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A method for structure prediction of metal-ligand
interfaces of hybrid nanoparticles
Sami Malola1, Paavo Nieminen 2, Antti Pihlajamäki1, Joonas Hämäläinen2, Tommi Kärkkäinen2 &

Hannu Häkkinen 1,3

Hybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell

of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis,

nanomedicine, and solar energy. Despite a rapidly growing database of experimentally

determined atom-precise nanoparticle structures and their properties, there has been no

successful, systematic way to predict the atomistic structure of the metal-ligand interface.

Here, we devise and validate a general method to predict the structure of the metal-ligand

interface of ligand-stabilized gold and silver nanoparticles, based on information about local

chemical environments of atoms in experimental data. In addition to predicting realistic

interface structures, our method is useful for investigations on the steric effects at the metal-

ligand interface, as well as for predicting isomers and intermediate structures induced by

thermal dynamics or interactions with the environment. Our method is applicable to other

hybrid nanomaterials once a suitable set of reference structures is available.
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Hybrid metal nanoparticles, consisting of a nano-crystalline
metal core and a protecting layer (shell) of organic ligand
molecules, are an emerging class of functional nanoma-

terials that have potential applications in diverse areas such as
biolabeling, catalysis, nanomedicine, and solar energy1–8. The
core-shell framework structure of hybrid nanoparticles offers
ample opportunities to tune the physico-chemical properties and
functionalities of the particles via controlling the size, shape,
elemental composition, and structure of the metal core, together
with the chemical composition of the ligand shell. The chemical
interactions between the metal atoms and ligand molecules at the
core-shell interface are in a crucial role since they dictate the
atomic-scale structure, stability, and ensuing properties of
the particle.

The last decade has witnessed clear advancements in synthesis
and experimental structural characterization of very small,
atomically precise hybrid nanoparticles with 1–3 nm cores made
of metals, stabilized by various organic ligands3. These particles
are also called monolayer-protected clusters, MPCs, and they
represent an interesting subclass of nanoparticles since their
structures can be often characterized to atomic precision by using
X-ray diffraction method on single MPC crystals. At the moment,
more than 150 crystallographically solved structures of MPCs,
involving noble metals, main group metals, and various ligand
molecules such as thiols, phosphines, and alkynyls, have been
reported3. This facilitates fundamental studies of the structure-
property relationships both experimentally and computationally.

In most cases, however, the knowledge of the nanoparticle
structures does not reach the atom-level resolution and the
ligand-metal interfaces may be ill-defined. Only partial structural
knowledge may be available, e.g., by high-resolution electron
microscopy where only the heavy atoms (metals) of the core may
be visible9,10. Smallest particles may have low-symmetry or dis-
ordered metal cores, and may not be amenable at all to experi-
mental techniques that work well for structural characterization
of atomically ordered bulk materials11. A practical solution is
then to reach conclusions of potential atomic-scale structures by
comparing measured properties, such as powder X-ray diffraction
data, and various spectroscopic data, to computed properties
based on extensive sets of potential candidate structures. A crucial
question is then how realistic is the group of the candidate
structures, i.e., can the structure corresponding to the true global
total energy minimum be included in that group with a high
probability. In general, global optimization methods suffer from
limitations arising from a prohibitively (exponentially) increasing
number of local energy minima in the structural space for system
sizes that are larger than just a few metal atoms and ligand
molecules. Another time-constraint arises from the fact that most
measurable properties must be calculated numerically from the
electronic structure using the platform of the density functional
theory (DFT), which limits the number of structural candidates
that can be examined. It is thus crucial to develop methods that
can effectively suggest realistic atomic-scale structures at a very
low computational cost.

