# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Tris(4-formylphenyl)phosphane oxide tetrahydrofuran hemisolvate

#### James Kakoullis Jr, # Frank R. Fronczek\* and Andrew W. Maverick

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Received 25 June 2013; accepted 19 July 2013

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.042; wR factor = 0.116; data-toparameter ratio = 27.1.

The title compound, C<sub>21</sub>H<sub>15</sub>O<sub>4</sub>P·0.5C<sub>4</sub>H<sub>8</sub>O, contains an ordered phosphane oxide in a general position and a tetrahydrofuran solvent molecule disordered about a twofold axis. All three aldehyde substituents are nearly coplanar with their attached benzene rings, with C-C-C-O torsion angles in the range 1.64 (17)-4.24 (19)°. All three have different conformations with respect to the P=O group, one syn, one anti, and one gauche. Two of the aldehyde substituents form intermolecular C-H···O contacts.

#### **Related literature**

For synthetic procedures, see: Bartlett et al. (1978); Chalier et al. (1996); Kumagai & Itsuno (2001). For use as a precursor in supramolecular chemistry, see: Kakoullis (2007); Pariya et al. (2008). For weak hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, see: Daly (1964); Etter & Baures (1988); Siegler et al. (2007); Spek (1987); Brock et al. (1985); Lenstra (2007); Thierbach et al. (1980); Baures & Silverton (1990); Baures (1991).



#### **Experimental**

Crystal data

 $C_{21}H_{15}O_4P \cdot 0.5C_4H_8O$ 

 $M_r = 398.35$ 

| Monoclinic, $C2/c$             |  |
|--------------------------------|--|
| a = 21.371 (3)  Å              |  |
| b = 13.474 (2) Å               |  |
| c = 13.436 (2) Å               |  |
| $\beta = 99.018 \ (9)^{\circ}$ |  |
| $V = 3821.1 (10) \text{ Å}^3$  |  |
| ( )                            |  |

#### Data collection

| Nonius KappaCCD diffractometer         | 36155 measured reflections             |
|----------------------------------------|----------------------------------------|
| Absorption correction: multi-scan      | 7598 independent reflections           |
| (SCALEPACK; Otwinowski &               | 5928 reflections with $I > 2\sigma(I)$ |
| Minor, 1997)                           | $R_{\rm int} = 0.023$                  |
| $T_{\min} = 0.926, \ T_{\max} = 0.937$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ | 280 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.116$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 7598 reflections                | $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ |

Z = 8

Mo  $K\alpha$  radiation

 $0.45 \times 0.43 \times 0.38 \text{ mm}$ 

 $\mu = 0.17 \text{ mm}^{-1}$ 

T = 110 K

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| C7-H7···O3 <sup>i</sup>     | 0.95 | 2.56                    | 3.4303 (16)  | 152                                  |
| $C14-H14\cdots O1^{ii}$     | 0.95 | 2.50                    | 3.1575 (14)  | 127                                  |

Symmetry codes: (i)  $x + \frac{1}{2}, y + \frac{1}{2}, z$ ; (ii)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents. This work was supported in part by the US Department of Energy (DE-FG02-01ER15267).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2638).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bartlett, P. A., Bauer, B. & Singer, S. J. (1978). J. Am. Chem. Soc. 100, 5085-5089
- Baures, P. W. (1991). Acta Cryst. C47, 2715-2716.
- Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715-717.
- Brock, C. P., Schweizer, W. B. & Dunitz, J. D. (1985). J. Am. Chem. Soc. 107, 6964-6970.
- Chalier, F., Berchadsky, Y., Finet, J. P., Gronchi, G., Marque, S. & Tordo, P. (1996). J. Phys. Chem. 100, 4323-4330.
- Daly, J. J. (1964). J. Chem. Soc. pp. 3799-3810.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
- Etter, M. C. & Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639-640.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kakoullis, J. (2007). MS thesis, Louisiana State University, Baton Rouge, USA. Kumagai, T. & Itsuno, S. (2001). Tetrahedron Asymmetry, 12, 2509-2516.



<sup>‡</sup> Current address: Natural Science Department, Clearwater Campus, St Petersburg College, PO Box 13489, St Petersburg, FL 33733-3489, USA.

