RI and
stemness. (K) K–M curves for OS of patients. (L) AUC of time-dependent ROC curves.
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the GSE14520 cohort treated with TACE were divided into high-
and low-risk groups according to the median RI. Detailed
clinicopathological characteristics of 96 patients in the
GSE14520 cohort were equally distributed between the two
risk groups (Table 2). Similarly, we also found that the high-
risk group had a significantly higher stemness score than the low-
risk group and there were significant positive correlations
between the RI and stemness (r = 0.440, p < 0.001) in the
GSE14520 cohort (Figures 7H–J). The survival analysis
showed that the survival time of the low-risk group was
significantly longer than that of the high-risk group, and AUC
values in the ROC curves reached 0.816 at 1 year, 0.759 at 2 years,
and 0.693 at 3 years (Figures 7K,L).

Verification of the Relationships Among the
Gene Signature, TP53 Mutation, Stemness,
Immune Status, and Transarterial
Chemoembolization Treatment in Our
Cohort
A list of 12 patients with transcriptome sequencing and whole
exon sequencing data were divided into high- and low-risk
groups according to the median RI. The heatmap indicated
that patients with a higher RI had elevated expression of 10
model genes and an increased probability of early death
compared to patients with low risk in our cohort (Figure 8A).
Additionally, we also found that the TP53 mutation frequency in
the high-risk group was higher than that of the low-risk group

(Figure 8B). Similarly, the survival analysis suggested that the OS
of the low-risk group was significantly longer than that of the
high-risk group (Figure 8C). Furthermore, the results also
suggested that the high-risk group had a significantly higher
stemness score than the low-risk group and that there were
significant positive correlations between RI and stemness (r =
0.615, p < 0.05) (Figures 8D,E). Moreover, it was found that the
expression of immunosuppressive genes in the high-risk group
was higher than in the low-risk group (Figure 8F), and patients in
the high-risk group exhibited a higher level of macrophages and
Treg cells, while low-risk patients showed a higher percentage of
NK cells by xCell analysis (Figure 8G).

DISCUSSION

With the beginning of precisionmedicine and the development of
next-generation sequencing and microarray technology, the
current treatment and prognosis of HCC have been improved.
However, due to the small number of useful biomarkers, it is still
challenging to predict the therapeutic effect of its treatment and
prognosis in HCC patients. The importance of predicting the
prognosis of HCC and administering treatments in a timely
manner highlights the need to identify robust prognostic and
predictive risk-stratification biomarkers for HCC therapy.

In previous studies, it has been found that non-apoptotic
programmed cell death, including autophagy, ferroptosis, and
pyroptosis, plays a critical role in the initiation and progression of

TABLE 2 | Baseline characteristics of the patients in the GSE14520 cohort.

Variables Group GSE14520 cohort (n = 96) p value

High risk Low risk

Median survival time (days) 697 1638
Survival status Alive 22 34 0.0222

Dead 26 14
Gender Female 3 5 0.7145

Male 45 43
Age ≤60 43 43 1

>60 5 5
TNM stage I 17 25 0.1583

II 16 15
III 15 8
IV 0 0

BCLC stage 0 6 2 0.1151
A 28 37
B 4 5
C 10 4

AFP <300 ng/ml 23 28 0.4135
≥300 ng/ml 25 20

Hepatitis B/C status Yes 46 46 1
No 2 2

ALT ≤50 U/L 25 28 0.6817
>50 U/L 23 20

Main tumor size ≤5 cm 25 32 0.2122
>5 cm 23 16

Multinodular Yes 8 10 0.7944
No 40 38

Cirrhosis Yes 45 41 0.3167
No 3 7
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liver cancer (Hage et al., 2019; Huang et al., 2018; Nie et al., 2018).
However, whether these PCD-related genes are correlated with
HCC patient prognosis remains largely unknown. In our study,
we attempted to develop this novel prognostic model by
integrating five autophagy-, three ferroptosis-, and two
pyroptosis-related DEGs (BIRC5, SQSTM1, HDAC1, RHEB,
ATIC, G6PD, ACACA, SLC1A5, BAK1, and GSDME), which
were all upregulated in HCC tumor tissues and associated with

poor prognosis (Supplementary Figures S2, S3). Previous
studies have confirmed that the five autophagy-related genes
(BIRC5, SQSTM1, HDAC1, RHEB, and ATIC) are associated
with tumor proliferation, apoptosis, and resistance to anticancer
agents in HCC patients. The regulation of HDAC1 and BIRC5
expression could affect the proliferation of HCC cells and induce
cell cycle arrest (Zhang et al., 2019; Zhang et al., 2021). The
overexpression of ATIC and RHEB was associated with