The data on atomically precise structures of MPCs, combined
with an ever-growing number measurements of their physico-
chemical properties, collectively contains valuable chemical
information on the atomic bonding and structure-property rela-
tions of these nanomaterials, which could be used for successful
structural predictions of yet unknown nanoparticles. Here, we
devise and demonstrate a general method for predicting metal-
ligand interface structures of an unknown ligand-protected metal
nanocluster. Our method is based on a local search algorithm that
uses information about the known local atomic environments at
the metal-ligand interface of reference nanostructures in the same
class of hybrid nanoparticles. The specific example systems

discussed in this work comprise gold (Au) and silver (Ag)
nanoclusters protected by thiols (SR), phosphines (PR3) and
diphosphines (DPPY), and we demonstrate how experimentally
verified Au/Ag-thiolate and Ag-phosphine interface structures
can be successfully built when the positions of all Au or Ag atoms
in the cluster are first defined. However, the method itself is
general and can be used for any type of nanoparticle or nanos-
tructure if enough reference structural information is available in
the same class of systems. The set of reference structures can be
considered as a training set and the whole procedure to refine the
candidates for the metal-ligand interfacial structures may be
considered as an analogue to applying machine learning metho-
dology to the structure prediction problem12.

Results
Structure prediction algorithm. Our procedure to build candi-
dates for the atomic structure of metal-ligand interfaces is sum-
marized below and illustrated in Fig. 1. Supplementary Note 1
describes the algorithms 1–4 involved. The main algorithm 1 is
divided into steps 0–4 as follows (the steps are also numbered the
same way in Fig. 1).

0. First, a group of known reference structures (training set) is
defined. The training set may include experimental crystal
structures, computational model structures, partial structures, or
hand-made intuitive structural guesses.

1. The coordinates for the metal atoms (here Au or Ag) are set.
This information may come, e.g., from experimental electron
microscopy data.

Reference structures and
known local environments

Au-atom positions
of the unknown cluster

1

2

0

3

4

Possible S-atom positions

N randomly generated
model structures

The best model structure(s).

Fig. 1 A schematic visualization of the algorithm. Using a set of reference
structures of known Aux(SR)y nanoclusters, several candidates for the
structure of the layer of sulfur atoms are built around the gold core of the
unknown cluster, with selective ranking of the most probable structures.
Au: orange, S: yellow, carbon backbone in ligands: cyan
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2. A list of possible positions for interface atoms (here S or P)
around the metal core is built. The local chemical bonding
determines the acceptance of a point of a dense grid
(Supplementary Fig. 1) as a possible interface atom position,
based on comparison to bond lengths and angles found in the
training set (Supplementary Fig. 2). In addition, a spatial fitting of
the molecule (ligand) attached to the interface is required for
acceptance. Here, fitting of the organic part of thiolates and
phosphines is tested with a specific sized rigid sphere in the most
prominent bonding direction with respect to the nearest neighbor
Au–S, Ag–S or Ag–P bonds as visualized in Fig. 2. Finally, the list
of all possible interface atom positions is saved and used as a basis
for the random multi-start selection process in step 3.

3. N complete interface structures are created from the possible
interface atom positions by a restricted random multi-start
selection process as described in Algorithms 2–4 (Supplementary
Note 1). The restrictions are based on simple rules of chemistry
related to coordination, atomic distances and local conformations
(Supplementary Note 2 and Fig. 2). The process starts by adding
randomly picked interface atoms, from the list generated in step
2, first into specified local conformations such as linear SR–Au/
Ag–SR arrangements resembling a part of protecting SR-(Au/Ag-
SR)n (n= 1, 2) units (Fig. 2). The protecting units are the main

components forming the gold-thiolate interface structure in many
known thiolate-protected gold clusters. For protected Ag-clusters,
more than one local structural arrangement is possible with
respect to SR–Ag–SR angles because of the more flexible Ag–S
coordination compared to gold (see Fig. 2 and Supplementary
Fig. 3). In the case diphosphines, the specified local conformation
is a pair of phosphorus atoms, for which the P–P distance is
restricted based on the connecting organic group between the
phosphine ends of the molecule. Next, single thiolates or single
phosphines will be used to fill the remaining free metal surface if
necessary. The selection process ends when there are no valid
points left in the list of possible interface atom positions. All
selected interface atom coordinates form one potential model
structure. The total number of generated model structures should
be set large enough to overcome the challenges of a non-guided
stochastic process to represent all relevant overall interface
conformations.