- Lenstra, A. T. (2007). Private communication (refcode TPEPGO12). CCDC, Cambridge, England.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pariya, C., Marcos, Y. S., Zhang, Y., Fronczek, F. R. & Maverick, A. W. (2008). Organometallics, **27**, 4318–4324.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siegler, M. A., Fu, Y., Simpson, G. H., King, D. P., Parkin, S. & Brock, C. P. (2007). Acta Cryst. B63, 912–925.
- Spek, A. L. (1987). Acta Cryst. C43, 1233-1235.
- Thierbach, D., Huber, F. & Preut, H. (1980). Acta Cryst. B36, 974-977.

# supplementary materials

Acta Cryst. (2013). E69, o1362-o1363 [doi:10.1107/S1600536813020059]

## Tris(4-formylphenyl)phosphane oxide tetrahydrofuran hemisolvate

## James Kakoullis, Frank R. Fronczek and Andrew W. Maverick

#### Comment

Triphenylphosphane oxide (TPPO) has been extensively structurally studied, as a result of the high basicity of its O atom, which makes it an excellent hydrogen-bond acceptor. Its utility as a crystallization aid for molecules having hydrogen-bond donors was reported by Etter & Baures (1988), which has led to its use in forming molecular cocrystals (Siegler *et al.*, 2007). Also, it has four known polymorphs (Spek, 1987; Brock *et al.*, 1985; Lenstra, 2007) and several known solvates (Thierbach *et al.*, 1980; Baures & Silverton, 1990; Baures, 1991).

Tris(4-formylphenyl)phosphane was first reported by Bartlett *et al.* (1978), but was also synthesized later by other groups (Chalier *et al.*, 1996). Our interest in the phosphane and the corresponding phosphane oxide (I) stems from their use as precursors to multifunctional ligands for supramolecular chemistry (Kakoullis, 2007; Pariya *et al.*, 2008;). The structure of (I) is illustrated in Fig. 1, showing only one orientation of the THF solvent molecule, which is disordered about a twofold axis. Atom C2S lies 0.51 Å from that axis, and the nearest distance between partially populated sites is 1.00 Å (C2S···C3S at 1 - *x*, *y*, 3/2 - *z*), so the resolution of the data (0.64 Å) allowed individual refinement of the partially populated positions without constraint. The three aldehyde substituents are nearly coplanar with the phenyl groups to which they are attached, with maximum torsion angle magnitude 4.24 (19) ° for C17—C18—C21—O4. The three 4-formylphenyl groups all have different conformations with respect to the phosphane oxide bond. Aldehyde C7=O2 is *syn* to P1=O1, with O1—P1···C7—O2 torsion angle -11.6 (1)°, while the corresponding torsion angles are 78.8 (1)° for O3 and -172.6 (1)° for O4. Intermolecular interactions include C—H···O contacts (Desiraju & Steiner, 1999) for two of the three aldehydes as donors. These are C7—H···O3(1/2 + *x*, 1/2 + *y*, *z*) with C···O distance 3.4303 (16) Å and 152° angle about H, and the shorter but less linear contact C14—H···O1(1/2 - *x*, 1/2 - *y*, 1 - *z*), 3.1575 (14) Å and 127°.

#### **Experimental**

To prepare (I), the precursor tris(4-formylphenyl)phosphane was first prepared following and combining elements of the procedures for the synthesis of tris(4-formylphenyl)phosphane (Bartlett *et al.*, 1978) and bis(4-formylphenyl)dimethyl-silane (Kumagai & Itsuno, 2001). A sample of 4-bromobenzaldehyde dimethyl acetal (5 ml, 29.9 mmol) was combined with 40 ml dry THF in an inert atmosphere in a round-bottom flask. The solution was brought to -78 °C under streaming N<sub>2</sub>, and n-butyllithium/hexanes 1.6 M (19.8 ml, 31.7 mmol) was added over approximately 1 h while stirring. The solution initially turned from colorless to light yellow, then to milky white. After 2 h, at -78 °C, PCl<sub>3</sub> (0.80 ml, 9.17 mmol) was added over a period of 15 minutes. When the PCl<sub>3</sub> was added, the solution turned orange-red. The solution was kept at -78 °C for another 1 h. Then the solution was allowed to come to room temperature over 1 h. The solution was then washed: first with concentrated NaHCO<sub>3</sub> and then with brine. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>. The organic phase was then evaporated, leaving a residue (5.24 g). The crude material was dissolved in 50 ml THF and 50 ml 2 M HCl. The solution was stirred under reflux conditions for 1 h under a stream of N<sub>2</sub>. To the solution, 50 ml of water and 50

ml of ethyl acetate were added. The organic phase was then washed, first with concentrated NaHCO<sub>3</sub> and then with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated, leaving a residue (3.97 g). This residue, which is crude tris(4-formylphenyl)-phosphane and tris(4-formylphenyl)phosphane oxide (I), was dissolved in 25% CHCl<sub>3</sub>/ 75% ethyl acetate and applied to a silica gel column with 25% CHCl<sub>3</sub>/ 75% ethyl acetate as the mobile phase. The column was run as a flash column. This process yielded pure tris(4-formylphenyl)phosphane, 1.51 g, 44% yield. Continuing to run the flash column produced pure tris(4-formylphenyl)phosphane oxide (I),1.92 g, 56% yield. Crystals of (I) were prepared by evaporation of a solution in THF over one week.

