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ABSTRACT

Motivation: Antibodies are currently the most important class of

biopharmaceuticals. Development of such antibody-based drugs

depends on costly and time-consuming screening campaigns.

Computational techniques such as antibody–antigen docking hold

the potential to facilitate the screening process by rapidly providing

a list of initial poses that approximate the native complex.

Results: We have developed a new method to identify the epitope

region on the antigen, given the structures of the antibody and the

antigen—EpiPred. The method combines conformational matching of

the antibody–antigen structures and a specific antibody–antigen

score. We have tested the method on both a large non-redundant

set of antibody–antigen complexes and on homology models of the

antibodies and/or the unbound antigen structure. On a non-redundant

test set, our epitope prediction method achieves 44% recall at 14%

precision against 23% recall at 14% precision for a background

random distribution. We use our epitope predictions to rescore the

global docking results of two rigid-body docking algorithms: ZDOCK

and ClusPro. In both cases including our epitope, prediction increases

the number of near-native poses found among the top decoys.

Availability and implementation: Our software is available from

http://www.stats.ox.ac.uk/research/proteins/resources.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Antibodies are the key protein factors in the acquired immune

responses in vertebrates. The most common human antibody

isotype is the IgG, which is one of the main mediators of second-
ary immune responses (Kuroda et al., 2012; Raghunathan et al.,

2012; Sela-Culang et al., 2013). Antibodies have a conserved

structure with 41700 solved structures available in the Protein

Data Bank (Berman et al., 2000; Dunbar et al., 2013). Most of

the variability in antibodies (both sequence and structure) can
be found in the antigen binding site, which is chiefly composed

of the complementarity-determining region loops (CDRs)

(Raghunathan et al., 2012). The affinity and specificity of the

antibody’s cognate antigen can be effectively modulated by

only a few mutations to the CDRs (Raghunathan et al., 2012).

Owing to their malleable binding properties, antibodies are cur-

rently one of the most important biopharmaceuticals (Murad

et al., 2012; Wark and Hudson, 2003).
The majority of the technologies used for artificial antibody

design are based on costly screening campaigns. However, there

is a growing number of computational methods aimed at aiding

the process of artificial antibody design (Kuroda et al., 2012).
Two areas of computational antibody design are the focus of this

manuscript: B-cell epitope prediction (e.g. EL-Manzalawy and
Honavar, 2010; Yao et al., 2013) and global antibody–antigen

docking (e.g. Brenke et al., 2012).
Given a sequence or structure of an antigen, in silico B-cell

epitope prediction aims to identify a set of residues on the anti-

gen capable of binding an antibody (Kringelum et al., 2012).
Many successful B-cell epitope prediction methods rely on struc-

tural information but sequence alone can also produce useful
predictions (Lin et al., 2013). The majority of current methods

operate without antibody information, aiming to identify all po-

tential antibody binding sites (Kuroda et al., 2012; Sela-Culang
et al., 2013). Attempting to map all epitopes might not be opti-

mal because some antigens, such as hen egg white lysozyme, have

been shown to form complexes with many different antibodies.
These bind to different areas, meaning that most of the lyso-

zyme’s surface constitutes a part of some epitope (Sela-Culang
et al., 2013). Moreover, it has been shown that two different

therapeutic antibodies, Gevokizumab and Canakinumab, acti-

vate two distinct pathways by binding to different epitopes of
IL-1� (Blech et al., 2012). In this article, we create antibody-

specific epitope predictions, as we believe these will be more
useful for the development of therapeutic antibodies (Soga

et al., 2010; Zhao and Li, 2010; Zhao et al., 2011).
Computational B-cell epitope prediction provides information

about the regions of the antigen bound by the antibody but it

does not directly contribute to the knowledge of the particular
antibody residues that need to be mutated so as to modify its

function. This problem can be tackled by antibody–antigen
docking, which, given the structure of the antibody and the anti-

gen, provides a list of putative orientations of the two molecules

with respect to each other. Antibody–antigen docking requires
different methodology from that used for the corresponding

problem concerning non-antibody targets (Brenke et al., 2012;
Mendez et al., 2005). This is because antibodies use different

residues in their binding sites when compared with both general

proteins and antigens and thus an asymmetric scoring system is
required that accounts for these discrepancies (Brenke et al.,