4. The final step of the algorithm ranks the generated model
structures. For the ranking we introduce a numerical criterion, a
so-called combined structural error (CSE) (see the full description
in Supplementary Note 3), which is constructed as an average
from the errors related to the nearest neighbor bonds and angles,
to the number of predicted interface atoms in specified local
conformations, and to the total number of interface atoms.
Experimental evidence indicates that the most stable ligand-
protected gold and silver clusters also have the most complete
steric protection of the metal core by the ligand layers. After
ranking, the best model structures can be completed by adding
the organic part of the ligand layer and optimizing the atomic
structure of the ligand layer by molecular mechanics or molecular
dynamics. One possible approach is demonstrated in our previous
work13.

A working strategy to avoid stochastic challenges (non-
effective random search of possible ligand atom positions for
larger clusters) is discussed in Supplementary Note 4. Criteria for
selecting the geometric parameters for step 2 above are discussed
in Supplementary Note 2.

Reference structures and validation of the algorithm. For Au–S
interface prediction, the set of reference structures included 24
known protected gold nanoclusters Aux(SR)y between the sizes
(18,14) ≤ (x,y) ≤ (279,84) as well as the short RS–Au–SR and
longer RS-Au-SR-Au-SR unit conformations. For Ag–S and Ag–P
interfaces, 17 known thiolate and/or phosphine-protected silver
nanoclusters were included in the set of reference structures. The
reference silver nanoclusters have 14–374 Ag-atoms and 20–117
ligands including thiolates, phosphines, diphosphines and halides.
A complete list of the reference structures is given in Supple-
mentary Tables 1 and 2. Based on the reference information, the
algorithm was validated for protected Au–S interfaces by exam-
ining 10 Aux(SR)y clusters in the range (34,22) ≤ (x,y) ≤ (279,84)
where the structure is known experimentally14–23, removing the
ligand layer including sulfurs, by building a large number of
potential structures of the ligand layer around the fixed gold core,
ranking the structures, and comparing these Au–S interface
structures with the experimental crystal structure. Validation in
the case of Ag–S interfaces was done with four protected Ag-
clusters in the size range of 23–211 Ag-atoms and 26–78
ligands24–27. Two of these clusters had ligand layers consisting of
both thiolates and phosphines, and one consisting of thiolates and
diphosphines. Combined, the selected Au- and Ag-clusters
include various different symmetries, cluster sizes, surface cur-
vatures, surface morphologies, and protecting ligand motifs.
Table 1 and Supplementary Tables 3–8 give the full structural
details and parameters related to the prediction and validation.

dsph

rsph

dsph

dLL,1

dLL,1

rsph

d2

d1

90°

α

α

θ1

Fig. 2 Parameters related to the local environment of S-atoms. d1 and d2 are
the two nearest neighbour Au–S distances and θ1 is the selected bond angle
between S-atom and the two nearest neighbour Au-atoms. Criteria for the
S–Au–S and S–Ag–S bond angles (α) close to 180 degrees are used for
adding or recognizing the atoms in a linear SR–Au–SR and SR–Ag–SR
conformations and 120 degrees for three-coordinated Ag–S complexes.
Spatial fitting of ligands is tested with a rigid sphere (red dashed circles) in
a perpendicular direction to the two nearest neighbor Au-S bonds of each
S-atom and parallel to Au–P bond for phosphines. Distance of the sphere
from the binding site S-atom is also defined. Here, the sphere mimicks the
first CH2 group of phenyl ethane thiol SCH2CH2Ph and the whole Ph3 group
for PPh3 ligand. dLL,1 represents the distances between of the added
interface atoms which are restricted by parameters when adding special
local structures or when limiting the smallest possible interface atom
distances. Colors: Ag: gray, F: green, P: pink and the rest as in Fig. 1

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12031-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3973 | https://doi.org/10.1038/s41467-019-12031-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The cluster that was predicted was excluded from the reference
structures in each example.