## Refinement

H atoms were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding.  $U_{iso}$  for H was assigned as 1.2 times  $U_{eq}$  of the attached C atoms. The THF molecule is disordered about a twofold axis, and its atoms were assigned half occupancy.

### **Computing details**

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



#### Figure 1

Numbering scheme and ellipsoids at the 50% level. H atoms are represented with arbitrary radius. Only one orientation of the disordered solvent molecule is shown.

#### Tris(4-formylphenyl)phosphane oxide tetrahydrofuran hemisolvate

#### Crystal data

 $C_{21}H_{15}O_4P \cdot 0.5C_4H_8O$   $M_r = 398.35$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.371 (3) Å b = 13.474 (2) Å c = 13.436 (2) Å  $\beta = 99.018 (9)^{\circ}$   $V = 3821.1 (10) \text{ Å}^3$ Z = 8

#### Data collection

| Nonius KappaCCD                          |
|------------------------------------------|
| diffractometer                           |
| Radiation source: fine-focus sealed tube |
| Graphite monochromator                   |
| $\omega$ and $\varphi$ scans             |
| Absorption correction: multi-scan        |
| (SCALEPACK; Otwinowski & Minor, 1997)    |
| $T_{\min} = 0.926, \ T_{\max} = 0.937$   |
|                                          |

#### Refinement

| Secondary atom site location: difference Fourier          |
|-----------------------------------------------------------|
| map                                                       |
| Hydrogen site location: inferred from                     |
| neighbouring sites                                        |
| H-atom parameters constrained                             |
| $w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 2.5619P]$         |
| where $P = (F_o^2 + 2F_c^2)/3$                            |
| $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ |
| $\Delta \rho_{\min} = -0.39 \text{ e} \text{ Å}^{-3}$     |
|                                                           |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1664

 $\theta = 2.5 - 33.7^{\circ}$ 

 $\mu = 0.17 \text{ mm}^{-1}$ 

Fragment, yellow

 $0.45 \times 0.43 \times 0.38 \text{ mm}$ 

36155 measured reflections 7598 independent reflections 5928 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\text{max}} = 33.7^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$  $h = -33 \rightarrow 33$ 

T = 110 K

 $R_{\rm int} = 0.023$ 

 $k = -19 \rightarrow 21$  $l = -20 \rightarrow 20$ 

 $D_{\rm x} = 1.385 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 7492 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | X             | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|----|---------------|---------------|---------------|-----------------------------|-----------|
| P1 | 0.328736 (12) | 0.285691 (19) | 0.269566 (19) | 0.01652 (7)                 |           |
| 01 | 0.27730 (4)   | 0.35710 (6)   | 0.23209 (6)   | 0.02304 (16)                |           |
| O2 | 0.58557 (5)   | 0.58191 (7)   | 0.41717 (7)   | 0.0341 (2)                  |           |
| 03 | 0.21889 (4)   | -0.06198 (6)  | 0.57196 (7)   | 0.02736 (18)                |           |
| O4 | 0.42853 (5)   | -0.02731 (8)  | -0.07657 (8)  | 0.0385 (2)                  |           |
|    |               |               |               |                             |           |