FIGURE 8 | Verifying analysis in our cohort. (A) The heatmap of clinicopathological features and 10 model-gene expressions in two risk subgroups. (B) The TP53
mutation rate in different risk subgroups. (C) K–M curves for OS of patients. (D) The stemness score in different risk subgroups. (E) Spearman’s rank correlation analysis
between RI and stemness score. (F) The comparison expression of CTLA-4, LAG-3, PD-1, TIGIT, TIM-3, CD276, and PD-L1 between the high- and low-risk group. (G)
The immune infiltration cell in different risk groups.
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metastasis and poor prognosis in hepatocellular carcinoma (Li
et al., 2017; Liu et al., 2018). Tetsuya et al. have reported that
inhibiting phosphorylated SQSTM1/p62 may inhibit cell
proliferation (Saito et al., 2016). The three ferroptosis-related
genes, including lipid the metabolism gene (ACACA) and energy
metabolism genes (G6PD, SLC1A5), were also upregulated and
correlated with poor prognosis in HCC patients (Lu et al., 2018;
Lally et al., 2019; Liang et al., 2020). Additionally, knockdown of
pyroptosis-related gene BAK1 expression could inhibit HCC cell
proliferation and promote tumor cell apoptosis (Zhu et al., 2020).
Wang et al., (2017) also found that GSDME could switch from a
caspase-3-mediated apoptosis induced by TNF or chemotherapy
drugs to pyroptosis. In our study, the K–M curve and ROC curve
indicated that our gene signature had good prognostic
performance with high sensitivity and specificity; it was
additionally validated in an external cohort. Using our model,
we found that the high-risk group was significantly correlated
with shorter OS and DFS periods (Figure 2 and Supplementary
Figure S4). Independent prognostic analysis additionally showed
that risk index (RI) was an independent predictor of survival
(Figure 3), suggesting the potential application of our gene
signature as a prognostic factor in the clinic. Compared with
constructing independently for each PCD-related group of genes,
our prognostic model based on integrating all three non-
apoptotic programmed cell death-related genes showed
profound ability in predicting HCC patients’ prognosis
(Supplementary Table S3).

To gain further biological insight into the molecular
characteristic, we then studied TP53 mutation and stemness
analysis of different subgroups. The TP53 mutation was more
common in the high-risk group than in the low-risk group in both
the TCGA and ICGC cohorts (Figure 4 and Supplementary
Figure S7). The TP53 mutation is not only the single most
common genetic event but is also associated with more
aggressive disease and worse prognosis in many cancers. In
this study, we also found that the expression of the 10 model
genes in the TP53 mutant sample was significantly higher. Our
gene signature is closely related to TP53 mutation, and TP53
mutation may lead to elevated expression of these genes, affecting
the survival prognosis of patients. The stemness analysis by
ssGSEA indicated that the stemness of the high-risk or
mutation group in the TCGA and ICGC cohorts was all
significantly higher than that of the low-risk or non-mutation
group. The data also showed significant positive correlations
between the risk index and stemness score (Figure 5). Overall,
our gene signature is closely related to stemness and the TP53
mutation, which causes poorer outcomes for patients by
promoting the proliferation of tumor cells. It is also
reasonable to assume that the stemness of the high-risk or
TP53 mutation group is elevated, which contributes to the
group’s poor prognosis. Collectively, these data indicate that
the prognostic gene signature can predict liver cancer
stemness and TP53 mutation occurrence and potentially be
used to guide HCC treatment decisions.