Au–S interface structure for gold clusters. To test and validate
our algorithm for Au–S interfaces, we selected nine known
clusters: Au34(SR)22 (ref. 14), Au36(SR)24 (ref. 15), Au38(SR)24
(ref. 16), Au44(SR)26 (ref. 17), Au52(SR)32 (ref. 18), Au92(SR)44
(ref. 19), Au102(SR)44 (ref. 20), Au146(SR)57 (ref. 21), and
Au279(SR)84 (ref. 22). In addition, Au44(SR)28 cluster23 was also
used for analyzing the ligand size effects at the interface as dis-
cussed later. The summary of the parameters used in prediction
are given in Supplementary Table 3. The test systems include
various different ligand layer conformations consisting of differ-
ent length of SR-(Au-SR)n protecting units and single bridged
thiolates. For all clusters, 9216 model structures were generated in
a single run, and for the two largest clusters Au146(SR)57 and
Au279(SR)84 the prediction was done twice by combining the
sulfur atom positions of 20 best model structures of the first
round into a new set of possible S-atom positions for the second
round. Twenty best model structures were taken from those that
had the largest number of ligands in units and in total in the first
round. Furthermore, correct structures were determined by
comparing the atomic indices of the two nearest neighbor Au-
atoms of each sulfur of the model structure with respect to the
nearest sulfur atom of the true known structure.

Table 1 shows the results. The success of prediction was
determined as a ratio of the correct structures to all generated
model structures, varying notably much, from 0.67 to 94.0%. The
maximum number of S-atoms found in the protecting units and
in total are in a very good agreement with the compositions of the
true structures. This indicates that the true stable structures
maximize the number of ligands on the surface to best protect the
metal core from the degradation. The lowest RMSD (root mean
square deviation) values of the correct model structures range
from 0.261 to 0.545 Å, and the corresponding structures are
shown in Fig. 3. The algorithm is flexible to be used with different
kind of sets of reference structures, as indicated for Au102(SR)44,
where only conformations of one short SR-Au-SR unit and one
long unit SR–Au–SR–Au–SR unit were used successfully for the
prediction. For all other systems the complete set of reference
structures were used omitting always the cluster in question.

The ratio of correct S-atom positions as a function of CSE is
shown for all of the examined protected Au-clusters in Fig. 4. The

correctly positioned atoms were determined similarly as in
Table 1. For all systems in panels a–i of the Fig. 4 the ratio of
correct atoms approaches 1.0 when CSE gets smaller. For most of
the investigated systems, the model structure with a minimum
CSE value matches with the true structure by nearest neighbor
bonding, except in the most challenging case of Au279(SR)84,
where the true structure is found among 5–10 best model
structures. For the CSE, five nearest neighbors were used for
describing the local environment of atoms and for all systems the
corresponding error was calculated with respect to the same set of
reference structures that was used in the model structure
generation. Noteworthy is that the CSE separates the correct
structure of Au102(SR)44 regardless of the fact that the set of
reference structures is considerably smaller, although the
observed range of the CSE, 0.26–0.46, reflects the incompleteness
of the set of reference structures used in the prediction. For the
clusters which have comparable decent set of reference structures,
the minimum CSE values are found consistently between 0.04
and 0.06 regardless of the size of the system. The ratio of correct
atoms on the surface depends on the other hand on the
complexity of the investigated system. For the simplest systems
such as Au38(SR)24, all the generated model structures have >85%
of the added S-atoms correct but for example for the similar sized
cluster Au36(SR)24 the range is 30–100%.

The structures of Au44(SR)26, Au92(SR)44, Au146(SR)57, and
Au279(SR)84 have single bridged ligands that do not resemble the
arrangement of protecting units. The number of bridged ligands
added on the surface of each of these clusters is in the range of
2–18 and can be seen from the difference of the number of
ligands in total and in the units shown in Table 1. For some of the
systems the total number of the interface atoms added on the
surface exceeds the true number of ligands, but regardless of that
the algorithm is accurate enough for predicting both the number
and the positions of the bridge ligands by the ranking criteria.
These results confirm that in the true structures the number of
interface atoms in linear SR–Au–SR conformations is often
maximized. This is automatically taken into account in the design
of the algorithm and is also build into the CSE measuring the
goodness of the model structures.