| C1   | 0.40140 (5)  | 0.34656 (8)  | 0.32453 (7)  | 0.01777 (18) |      |
|------|--------------|--------------|--------------|--------------|------|
| C2   | 0.40518 (5)  | 0.44958 (8)  | 0.31497 (8)  | 0.02015 (19) |      |
| H2   | 0.3691       | 0.4861       | 0.2848       | 0.024*       |      |
| C3   | 0.46164 (5)  | 0.49869 (8)  | 0.34949 (8)  | 0.0224 (2)   |      |
| Н3   | 0.4643       | 0.5687       | 0.3425       | 0.027*       |      |
| C4   | 0.51435 (5)  | 0.44465 (8)  | 0.39446 (8)  | 0.02102 (19) |      |
| C5   | 0.51021 (5)  | 0.34239 (9)  | 0.40684 (8)  | 0.0227 (2)   |      |
| Н5   | 0.5459       | 0.3063       | 0.4393       | 0.027*       |      |
| C6   | 0.45398 (5)  | 0.29303 (8)  | 0.37179 (8)  | 0.0217 (2)   |      |
| H6   | 0.4512       | 0.2232       | 0.3798       | 0.026*       |      |
| C7   | 0.57583 (6)  | 0.49462 (10) | 0.42927 (9)  | 0.0268 (2)   |      |
| H7   | 0.6096       | 0.4556       | 0.4632       | 0.032*       |      |
| C8   | 0.30889 (5)  | 0.20142 (7)  | 0.36429 (7)  | 0.01710 (17) |      |
| C9   | 0.26866 (5)  | 0.12078 (8)  | 0.33428 (8)  | 0.01918 (19) |      |
| H9   | 0.2543       | 0.1092       | 0.2647       | 0.023*       |      |
| C10  | 0.24976 (5)  | 0.05794 (8)  | 0.40579 (8)  | 0.01975 (19) |      |
| H10  | 0.2230       | 0.0029       | 0.3855       | 0.024*       |      |
| C11  | 0.27051 (5)  | 0.07641 (8)  | 0.50828 (8)  | 0.01879 (18) |      |
| C12  | 0.30915 (5)  | 0.15758 (8)  | 0.53806 (8)  | 0.0211 (2)   |      |
| H12  | 0.3223       | 0.1703       | 0.6078       | 0.025*       |      |
| C13  | 0.32874 (5)  | 0.22025 (8)  | 0.46671 (8)  | 0.01944 (18) |      |
| H13  | 0.3554       | 0.2753       | 0.4873       | 0.023*       |      |
| C14  | 0.25276 (5)  | 0.01018 (8)  | 0.58758 (8)  | 0.0222 (2)   |      |
| H14  | 0.2692       | 0.0255       | 0.6557       | 0.027*       |      |
| C15  | 0.35007 (5)  | 0.21019 (7)  | 0.16835 (7)  | 0.01758 (18) |      |
| C16  | 0.39073 (5)  | 0.12789 (8)  | 0.18493 (8)  | 0.0216 (2)   |      |
| H16  | 0.4074       | 0.1081       | 0.2517       | 0.026*       |      |
| C17  | 0.40635 (6)  | 0.07555 (9)  | 0.10328 (9)  | 0.0244 (2)   |      |
| H17  | 0.4348       | 0.0211       | 0.1141       | 0.029*       |      |
| C18  | 0.38019 (5)  | 0.10291 (9)  | 0.00515 (8)  | 0.0234 (2)   |      |
| C19  | 0.34019 (5)  | 0.18443 (9)  | -0.01138 (8) | 0.0236 (2)   |      |
| H19  | 0.3228       | 0.2031       | -0.0782      | 0.028*       |      |
| C20  | 0.32550 (5)  | 0.23890 (8)  | 0.07013 (8)  | 0.02047 (19) |      |
| H20  | 0.2988       | 0.2955       | 0.0588       | 0.025*       |      |
| C21  | 0.39321 (6)  | 0.04313 (10) | -0.08199 (9) | 0.0303 (3)   |      |
| H21  | 0.3722       | 0.0616       | -0.1469      | 0.036*       |      |
| O1S  | 0.45041 (11) | 0.23429 (19) | 0.84831 (19) | 0.0494 (6)   | 0.50 |
| C1S  | 0.51269 (14) | 0.1940 (3)   | 0.8648 (3)   | 0.0386 (6)   | 0.50 |
| H11S | 0.5170       | 0.1448       | 0.9202       | 0.058*       | 0.50 |
| H12S | 0.5443       | 0.2473       | 0.8831       | 0.058*       | 0.50 |
| C2S  | 0.5231 (3)   | 0.1445 (4)   | 0.7670 (3)   | 0.0762 (15)  | 0.50 |
| H21S | 0.5678       | 0.1498       | 0.7565       | 0.114*       | 0.50 |
| H22S | 0.5104       | 0.0738       | 0.7652       | 0.114*       | 0.50 |
| C3S  | 0.4797 (3)   | 0.2050 (3)   | 0.6906 (4)   | 0.0720 (16)  | 0.50 |
| H31S | 0.5012       | 0.2656       | 0.6715       | 0.108*       | 0.50 |
| H32S | 0.4648       | 0.1657       | 0.6292       | 0.108*       | 0.50 |
| C4S  | 0.4278 (2)   | 0.2296 (4)   | 0.7434 (3)   | 0.0701 (14)  | 0.50 |
| H41S | 0.4094       | 0.2944       | 0.7196       | 0.105*       | 0.50 |
| H42S | 0.3943       | 0.1786       | 0.7298       | 0.105*       | 0.50 |