2012; Krawczyk et al., 2013).*To whom correspondence should be addressed.
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In this manuscript, we focus on epitope prediction and global
docking and how those two methods in concert can facilitate
computational artificial antibody design. We develop an anti-

body-specific epitope prediction method EpiPred, which uses
geometric matching of the antibody and antigen interfaces
coupled with an antibody–antigen-specific knowledge-based po-

tential. We use our epitope predictions to rescore the global
docking results of two fast rigid-body docking algorithms,

ZDOCK and ClusPro server in antibody mode (Brenke et al.,
2012; Chen et al., 2003). We demonstrate that including the epi-
tope information in our global docking pipeline enriches the top

decoys with more native poses.

2 METHODS

2.1 Data

A non-redundant dataset of crystal structures was downloaded from the

structural antibody database (SAbDAb; Dunbar et al., 2013) in August

2013. The complexes were selected such that no two antibodies shared

499% sequence identity and the corresponding antigens shared not

490% sequence identity. All antigens were proteins as defined by

SAbDab (450 residues) and the complexes had to be of resolution 3 Å

or better. The final dataset consisted of 148 structures (SAbDab-nr), 30

of which were chosen at random to constitute the test set, referred to as

X-test. The homology model dataset, H-test, consisted of 15 antibody–

antigen complexes as used by Krawczyk et al. (2013) and Sircar and Gray

(2010). These are model structures built with RosettaAntibody

(Sivasubramanian et al., 2009). The homology models we obtained did

not have the H3 loop modeled so these were modeled using FREAD

(Choi and Deane, 2011, 2010). The PDB codes and the corresponding

chains of structures used in this study are given in the Supplementary

Section 1.

2.2 Epitope prediction

2.2.1 Epitope prediction algorithm Our epitope prediction algo-

rithm is a combination of geometric fitting and a knowledge-based asym-

metric antibody–antigen scoring. The algorithm is divided into three

steps.

Firstly, epitope-like surface patches on the antigen are enumerated.

These are designed to be roughly the same size as the approximate epi-

topes used in our earlier local docking study (Krawczyk et al., 2013). An

epitope is defined here as surface antigen residues (47% � ASA) whose

heavy atoms are within 4.5 Å of a heavy atom on the antibody. These

candidate epitope patches are then scored using geometric fitting and a

specific antibody–antigen score. The geometric fit is calculated by enu-

merating all possible contacts between the set of putative epitope residues

and the CDRs and evaluating which pairs of antibody–antigen contacts

can be satisfied simultaneously (see Fig. 1 for an example). The final

epitope score for each patch is a sum of all possible contacts between

the given epitope and CDRs, weighted by the number of other contacts

they can satisfy simultaneously as well as the antibody–antigen Precision

Score for the particular amino acid contact pair. The Precision Score has

been adapted from our earlier work on local antibody–antigen docking

(Krawczyk et al., 2013). In the final ranking of the candidate epitopes, we

only keep patches with530% of their residues in common.

2.2.2 Enumerating epitope-like patches Our algorithm identifies

plausible extended epitope-like patches on the surface of the antigen

and annotates each of them with a score indicating the likelihood of

containing the correct epitope. A putative epitope patch is created for

every surface residue on the antigen. The patch consists of the neighbor-

hood of the surface residues and is constructed by selecting every surface

residue within 4.5 Å of the chosen residue. This step is followed by adding

the surface residues within 4.5 Å of the current residues in the patch. See

Supplementary Section 2 for details.