Ag–S interface structure for silver clusters. The main difference
when predicting Ag–S interface as compared to predicting Au-S
interface is to allow more flexible coordination of the metal atoms

Table 1 The results of predicting sulfur positions for ligand-protected Au- and Ag-clusters

Cluster Nmodels
a Nmax,unit

b Nmax,tot
c Ncorrect %d Min RMSD [Å]e

Au34(SR)22 9216 22 22 28.0 % (2579) 0.261
Au36(SR)24 9216 24 24 6.66% (614) 0.432
Au38(SR)24 9216 24 24 94.0% (8665) 0.383
Au44(SR)26 9216 24 25–26 85.2% (7853) 0.339
Au52(SR)32 9216 32 32 9.39 % (865) 0.319
Au92(SR)44 9216 36 39–44 1.79% (165) 0.525
Au102(SR)44 9216 44 44 5.41% (499) 0.395
Au146(SR)57 9216f 50 54–60 1.21 % (121) 0.545
Au279(SR)84 9216f 60 75–84 0.67 % (62) 0.539
Ag23(SR)18(PPh3)8 9216 18 18 1.19 % (110) 0.225
Ag44(SR)30 9216 30 30 42.9 % (3958) 0.375
Ag78(SR)42(DPPP)6 9216 40 41–42 0.022 % (2) 0.644
Ag211Cl(SR)71(PPh3)6 9216f 70 70–72 0.85 % (78) 0.744

aNumber of model structures
bMaximum number of sulfurs in units
cIn total if maximum number of sulfurs in units
dPercentage of correct structures. In the case of Au clusters, the criterion to have the correct structure is that 2/2 of nearest neighbors are correct for each atom. In the case of Ag clusters, the criterion is
4/5 of nearest neighbours to be correct for each atom
eMin RMSD of the correct structures
fIterative prediction runs
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to thiolates. The selected parameters for protected Ag-clusters can
be seen in Supplementary Table 4. For validating the prediction of
Ag–S interface structures we selected four known protected Ag-
clusters: Ag23(SR)18(PPh3)8 (ref. 24), Ag44(SR)30 (ref. 25),
Ag78(SR)42(DPPP)6 (ref. 26), and Ag211Cl(SR)71(PPh3)6 (ref. 27).
For these clusters most of the ligands on the surface are thiolates,
but also phosphines, diphosphines and one halide are included.
The single halide is omitted in the prediction. Our approach to
predict the interfaces with mixed ligands is to predict first the
positions of the ligands that are in majority and then to continue
by predicting the other ligands, in this case phosphines and
diphosphines. For all test systems, 9216 model clusters were
generated during a single run. The prediction was done twice for
the largest Ag211Cl(SR)71(PPh3)6 cluster by combining the S-
atom positions of 20 best structures of the first run to the set of
possible S-atom positions for the second run, similarly to the two
largest Au-clusters discussed above. The correctly positioned
atoms were determined by requiring that four out of five nearest
neighbors metal atom indices must be correct for all interface
atoms as compared to the true structure. This criterion is different
than in Au–S interfaces due to the enriched bonding configura-
tions on Ag–S interface, for which taking into account only two
nearest neighbors would not be enough.

Table 1 shows the results from prediction for all four systems.
The success of the prediction varies from 0.022 to 42.9%. To
remark, the success ratio increased from 0 to 0.85% for the largest
cluster Ag211 from the first to the second prediction run. The
maximum number of ligands found in protecting units and in
total are in a very good agreement with the molecular
compositions of the true structures for all systems. The minimum
RMSD values of the correct structures are in a range of
0.225–0.744 Å and the corresponding structures are shown in
Fig. 5. The Ag–S interfaces are more complex than Au–S
interfaces especially in larger clusters which can be seen as a more
significant variations in the positions of the sulfur atoms
compared to the true structure and also in the success rates
and the RMSD values.

CSE is efficient also for predicting the true structures for
protected Ag-clusters as can be seen from Fig. 6 for the four
studied cases. Similarly to Au-clusters, the model structures that

have the smallest CSE values include most probably the true
structure. It is interesting to note that even for the clusters with
mixed ligand layers of thiolates and phosphines the true Ag–S
part of the overall interface conformation can be predicted before
addition of the phosphines or diphosphines. This enables
prediction of the overall conformations of the metal-ligand
interfaces in steps, first for the ligands that are in majority and
then continuing the process with the ligands in minority for the
best structures. Completing the prediction with phosphines and
diphosphines is described next.