| Atomic displacement parameters $(Å^2)$ |  |
|----------------------------------------|--|
|----------------------------------------|--|

|     | $U^{11}$     | U <sup>22</sup> | <i>U</i> <sup>33</sup> | $U^{12}$     | <i>U</i> <sup>13</sup> | <i>U</i> <sup>23</sup> |
|-----|--------------|-----------------|------------------------|--------------|------------------------|------------------------|
| P1  | 0.01646 (12) | 0.01632 (11)    | 0.01603 (11)           | 0.00020 (9)  | 0.00027 (8)            | -0.00027 (9)           |
| 01  | 0.0221 (4)   | 0.0220 (4)      | 0.0238 (4)             | 0.0043 (3)   | -0.0003 (3)            | 0.0014 (3)             |
| 02  | 0.0340 (5)   | 0.0338 (5)      | 0.0348 (5)             | -0.0149 (4)  | 0.0062 (4)             | -0.0057 (4)            |
| 03  | 0.0300 (4)   | 0.0246 (4)      | 0.0285 (4)             | -0.0029 (3)  | 0.0075 (3)             | 0.0020 (3)             |
| O4  | 0.0330 (5)   | 0.0477 (6)      | 0.0363 (5)             | -0.0048 (4)  | 0.0103 (4)             | -0.0206 (4)            |
| C1  | 0.0174 (4)   | 0.0189 (4)      | 0.0169 (4)             | -0.0015 (3)  | 0.0024 (3)             | -0.0020 (3)            |
| C2  | 0.0220 (5)   | 0.0203 (4)      | 0.0182 (4)             | -0.0007(4)   | 0.0032 (3)             | 0.0007 (4)             |
| C3  | 0.0260 (5)   | 0.0209 (5)      | 0.0209 (4)             | -0.0049 (4)  | 0.0050 (4)             | -0.0006 (4)            |
| C4  | 0.0196 (5)   | 0.0259 (5)      | 0.0183 (4)             | -0.0045 (4)  | 0.0052 (3)             | -0.0043 (4)            |
| C5  | 0.0176 (5)   | 0.0259 (5)      | 0.0244 (5)             | 0.0008 (4)   | 0.0021 (4)             | -0.0037 (4)            |
| C6  | 0.0201 (5)   | 0.0197 (5)      | 0.0249 (5)             | 0.0004 (4)   | 0.0015 (4)             | -0.0024 (4)            |
| C7  | 0.0223 (5)   | 0.0335 (6)      | 0.0253 (5)             | -0.0075 (4)  | 0.0059 (4)             | -0.0076 (5)            |
| C8  | 0.0164 (4)   | 0.0176 (4)      | 0.0172 (4)             | 0.0005 (3)   | 0.0021 (3)             | -0.0003 (3)            |
| C9  | 0.0196 (5)   | 0.0209 (4)      | 0.0166 (4)             | -0.0014 (4)  | 0.0014 (3)             | -0.0033 (3)            |