2.2.3 Precision Score for the epitope prediction EpiPred uses geo-

metric matching of the antibody and antigen surfaces, which are weighted

by a specific antibody–antigen score. The antibody-specific score is the

Precision Score, which we have previously shown to be able to more

reliably identify antibody-specific docking poses (Krawczyk et al.,

2013). Here PrðTab,TagÞ denotes the likelihood of the docking algorithm

to correctly pair a residue of type Tab on the antibody and a residue of

type Tag on the antigen (for instance, glycine on the antibody and serine

on the antigen). The Precision Score PrðTab,TagÞ was estimated by

executing ZDOCK on each of the 118 targets in SAbDab-nr that were

not in X-test and in the set of top 200 ZDOCK-scored poses counting

how many times a given pair of residues was matched correctly with

respect to the native structures. For details of the procedure see

Supplementary Section 3.

To ensure we have not overtrained the Precision Score for the H-test

dataset, we have removed all members of the SAbDab-nr that had490%

sequence identity with any antigen and499% with any antibody in the

H-test. The sequence identity was calculated using CD-HIT (Li and

Godzik, 2006).

2.2.4 Scoring putative epitopes Let Epi denote the set of residues in

a putative epitope and Ab the set of residues supplied as the binding site

on the antibody. We create a graph G where each node n, corresponds to

an element of the Cartesian product of Epi and Ab: Epi�Ab. Thus, if

there was a tyrosine (Y) residue in Epi and a histidine (H) residue in Ab,

there will be a node n0 in G that corresponds to this pair—(Y,H). Each of

the nodes represents a possible intermolecular contact between antibody

and antigen residues.

We add an edge between any two nodes in G if the antibody–antigen

contacts defined by those nodes can be geometrically satisfied at the same

time. Take node n1, which stands for a contact between antibody residue

rab1 and antigen residue rag1 and node n2 with antibody residue rab2 and

antigen residue rag2. Define distðrab1, rab2Þ as the intramolecular distance

between the two residues rab1 and rab2. We place an edge between n1 and

n2 only if the difference in intramolecular distances on the antibody and

the antigen is below 1 Å as given by (1).

The choice of 1 Å was motivated by our analysis of the intramolecular

distances between residues in contact. We concluded from this analysis

that 1 Å offers a good balance between the coverage of the binding site

and the number of residues that can satisfy this condition (Supplementary

Section 4).

jdistðrab1, rab2Þ � distðrag1, rag2Þj51Å ð1Þ

Let d(n) denote the degree of node n. The final score for a putative

epitope Epi is given by (2).

EpitopeScoreðEpi,AbÞ ¼
X

n2G

dðnÞPrðTab,TagÞ ð2Þ

where Tab and Tag are the amino acid types of the antibody and antigen

residues, respectively, which belong to node n.

The epitopes are ordered by their score and the top three non-over-

lapping epitopes are kept. Overlapping epitopes are defined as those that

share430% of the same residues with respect to the epitope with the

higher epitope score.

We use our epitope prediction algorithm on each of the targets in

X-test and H-test.

2.2.5 DiscoTope 2.0 epitope predictions The structures of 30 anti-

gens in X-test were submitted to the DiscoTope 2.0 (http://www.cbs.dtu.

dk/services/DiscoTope/; Kringelum et al., 2012) server using the five
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thresholds suggested by the service: �3.7, �2.5, �1.0, 0.5 and 1.1. The

residues predicted by DiscoTope as part of an epitope were compared

with the native contacts (54.5 Å from a heavy atom on the antibody). The

best results, by Matthews correlation coefficient (MCC; Matthews, 1975),

were obtained for the threshold of �3.7 and thus were used for the com-

parison with EpiPred.