Phosphine positions for the mixed ligand silver clusters. Pre-
dicting Ag–P interface for the clusters with mixed ligand layers of
thiolates and phospines or thiolates and diphosphines was done
by starting from one of the correctly predicted partial structures
based on the Ag-S interface predictions. Both Ag-atom and S-
atom positions are included when describing the local environ-
ments for the phosphorus atoms. To accomplish this, atom types
were also included the nearest neighbor description when
searching the possible interface atom positions. The parameters
used in prediction of Ag–P interface are given in Supplementary
Table 5. For all clusters we used systematically four nearest
neighbors with 0.1–0.2 Å error limits for the distances and 10
degrees limit for the angles. One of the clusters have diphosphines
instead of phosphines for which the single P atoms are added in
pairs by restricting the distance to a range of 5.0–5.5 Å based on
the length of the carbon chain between the phosphine ends in the
molecule (see Fig. 2). The spatial fitting of the organic groups
(e.g., triphenyl) were done by one large spherical probe in parallel
direction to the nearest neighbor Ag–P bond.

The results for the Au–P interface are shown in the
Supplementary Table 6 and the P-atom positions in the best
structures in Fig. 5. For all the clusters the success of prediction is
perfect: 100% out of all 3072 model structures were correctly
built. The prediction of phosphines is easier compared to thiolates
due to the diminished number of possible local conformations. In
general, phosphines tend to bind into a tetrahedral arrangement
with respect to the nearest neighbor Ag-atom and the three
nearest S-atoms as shown in Fig. 2. To describe this kind

a b c d e

ihgf

Fig. 3 Validation of structure prediction for Au-clusters. Comparison of the predicted and true ligand-metal interface structures of protected Au-clusters:
a Au34(SR)22 (ref. 14), b Au36(SR)24 (ref. 15), c Au38(SR)24 (ref. 16), d Au44(SR)26 (ref. 17), e Au52(SR)32 (ref. 18), f Au92(SR)44 (ref. 19), g Au102(SR)44
(ref. 20), h Au146(SR)57 (ref. 21), and i Au279(SR)84 (ref. 22). Predicted S-atoms and Au–S bonds are drawn in green and true in yellow. Au-atoms are drawn
with orange color
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Fig. 4 Determination of the true structure of Au-clusters using CSE ranking. Ratio of the correctly predicted S-atoms as a function of CSE for ligand-
protected Au-clusters: a Au34(SR)22, b Au36(SR)24, c Au38(SR)24, d Au44(SR)26, e Au52(SR)32, f Au92(SR)44, g Au102(SR)44, h Au146(SR)57, and
i Au279(SR)84. CSE includes contributions from error of local environments of Au and S atoms as well as from the number of predicted S atoms in units and
in total

a b c d

Fig. 5 Validation of structure prediction for Ag-clusters. Comparison of the predicted and true ligand-metal interface structures of protected Ag-clusters:
a Ag23(SR)18(PPh3)8, b Ag44(SR)30, c Ag78(SR)42(DPPP)6, and d Ag211Cl(SR)71(PPh3)6. For predicted clusters Ag–S bonds are drawn in green and true
Ag–S bonds in yellow whereas Ag–P bonds are drawn in magenta for predicted structure and in pink for the true structure. In panel (d) chlorine atom is
drawn with light blue color
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tetrahedral arrangement, at least four nearest neighbors were
needed for the local environment description.

Correlation of CSE to DFT total energy. It is interesting to
correlate the CSE values to the DFT total energies for a group of
generated model structures. We investigated this in the case of
those Au36(SR)24 and Ag44(SR)30 model structures that have the
molecular composition of the true cluster but not necessarily the
true structure. The correlation of the CSE to the total energy is
shown in Fig. 7a, b for gold and silver, respectively. The result
shows a clear trend: the total energy decreases when the CSE
decreases. This confirms that the minimum energy structures can
be found most probably among the model structures that have
low CSE values. The larger fluctuations at low and high energies
seen in Fig. 7 are related to the decreased number of model
clusters in sampling on both extremes. This comparison confirms
the validity of CSE in predicting the true structure.