| C10 | 0.0193 (4)   | 0.0190 (4)      | 0.0210 (4)             | -0.0022 (4)  | 0.0035 (3)             | -0.0027 (4)            |
| C11 | 0.0202 (4)   | 0.0177 (4)      | 0.0190 (4)             | 0.0018 (3)   | 0.0049 (3)             | -0.0010 (3)            |
| C12 | 0.0251 (5)   | 0.0215 (5)      | 0.0162 (4)             | -0.0001 (4)  | 0.0017 (4)             | -0.0019 (3)            |
| C13 | 0.0208 (5)   | 0.0186 (4)      | 0.0182 (4)             | -0.0019 (4)  | 0.0008 (3)             | -0.0025 (3)            |
| C14 | 0.0263 (5)   | 0.0210 (5)      | 0.0206 (5)             | 0.0026 (4)   | 0.0076 (4)             | -0.0006 (4)            |
| C15 | 0.0177 (4)   | 0.0187 (4)      | 0.0159 (4)             | -0.0024 (3)  | 0.0012 (3)             | -0.0008 (3)            |
| C16 | 0.0242 (5)   | 0.0221 (5)      | 0.0180 (4)             | 0.0012 (4)   | 0.0012 (4)             | -0.0007 (4)            |
| C17 | 0.0242 (5)   | 0.0250 (5)      | 0.0239 (5)             | 0.0005 (4)   | 0.0037 (4)             | -0.0053 (4)            |
| C18 | 0.0229 (5)   | 0.0287 (5)      | 0.0192 (4)             | -0.0076 (4)  | 0.0053 (4)             | -0.0064 (4)            |
| C19 | 0.0231 (5)   | 0.0311 (5)      | 0.0160 (4)             | -0.0066 (4)  | 0.0009 (4)             | -0.0004 (4)            |
| C20 | 0.0197 (4)   | 0.0230 (5)      | 0.0177 (4)             | -0.0028 (4)  | -0.0001 (3)            | 0.0013 (4)             |
| C21 | 0.0289 (6)   | 0.0398 (7)      | 0.0235 (5)             | -0.0105 (5)  | 0.0086 (4)             | -0.0111 (5)            |
| O1S | 0.0330 (11)  | 0.0568 (14)     | 0.0539 (14)            | -0.0007 (10) | -0.0072 (10)           | 0.0064 (11)            |
| C1S | 0.0297 (13)  | 0.0431 (17)     | 0.0399 (16)            | -0.0004 (11) | -0.0043 (12)           | -0.0067 (14)           |
| C2S | 0.107 (5)    | 0.078 (3)       | 0.039 (2)              | 0.021 (3)    | 0.001 (2)              | -0.008 (2)             |
| C3S | 0.128 (5)    | 0.0307 (17)     | 0.046 (2)              | -0.003 (2)   | -0.022 (3)             | 0.0030 (17)            |
| C4S | 0.070 (3)    | 0.078 (3)       | 0.050 (2)              | -0.030 (2)   | -0.0275 (19)           | 0.036 (2)              |