2.2.6 Evaluating the performance of antibody-specificity of
EpiPred predictions We have tested the ability of EpiPred to identify

the epitopes of different antibodies on the same antigen using the test case

of lysozyme. There are five standard (non-camelid) antibody–lysozyme

complexes available in the PDB [we chose representatives: 1a2y, 1j1x,

1jhl, 1p2c and 2iff by clustering by sequence identity (99%) and removing

any with missing binding site residues or high B-factors. We randomly

select a structure from each cluster]. They bind to three distinct epitopes:

epitope I (1a2y and 1jhl), epitope II (1p2c and 2iff) and epitope III (1j1x)

(see Supplementary Section 5).

We retrained EpiPred using our original set of antibody-antigen

complexes, removing any antibody with499% sequence identity to the

targets and all antigens with490% sequence identity to lysozyme. We

then ran EpiPred on each of the five cases.

2.3 Global docking

The global docking pipeline we have developed is divided into three steps.

Firstly, up to three candidate epitope predictions from EpiPred are com-

puted. Secondly, we perform global docking using a fast rigid-body al-

gorithm (ZDOCK or ClusPro). We do not provide any epitope

information at this point, only supplying the CDR residues to be

masked. The final step consists of rescoring the poses produced by the

docking algorithms using AB DockSorter.

The input to AB DockSorter consists of a single antibody–antigen

pose supplied by the docking algorithm, a set of Chothia CDR residues

and a set of residues for one of the predicted epitopes. For each pose, the

AB DockSorter score is computed for each of the top three predicted

epitopes, as given by EpiPred. The final score of a pose is the highest of

the three scores. The poses for a given target are then reranked by this

score.

2.3.1 Docking algorithms All the targets were subject to a random

rotation and translation before submission to either ZDOCK or ClusPro.

ZDOCK was run on all of the targets in the X-test set with the constraint

on the antibody of the Chothia CDRs and with no epitope information.

The software was executed using its default parameters, with the excep-

tion that the number of poses to probe was set to 10 000. As it was

computationally feasible, we performed five runs of ZDOCK for each

target, using different random seeds each time. An analogous procedure

was applied to the targets in H-test. The targets in X-test and H-test were

also submitted to ClusPro in antibody mode, using automatic CDR

masking.

2.3.2 Rescoring decoys Consider a set of decoys D returned by either

ZDOCK or ClusPro for a given target. We collect the top N decoys from

D as ordered by the docking method. For a given decoy d in the set of top

N decoys from D, let Ab denote the set of residues used as the antibody

constraint and Epi a set of predicted epitope residues. Let ðrab, ragÞ be any

pair or residues in d, where rab 2 Ab and rag 2 Epi. If the distance be-

tween rab and rag is observed to be54.5 Å in the decoy d, this pair of

residues contributes the value of PrðTab,TagÞ to the score for this decoy,

where Tab is the type of the amino acid type of rab and Tag is the amino

acid type of rag. If we let distðrab, ragÞ denote the distance in Ångstroms

between residues rab and rag, the score for decoy d using antibody con-

straint Ab and epitope prediction Epi can be formalized by (3).

DecoyScoreðdÞ ¼
X

rab 2 Ab
rag 2 Epi

distðrab, ragÞ54:5Å

PrðTab,TagÞ ð3Þ

The top N decoys for a given target are given scores using our three

epitope predictions. For each decoy, we retain the highest score of the

three. We then use those scores to reorder the top N decoys for a given

target.

Fig. 1. Left: Example of a case when intramolecular distances can provide information about which intermolecular contacts can exist. The antibody–

antigen contacts between Tyr-22 and Lys-27 and Gly-56 and Lys-34 (blue dashes) can exist as the intramolecular distance between Tyr-22 and Gly-56 is