Size effects of the ligands in Au44 clusters. The ligand size (steric
volume) is one of the properties affecting the possible S- or P-
atom positions on the metal surface. There are several examples
of protected Au-clusters for which isomeric structures with dif-
ferent geometries are found with ligands of different bulkyness.
Even cluster transformations driven by a ligand exchange from
non-bulky to bulky ligand have been reported. Our algorithm
provides a possibility to qualitatively study and understand the
triggering conditions for these experimental findings. As an
example, two different experimentally known thiolate-protected
Au44 clusters have been reported: one with 26 and the other with
28 thiolates from which the first is made with tertbutylbenze-
nethiol (TBBT) and the second with dimethylbenzenethiol
(DMBT)17,23. These two clusters are completely different by the
metal core symmetry and metal-ligand interface structures. Here
we tested our algorithm whether it can predict that the true

structure and composition of the Au44(SR)28 is achieved only for
TBBT ligand and not for the larger DMBT. The parameters used
in the prediction and the results are summarized in Supple-
mentary Tables 7 and 8. By varying the radius of the spherical
probe from 2.5 Å (for modeling TBBT) to 3.0 Å (DMBT), the
maximum number of thiolates at the interface drops from 28 to
26 (Fig. 8). The largest ligand that may occupy full 28 ligand sites
on the surface corresponds to a 2.8 Å sized spherical probe.
Remarkably, this in a perfect match with the true experimentally
observed composition of DMBT protected Au-cluster. This can
be understood by a competing effects from the interactions of the
metal core and the metal-ligand interface and the spatial fitting of
organic ligands, both affecting the overall structure. Since the
metal core size is almost the same for both clusters and the metal
atoms tend to maximize the packing of the core, there is roughly
the same amount of free space for the ligands on the surface. This
free space gets filled with 26 DMBT ligands if proper parameters
for its steric volume are used.

Discussion
In this work, we have introduced a general method that can be
used to predict metal-ligand interface structures of ligand-
protected metal nanoparticles. The method uses the informa-
tion from the local bonding environments of known reference
structures (in our case the reference structures comprise reported
crystal structures of similar thiolate- and phosphine-protected
gold and silver nanoclusters) and can be easily generalized for the
structural prediction of any nanostructure, in case enough
reference information is available. The main variables, nearest
neighbour bonds and bond angles between the interface atoms,
are generally valid to be used for any atom type in any nanos-
tructure. The steric parameters used in this paper can straight-
forwardly be generated to any atom types and molecular groups
at the metal-ligand interface. Our algorithm is written in a
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modular way in order to maximize the flexibility and transfer-
ability to other metal-ligand systems, such as gold-alkynyls etc.
An interesting test case would be provided by predictions of gold-
thiolate interfacial structures in planar, self-assembling thiol
monolayers on Au(111), which has been under intense investi-
gations since 1980’s28,29.

We validated the method by predicting the Au–S interface
structures of 10 known thiolate-protected gold nanoclusters and
the Ag–S and Ag–P interface structures of four known ligand-
protected silver clusters. Furthermore, we introduced a CSE
parameter to measure the goodness of generated model clusters
showing a clear correlation of low CSE value to low DFT total
energy. The definition of CSE enables additional terms or fitness
functions including both local and global descriptors, which could
relate to structure-dependent properties such as X-ray powder
diffraction patterns.

In all studied cases, the best-ranked structures essentially
reproduced the bonding configuration of metal-ligand interfaces
found in the crystal structure, with minor RMSD values in the
predicted interface atom positions with respect to the crystal
structure. We successfully predicted also the metal-ligand inter-
faces consisting of different kind of ligands (thiolates and phos-
phines), for which the prediction was made in steps by first
predicting the most stable configurations of thiolates that are in
majority and then predicting the positions of the phosphines that
were in minority. In general, we expect that by applying structure
optimization methods, a majority of the best model structures
would relax to the known experimental structure. For the largest
clusters studied in this work we also expect that a number of
predicted best-ranked interface structures would lead to locally
stable low-energy isomers lying energetically close to the known
crystal structure. In this sense, our method should be useful in
producing a number of potential structural isomers in a sys-
tematic and computationally effective way. These isomeric
structures can then be examined with more robust energy-
optimization methods such as DFT or DFT-based tight-binding
methods. Since the spatial constraints from the ligand layer (i.e.,
the steric volume of the ligand molecule) are also parametrically
included in the algorithm, we showed that our method can
provide qualitative understanding on how the bulkiness of the
ligand affects structures, interface conformations and composi-
tions of the protected clusters.