Geometric parameters (Å, °)

| P1-01  | 1.4880 (8)  | C12—H12 | 0.9500      |
|--------|-------------|---------|-------------|
| P1—C8  | 1.8050 (10) | С13—Н13 | 0.9500      |
| P1—C1  | 1.8083 (11) | C14—H14 | 0.9500      |
| P1-C15 | 1.8129 (10) | C15—C20 | 1.3963 (14) |
| O2—C7  | 1.2099 (16) | C15—C16 | 1.4050 (15) |
| O3—C14 | 1.2107 (14) | C16—C17 | 1.3882 (15) |
| O4—C21 | 1.2078 (17) | C16—H16 | 0.9500      |
| C1—C2  | 1.3975 (15) | C17—C18 | 1.3984 (16) |
| C1—C6  | 1.4009 (15) | С17—Н17 | 0.9500      |
| C2—C3  | 1.3905 (15) | C18—C19 | 1.3881 (17) |
| С2—Н2  | 0.9500      | C18—C21 | 1.4830 (16) |
| C3—C4  | 1.3968 (16) | C19—C20 | 1.3944 (15) |
| С3—Н3  | 0.9500      | С19—Н19 | 0.9500      |
|        |             |         |             |

| C4—C5     | 1.3924 (16) | С20—Н20       | 0.9500      |
|-----------|-------------|---------------|-------------|
| C4—C7     | 1.4851 (15) | C21—H21       | 0.9500      |
| C5—C6     | 1.3895 (15) | O1S—C4S       | 1.418 (4)   |
| С5—Н5     | 0.9500      | O1S—C1S       | 1.422 (4)   |
| С6—Н6     | 0.9500      | C1S—C2S       | 1.519 (5)   |
| С7—Н7     | 0.9500      | C1S—H11S      | 0.9900      |
| C8—C13    | 1.3981 (14) | C1S—H12S      | 0.9900      |
| C8—C9     | 1.4049 (14) | C2S—C3S       | 1.510 (6)   |
| C9—C10    | 1.3873 (15) | C2S—H21S      | 0.9900      |
| С9—Н9     | 0.9500      | C2S—H22S      | 0.9900      |
| C10—C11   | 1.4013 (14) | C3S—C4S       | 1.446 (8)   |
| C10—H10   | 0.9500      | C3S—H31S      | 0.9900      |
| C11—C12   | 1.3909 (15) | C3S—H32S      | 0.9900      |
| C11—C14   | 1.4839 (15) | C4S—H41S      | 0.9900      |
| C12—C13   | 1.3904 (15) | C4S—H42S      | 0.9900      |
|           | ( )         |               |             |
| O1—P1—C8  | 113.74 (5)  | C11—C14—H14   | 117.6       |
| O1—P1—C1  | 112.73 (5)  | C20-C15-C16   | 120.01 (10) |
| C8—P1—C1  | 106.20 (5)  | C20—C15—P1    | 116.88 (8)  |
| O1—P1—C15 | 111.61 (5)  | C16—C15—P1    | 123.09 (8)  |
| C8—P1—C15 | 106.89 (5)  | C17—C16—C15   | 119.67 (10) |
| C1—P1—C15 | 105.07 (5)  | C17—C16—H16   | 120.2       |
| C2—C1—C6  | 119.95 (10) | C15—C16—H16   | 120.2       |
| C2—C1—P1  | 118.12 (8)  | C16—C17—C18   | 120.06 (11) |
| C6—C1—P1  | 121.87 (8)  | C16—C17—H17   | 120.0       |
| C3—C2—C1  | 120.11 (10) | C18—C17—H17   | 120.0       |
| С3—С2—Н2  | 119.9       | C19—C18—C17   | 120.31 (10) |
| C1—C2—H2  | 119.9       | C19—C18—C21   | 119.37 (11) |
| C2—C3—C4  | 119.68 (10) | C17—C18—C21   | 120.29 (11) |
| С2—С3—Н3  | 120.2       | C18—C19—C20   | 119.97 (10) |
| С4—С3—Н3  | 120.2       | C18—C19—H19   | 120.0       |
| C5—C4—C3  | 120.36 (10) | С20—С19—Н19   | 120.0       |
| C5—C4—C7  | 118.73 (11) | C19—C20—C15   | 119.93 (10) |
| C3—C4—C7  | 120.91 (10) | C19—C20—H20   | 120.0       |
| C6—C5—C4  | 120.07 (10) | C15—C20—H20   | 120.0       |
| С6—С5—Н5  | 120.0       | O4—C21—C18    | 124.90 (12) |
| С4—С5—Н5  | 120.0       | O4—C21—H21    | 117.6       |
| C5—C6—C1  | 119.79 (10) | C18—C21—H21   | 117.6       |
| С5—С6—Н6  | 120.1       | C4S—O1S—C1S   | 107.6 (3)   |
| С1—С6—Н6  | 120.1       | O1S—C1S—C2S   | 107.0 (3)   |
| O2—C7—C4  | 124.11 (12) | O1S—C1S—H11S  | 110.3       |
| O2—C7—H7  | 117.9       | C2S-C1S-H11S  | 110.3       |
| С4—С7—Н7  | 117.9       | O1S—C1S—H12S  | 110.3       |
| C13—C8—C9 | 120.03 (9)  | C2S-C1S-H12S  | 110.3       |
| C13—C8—P1 | 120.75 (8)  | H11S—C1S—H12S | 108.6       |
| C9—C8—P1  | 119.01 (7)  | C3S—C2S—C1S   | 101.2 (4)   |
| C10—C9—C8 | 120.31 (9)  | C3S—C2S—H21S  | 111.5       |
| С10—С9—Н9 | 119.8       | C1S—C2S—H21S  | 111.5       |
| С8—С9—Н9  | 119.8       | C3S—C2S—H22S  | 111.5       |