9.4 Å and the distance between the two Lys residues is 10.2 Å. The difference between those two intramolecular distances is 0.8 Å, which is below the

cutoff of 1 Å. As a counterexample, the contacts between Tyr-22 and Lys-27 and Asp-102 and Lys-34 (black dashes) cannot be satisfied simultaneously

because the intramolecular distance between Tyr-22 and Asp-102 is 17.5 Å. Right: The top epitope prediction for the antigen 1boy (human tissue factor,

the unbound form of the antigen complexed in 1ahw in H-test). The prediction consists of a set of residues, which are considered to constitute the general

area of the epitope. The true positives are shown in green, false positives in teal, false negatives in red and true negatives in dark blue. This prediction

achieved 36% precision and 94% recall. (The target comes from the dataset H-test, and thus, the antibody used in the prediction was a homology model

and the corresponding antigen was in the unbound form)
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In the case of ZDOCK for both X-test and H-test, we rescore the top

30 decoys for each target. We use the top 20 predictions for ClusPro, as

this is the maximum number of decoys returned in most cases.

2.3.3 Evaluation criteria for docking To evaluate the quality of each

decoy, we use the interfacial root mean square deviation (Irmsd), one of the

metrics used in the Critical Assessment of PRotein Interactions (CAPRI)

experiment (Mendez et al., 2005). The value of Irmsd is the root mean

square deviation between the interface region of the decoy and the native

structure when those regions are optimally superimposed. The interface

regions are defined as those within neighborhood of 10 Å from any resi-

due on the binding partner.

We define a close-to-native decoy in the same way as the authors of the

ClusPro antibody study (Brenke et al., 2012). A close-to-native decoy is

defined as having Irmsd510 Å from the native complex. For each target in

our test sets, we have the raw list of top N decoys as ordered by the

docking algorithm and our rescored version thereof. To evaluate which

ordering is better, we count the number of close-to-native decoys in the

first, top five and top ten entries in the raw and rescored lists. For in-

stance, if using our rescored list we find three close-to-native decoys in the

top five and only one in the top five decoys in the raw list, we consider the

rescoring to have improved the result. If in the top N of both lists no

close-to-native decoy is found, we state there was no suitable decoy.

Because multiple runs were performed for ZDOCK, the reported re-

sults are derived from the comparison of the averages of close-to-native

decoys in the raw and rescored lists for each target.

3 RESULTS

3.1 Epitope prediction

The epitope prediction algorithm presented here was inspired by

our earlier work on local antibody–antigen docking, where we
showed that it was possible to select close-to-native decoys when

docking the antibody into an approximate region of the epitope

(Krawczyk et al., 2013).
To extend our local docking methodology to global docking,

we have developed an epitope prediction algorithm that identifies

surface patches on the antigen similar to the approximate epi-
topes used in our earlier work (see Fig. 1). Our epitope prediction

algorithm receives, as input, the structure of an antibody and an

antigen and returns a ranked list of epitope-like regions.
In our case, the aim is to generate epitope predictions specific

for a given antibody to facilitate docking. Thus, the use of anti-

body information is crucial. However, as shown later, the anti-
body structure can be a homology model.

3.1.1 Evaluation of the performance of epitope prediction For

our epitope prediction method to be applicable in virtual screen-
ing, it must be able to produce results given nothing more than

the sequence of the antibody and the structure of the antigen. To

verify this claim, we have evaluated the results of our epitope

prediction algorithm on two datasets: a crystal structure dataset
(X-test) and on homology model dataset (H-test). The first data-

set (X-test) consisted of 30 non-redundant solved crystal struc-

tures of antibody–antigen complexes. The second dataset
(H-test) consisted of 15 antibody–antigen targets, where the anti-

body is a RosettaAntibody (Sivasubramanian et al., 2009) model

with FREAD prediction for the H3 loop (Choi and Deane, 2011,

2010) and where 10 of the 15 antigens are in the unbound form.
The crystal structure dataset, X-test, constitutes the simpler of