Our experience on this method implies three critical points of
concern to be adjusted to the system under investigation, to
guarantee the success of the structure-prediction algorithm. First,
a large enough sampling of the plausible local structures is needed
in the set of reference structures. Second, the interval between grid
points (Supplementary Fig. 1) has to be chosen fine enough. In
this work, we used a value of 0.2 Å. Third, too loose criteria for
describing the local environments of atoms may lead to improper
bonding configurations that deviate from the true metal-ligand
chemistry. We found reasonable to allow up to about 10% error in
S–Au bond length and in RS–Au–SR angles depending on the
number of nearest neighbors considered in the description. All the
parameters we used were based on statistical analysis of experi-
mental structural data of a similar class of clusters in question.

Unguided stochastic process starts to dictate the generation of
the model structures for larger systems so that ever larger number
of model structures have to be generated in order to have a
complete representation of all relevant overall conformations. A
further advantage of our method is that the process can be made
guided by weighting the good choices made in model structure
generation. In this study we introduced one possible approach for
optimizing the global structural search. The main idea is to repeat
the predictions by taking for the next run the possible interface
atom positions from the set of best model structures of the
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Fig. 7 CSE correlates with DFT total energy. CSE as a function of the DFT
total energy of the model structures of a Au36(SR)24 and b Ag44(SR)30
clusters. In both cases, 700 model structures that had the correct number
of ligands were chosen for the analysis. CSE was calculated as an average
over 0.4 eV energy range. For the calculation of the total energy, the SR-
group was simplified with the SH-group as described in “Methods”
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Fig. 8 Size of the ligands affects the structure. Predicted model structures
of Au44(SR)26 and Au44(SR)28 clusters for different ligands. Due to spatial
fitting of the organic part of the ligand Au44(SR)28 is found only for ligand
sizes <2.8 Å as mimicked by the spherical probe (see Supplementary Table
6). The maximum number of ligands with 3.0 Å probe on Au44(SR)28
surface is 26
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previous run. Other possibilities would be to weight the interface
atom positions on-the-fly based on the success of the model
structure generation.

Our future work will be directed to developing more
numerically effective methods for evaluating the candidate
structures, which eventually could reduce the need to use a
large number of heavy total energy evaluations at the DFT level.
Our goal is also to extend the structural prediction of metal-
ligand interfaces into the metal atoms and complete cluster
structures, bypassing then the need to parametrize classical
force fields for complex hybrid nanomaterials. We hope that the
method described in this work can open new avenues for
effective structural predictions of nanoparticles and more
generally nanomaterials where the atomic-scale information of
the metal-ligand interface is crucial to understand growth
mechanisms, stability, dynamics and ensuing physico-chemical
properties. As such, our work is complementary to recent
efforts to develop understanding of gold nanoparticle synthesis
via deep learning30.

Methods
General. The logic of our method is described in the main text (steps 0–4 in the
beginning of “Results” section) and the corresponding algorithms (algorithms 1–4)
are given in the Supplementary Information. The physico-chemical reasons for the
selected parameters used in the prediction algorithm are discussed in the Sup-
plementary Note 2. The approach to use a greedy enlargement during the search
resembles the classical graph traversal algorithms31. Such approaches form part of
the search-based artificial intelligence as suggested by Nilsson32.

DFT total energy calculations for CSE correlations. The DFT calculations were
run using the GPAW code-package33 with the grid spacing of 0.2Å and Perdew-
Burke-Ernzerhof (PBE) xc-functional34. The total energies were calculated without
structure relaxation from a set of 700 generated model structures of both
Au36(SR)24 and Ag44(SR)304− clusters by adding the ligands as simplified SH-
groups in the most natural bonding direction using the optimal bond distance.
Total energies were used for studying the correlation to the CSE, which was
averaged in increments of 0.4 eV of total energy.

Data availability
The algorithm published in this work is fully documented in the main text and in the
Supplementary Information. All the reference structural data was taken from previously
published work and referenced accordingly.

Code availability
The software and examples of full datasets/runs for the examined cases that validated our
method are available by request to H.H.
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