As an indispensable part of immunotherapy, the tumor
immune microenvironment (TIME), whose analysis would
help to improve the reactivity of immunotherapy and the

potential of precision therapy, has gradually attracted
people’s attention (Binnewies et al., 2018). So, we explored
the relationship between the risk index and known predictive
biomarkers for the TIME and found that the high-risk group
had higher fractions of macrophages and Treg cells, but lower
fractions of NK cells. Previous studies have demonstrated that
the increase of tumor-associated macrophages and Treg cells
was associated with poor prognosis in patients with HCC
(Zhou et al., 2016). In addition, the impairment of the
activity of type I and II IFN response and increased
activities of Tfh cells, Treg cells, and macrophage cells in
the high-risk group would play an important role in tumor
immunological escape and tolerance (Lin et al., 2021).
Moreover, we found that the gene expression of immune
checkpoints in the high-risk group was higher than that in
the low-risk group, but the IPS was lower (Figure 6). So, it is
reasonable to assume that the anti-tumor immunity of the
high-risk group is attenuated, which may be an important
reason for its poor prognosis. Therefore, the prognostic model
has the potential to guide immunotherapy decisions.

Current prognostic screening for HCC lacks the ability to
identify HCC patients who would benefit from TACE
administered, so only some patients exhibit a survival benefit
from TACE therapy. So, it is imperative to identify the drivers
that promote resistance. Previous studies have reported that the
existence of liver cancer stem cells is an important reason for
TACE resistance (Wei et al., 2021). Additionally, our previous
study suggested that the TP53 mutation is independently related
to TACE failure or refractoriness (Xue et al., 2020). The
aforementioned analysis indicated that our prognostic gene
signature is closely related to the TP53 mutation, which led us
to further analyze the relationship between our prognostic model
and TACE treatment response. Interestingly, we found that the
proportion of TACE resistance in the high-risk group was
significantly higher than that in the low-risk group (70 vs.
20%, p < 0.001, Figure 7A). Significantly upregulated stemness
score, risk index, and most model genes were also observed in the
TACE non-responsive group. Moreover, we found that the high-
risk group was significantly correlated with shorter OS and higher
stemness scores in GSE14520 HCC patients treated with TACE
(Figure 7K). Collectively, our gene signature model could predict
survival benefits from TACE therapy. Finally, we confirmed the
relationships among gene signature, TP53 mutation, stemness,
immune status, and the efficacy of TACE treatment in our cohort
(Figure 8). In accordance with expectation, the survival analysis
suggested that the OS of the low-risk group was significantly
longer than that of the high-risk in our institution sequencing
data and that the TP53 mutation frequency in the high-risk group
was trend higher than that in the low-risk group. In addition, the
high-risk group had a significantly higher stemness score than
that of the low-risk group. Significant positive correlations
between RI and stemness were also observed. Similar to the
previous study and public database analysis, the results from
our cohort suggest that the anti-tumor immunity of the high-risk
group is attenuated. Overall, it is more strongly reasonable to
assume that our gene signature model is closely related to TP53
mutation and stemness, tumor immune microenvironment, and
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the interaction between them affects TACE responsiveness and
prognosis of HCC patients.

In summary, a novel prognostic model for HCC that integrates
three non-apoptotic programmed cell death-related genes was
constructed based on the TCGA databases and validated through
the ICGC and GEO datasets as well as our institution sequencing
data. Firstly, the prognostic model could accurately predict the
prognostic survival status of HCC patients. Secondly, it could
estimate the TP53 mutation and liver cancer cell stemness of
HCC patients. Thirdly, this model could evaluate the tumor
immune microenvironment status of HCC patients. Finally,
our gene signature could be used to predict the response and
efficacy of HCC patients treated with TACE. Therefore, our gene
signature model could provide powerful insights for future
treatment options by evaluating the specific conditions of
HCC patients.

At the same time, the gene signature model also has its
limitations. Firstly, our prognostic model was mostly
constructed and validated with retrospective data from
public databases. Secondly, the relationships among gene
signature, TP53 mutation, stemness, immune infiltration,
and TACE therapy have only been confirmed in our small
cohort of patients. Thus, it is necessary to perform further
prospective analysis to observe the heterogeneity between
different populations in large or multicenter cohorts.

CONCLUSION

In conclusion, the novel gene signature model based on five
autophagy-, three ferroptosis-, and two pyroptosis-related genes,
which is a promising prognostic biomarker, was developed and
cross-cohort validated. The gene signature may help in
distinguishing TP53 mutation, liver cancer cell stemness, immune
infiltration, and TACE therapy sensitivity of hepatocellular
carcinoma and predicting the outcome of patients. The specific
potential mechanism between non-apoptotic programmed cell
death-related genes and TP53 mutation, liver cancer cell
stemness, tumor microenvironment, or TACE therapy sensitivity
in HCC remains unclear, which is worthy of further study.
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