the two test sets, as all the structures are in their bound

conformations. The results on the crystal structure dataset

show the performance of the algorithm given close to perfect

information for both structures and, as such, serve as a contrast

to the homology dataset, H-test. The homology dataset poses the

realistic challenge, as it represents the input that might be given

to the algorithm in the course of virtual screening. The results

from evaluating our epitope prediction algorithm on the crystal

structure dataset are presented in Table 1.
As one would expect, it is easier to obtain good predictions on

small antigens, as there are fewer candidate patches to enumer-

ate. Similarly, one would expect a considerable drop of perform-

ance on the larger antigens because the method needs to

distinguish between many more candidate patches. In cases

such as 3t3p and 3pgf, which have 453 and 358 residues, respect-

ively, no acceptable predictions were obtained. However, for 3liz,

3jr9, 3zkm and 3r1g, which have4300 residues, reasonable epi-

tope predictions were generated, suggesting that the method re-

tains a degree of predictive power even for larger antigens.

To give an indication of the background random distribution,

we have executed EpiPred on each target in the crystal structure

test set 500 times, randomizing the epitope score given to each

candidate patch. For each run, we have averaged the precision

and recall metrics of the top epitope of the 30 targets in X-test.

The mean precision and recall averaged over 500 random-score

runs on dataset X-test are 23 and 14%, respectively (the random

results for each target are in Table 1). The corresponding average

values for the first epitope prediction from Table 1 are 44%

recall and 14% precision. The recall is considerably higher

using our method, indicating its predictive power.

Furthermore, the score correctly identifies better epitopes be-

cause the corresponding values for the second epitope are

recall 25% and precision 13% and recall 18% and precision

7% for the third epitope (see Supplementary Section 6).
We have compared the results of EpiPred with one of

the leading conformational B-cell predictors, DiscoTope 2.0

(Kringelum et al., 2012). The results presented in Table 1 are

the best prediction results from among the five thresholds pro-

posed on the DiscoTope Web site (see Methods Section). On

dataset X-test, EpiPred achieves better prediction results than

DiscoTope 2.0 on 17 targets, worse on eight and neither of the

methods produces a usable prediction on the remaining five. This

indicates the value of using antibody structure information in

epitope prediction.
In Supplementary Table S10, the results for epitope predic-

tions for the homology cases (H-test) are given. The average

precision and recall for the top predicted epitope are 16 and

47%, respectively. These results are similar (in fact not statistic-

ally significantly different; see Supplementary Section 7) to those

achieved on the crystal structure set, indicating that the imprecise

structural information from homology models and unbound

antigens does not adversely affect the method.

3.1.2 Specificity of EpiPred predictions We have tested

EpiPreds capacity to distinguish between the epitopes of different

antibodies binding to the same antigen. As a test case we have

picked lysozyme and the five distinct antibodies that bind to

three different epitopes: epitope I (1a2y and 1jhl), epitope II

(2iff and 1p2c) and epitope III with 1j1x (see Supplementary

Section 5).
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The results are shown in Table 2. Note that as the training set

for these predictions is larger than that used for X-test (see

Section 2), EpiPred produces a better prediction for 1p2c.

EpiPred fails to predict epitope III and predicts a site that over-

laps marginally with epitope I. In the case of epitopes I and II

(which are on opposite sides of lysozyme), EpiPred correctly

identifies the relevant part of the protein.

3.2 Improving global docking using epitope predictions

We have used EpiPred to constrain the results of two fast rigid-

body docking algorithms: ZDOCK and ClusPro (Brenke et al.,

2012; Chen et al., 2003). ZDOCK is not optimized for docking

antibody–antigen complexes beyond CDR masking, but as we

have shown in our earlier work, its results can be rescored to

enrich the top poses with close-to-native antibody–antigen com-

plexes (Krawczyk et al., 2013). ClusPro’s global antibody–

antigen docking mode has been shown to be currently the best

method in this area (Brenke et al., 2012).