| C9—C10—C11      | 119.38 (10)  | C1S—C2S—H22S    | 111.5        |
|-----------------|--------------|-----------------|--------------|
| C9—C10—H10      | 120.3        | H21S-C2S-H22S   | 109.4        |
| C11—C10—H10     | 120.3        | C4S—C3S—C2S     | 103.1 (4)    |
| C12—C11—C10     | 120.30 (10)  | C4S-C3S-H31S    | 111.2        |
| C12—C11—C14     | 118.26 (9)   | C2S-C3S-H31S    | 111.2        |
| C10-C11-C14     | 121.44 (10)  | C4S—C3S—H32S    | 111.2        |
| C13—C12—C11     | 120.57 (9)   | C2S—C3S—H32S    | 111.2        |
| C13—C12—H12     | 119.7        | H31S—C3S—H32S   | 109.1        |
| C11—C12—H12     | 119.7        | O1S—C4S—C3S     | 109.3 (3)    |
| C12—C13—C8      | 119.39 (10)  | O1S—C4S—H41S    | 109.8        |
| C12—C13—H13     | 120.3        | C3S—C4S—H41S    | 109.8        |
| C8—C13—H13      | 120.3        | O1S—C4S—H42S    | 109.8        |
| O3—C14—C11      | 124.87 (10)  | C3S—C4S—H42S    | 109.8        |
| O3—C14—H14      | 117.6        | H41S—C4S—H42S   | 108.3        |
|                 |              |                 |              |
| O1—P1—C1—C2     | -8.16 (10)   | C14—C11—C12—C13 | 178.05 (10)  |
| C8—P1—C1—C2     | -133.35 (8)  | C11—C12—C13—C8  | 0.44 (16)    |
| C15—P1—C1—C2    | 113.60 (9)   | C9—C8—C13—C12   | 1.05 (16)    |
| O1—P1—C1—C6     | 174.63 (8)   | P1-C8-C13-C12   | 175.71 (8)   |
| C8—P1—C1—C6     | 49.43 (10)   | C12—C11—C14—O3  | 179.01 (11)  |
| C15—P1—C1—C6    | -63.62 (10)  | C10-C11-C14-O3  | -1.64 (17)   |
| C6—C1—C2—C3     | 1.99 (16)    | O1—P1—C15—C20   | 11.07 (10)   |
| P1-C1-C2-C3     | -175.28 (8)  | C8—P1—C15—C20   | 136.02 (8)   |
| C1—C2—C3—C4     | -0.51 (15)   | C1—P1—C15—C20   | -111.41 (9)  |
| C2—C3—C4—C5     | -1.42 (16)   | O1—P1—C15—C16   | -170.73 (9)  |
| C2—C3—C4—C7     | 178.15 (10)  | C8—P1—C15—C16   | -45.78 (10)  |
| C3—C4—C5—C6     | 1.87 (16)    | C1—P1—C15—C16   | 66.79 (10)   |
| C7—C4—C5—C6     | -177.70 (10) | C20-C15-C16-C17 | 0.10 (16)    |
| C4-C5-C6-C1     | -0.39 (16)   | P1-C15-C16-C17  | -178.04 (8)  |
| C2-C1-C6-C5     | -1.54 (16)   | C15—C16—C17—C18 | -1.91 (17)   |
| P1-C1-C6-C5     | 175.63 (8)   | C16—C17—C18—C19 | 2.16 (17)    |
| C5—C4—C7—O2     | 175.74 (11)  | C16—C17—C18—C21 | -175.80 (11) |
| C3—C4—C7—O2     | -3.83 (17)   | C17—C18—C19—C20 | -0.57 (17)   |
| O1—P1—C8—C13    | -97.60 (9)   | C21—C18—C19—C20 | 177.40 (10)  |
| C1—P1—C8—C13    | 26.97 (10)   | C18—C19—C20—C15 | -1.24 (16)   |
| C15—P1—C8—C13   | 138.76 (9)   | C16—C15—C20—C19 | 1.48 (16)    |
| O1—P1—C8—C9     | 77.11 (9)    | P1-C15-C20-C19  | 179.73 (8)   |
| C1—P1—C8—C9     | -158.32 (8)  | C19—C18—C21—O4  | 177.78 (12)  |
| C15—P1—C8—C9    | -46.53 (9)   | C17—C18—C21—O4  | -4.24 (19)   |
| C13—C8—C9—C10   | -1.68 (16)   | C4S—O1S—C1S—C2S | -11.3 (4)    |
| P1C8C9C10       | -176.43 (8)  | O1S—C1S—C2S—C3S | 28.0 (4)     |
| C8—C9—C10—C11   | 0.82 (16)    | C1S—C2S—C3S—C4S | -33.6 (5)    |
| C9—C10—C11—C12  | 0.67 (16)    | C1S—O1S—C4S—C3S | -11.4 (4)    |
| C9—C10—C11—C14  | -178.66 (10) | C2S—C3S—C4S—O1S | 29.0 (5)     |
| C10-C11-C12-C13 | -1.31 (16)   |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A               | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------------------|-------------|-------|-------------|-------------------------|
| C7—H7…O3 <sup>i</sup> | 0.95        | 2.56  | 3.4303 (16) | 152                     |

|                                                      |                       |      | supplementary materials |     |  |
|------------------------------------------------------|-----------------------|------|-------------------------|-----|--|
| C14—H14…O1 <sup>ii</sup>                             | 0.95                  | 2.50 | 3.1575 (14)             | 127 |  |
| Symmetry codes: (i) $x+1/2$ , $y+1/2$ , $z$ ; (ii) - | -x+1/2, -y+1/2, -z+1. |      |                         |     |  |