3.2.1 Evaluating the performance of our global pipeline We have
evaluated the performance of our global docking pipeline based

on the criteria introduced in the ClusPro study (Brenke et al.,

2012). We call an antibody–antigen pose close-to-native if its

interfacial root mean square deviation (Irmsd) is 510 Å. We

focus on the number of near-native poses found in the top N

predictions, as these decoys could then be passed on for further

refinement by flexible methods.
In Figure 2, we show how our methodology improves the

standard docking procedures, which only make use of the para-

tope information. For instance, suppose that for a target in the

top five poses as ordered by ClusPro, there are three close-to-

native decoys, and in the corresponding top five results rescored

using our pipeline, we obtain four close-to-native decoys. In such

Table 1. Table summarizing the results of epitope prediction on the X-test set

PDB Ag size Epitope prediction Random

EpiPred DiscoTope 2.0

Precision (%) Recall (%) MCC Precision (%) Recall (%) MCC Precision (%) Recall (%)

4hj0 92 32 90 0.27 0 0 0.0 29 50

1tzh 94 1 6 0.04 73 87 0.72 12 25

4am0 96 13 70 0.09 33 20 0.19 14 60

2ih3 97 16 64 0.08 0 0 0.0 15 27

4i77 97 23 55 0.0 0 0 0.0 21 31

3q1s 113 19 81 0.15 0 0 0.0 20 37

1p2c 129 0 0 0.0 100 5 0.0 39 32

4ht1 131 5 14 0.05 0 0 0.0 28 44

3ab0 136 33 73 0.34 0 0 0.0 33 52

1v7m 145 26 77 0.29 0 0 0.0 9 16

4g3y 148 3 8 0.04 100 17 0.33 11 25

2vxt 156 4 9 0.04 47 36 0.3 14 23

3u9p 169 31 100 0.47 6 5 0.0 8 15

3o2d 178 32 64 0.28 0 0 0.0 9 16

1fns 196 0 0 0.0 100 7 0.0 33 11

3ma9 197 0 0 0.0 0 0 0.0 21 33

3rvv 223 25 93 0.39 15 17 0.07 6 15

3raj 230 0 0 0.0 0 0 0.0 24 21

1nfd 239 7 23 0.04 92 70 0.75 10 15

3i50 273 0 0 0.0 0 0 0.0 1 6

3gjf 276 15 66 0.2 5 11 0.05 6 15

3liz 329 26 68 0.34 0 0 0.0 10 15

3pgf 358 2 4 0.0 0 0 0.0 13 18

3zkm 375 32 88 0.46 0 0 0.0 11 15

3r1g 381 37 100 0.57 0 0 0.0 7 9

4jr9 409 19 85 0.34 46 50 0.46 4 11

4ene 442 0 0 0.0 0 0 0.0 1 5

3o0r 449 8 70 0.19 0 0 0.0 2 14

3t3p 453 0 0 0.0 25 4 0.0 4 6

1n8z 581 0 0 0.0 0 0 0.0 6 5

Note: We present the top EpiPred prediction and the corresponding results for DiscoTope 2.0 using a score threshold of �3.7. The values in bold indicate the best prediction

result. Precision and recall were computed by the following formula: precision ¼ TP=ðTPþ FPÞ, recall ¼ TP=ðTPþ FNÞ where TP stands for true positives, FP for false

positives and FN for false negatives. In each case, we also give the Matthews correlation coefficient [MCC (Matthews, 1975)]. As control, the corresponding result using

randomized score is given for each target.
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a case, our global docking pipeline produced an improvement by

enriching the top results with more close-to-native decoys. If the

number of close-to-native decoys is zero in both lists, we state

that there were no suitable decoys.

As shown in Figure 2 on average, including epitope informa-

tion improves over the raw results obtained by either ZDOCK or

ClusPro. The improvement is particularly dramatic when con-

sidering the top scoring pose in the crystal structure dataset.

Fig. 2. Success rates of rescoring compared with the raw decoy lists given by the docking algorithms. We show results for each docking program

(ZDOCK or ClusPro) on each test set (X-test or H-test) for top one, five and ten results. The leftmost bars are the number of times our global docking

pipeline improved results. Bars that are second to left are the corresponding number of cases when including epitope information made the results worse.

Bars that are second to right are the number of times including the epitope information did not change the raw result. The rightmost bars are the number

of cases for which both procedures reported no close-to-native decoys. See Supplementary Section 6 for the per-complex information. (A) Success rate of

ClusPro on dataset X-test. (B) Success rate of ZDOCK on dataset X-test. (C) Success rate of ClusPro on dataset H-test. (D) Success rate of ZDOCK on

dataset H-test

Table 2. Comparison of the specificity of EpiPred predictions evaluated on its capacity to distinguish between antibodies binding to lysozyme: epitope I

(1a2y and 1jhl), epitope II (1p2c and 2iff) and epitope III (1j1x)

Epitope Prediction from Epitope I Epitope II Epitope III

Evaluated on PDB 1a2y 1jhl 1p2c 2iff 1j1x

Epitope I 1a2y 0.53 – 0 0 0.19

1jhl – 0.12 0 0 0

Epitope II 1p2c 0.01 0.01 0.15 – 0

2iff 0 0 – 0.47 0

Epitope III 1j1x 0.17 0.1 0 0 0

Note: The row indicates the antibody for which the EpiPred prediction was performed and the column the antibody with respect to which the prediction was evaluated usingMCC.
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Our rescoring brings eight close-to-native structures to the top

position for ClusPro and nine for ZDOCK. This means that in

almost a third of the cases, the top result is a close-to-native pose

if rescored using our method.
The performance of the top prediction is not as pronounced in

the homology model dataset, as our pipeline improves only

slightly more cases than it deteriorates. The most pronounced

increase in performance here is for the top five predictions, where

we improve on 6 of the 15 cases for both ZDOCK and ClusPro.

This suggests that using our method on a dataset closely resem-

bling realistic input for virtual screening improves on the stand-

ard algorithms.

4 CONCLUSIONS

In this manuscript, we have demonstrated that our antibody-

specific epitope prediction method is able to improve the

global docking of antibodies and antigens.
The method EpiPred, when structures of the antibody and the

antigen are given, annotates the likely epitope regions specific to

the supplied antibody. In that respect, EpiPred differs from other

methods such as DiscoTope or PEPITO, which annotate general

immunogenic/epitope-like regions on the antigen, without any

antibody information required on input (Kringelum et al.,

2012; Sela-Culang et al., 2013). In particular, in comparison

with DiscoTope 2.0, we demonstrate that including the antibody

information appears to be advantageous for the prediction of

antibody-specific epitopes.

We demonstrate that the top epitope predictions obtained

using our method have a considerably higher average recall

(44% recall at 14% precision) than that expected at random

(23% recall at 14% precision) on a non-redundant set of crystal

structures. We further demonstrate that EpiPred can receive

homology models on input without a negative effect on perform-

ance. Thus, it appears that EpiPred requires only the sequence of

an antibody and the structure of the antigen to produce mean-

ingful results.

We have used the epitope predictions from EpiPred to rerank

the outputs of two fast rigid-body docking algorithms and find

that rescoring the decoys in this manner significantly enriches the

number of close-to-native poses among the top one, five and ten

results. This result holds for targets where the antibody is a hom-

ology model and the antigen is in the unbound structure. We

have also tested our global docking pipeline on a blind test case

supplied by UCB Pharma where once again including EpiPred

predictions improved global docking results (see Supplementary

Section 8).
In conclusion, our global pipeline increases the confidence that

the close-to-native decoy will be among the top five poses. This is

already a significant reduction of the potential set of possibilities

experimentalists need to deal with when deciding on how to

adjust the antibody sequence against the antigen. A researcher

might choose to infer information by examining these or they

could further refine the results using more time-consuming flex-

ible docking procedures.
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