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Introduction
Over thousands of years, humans have selectively bred domes-
ticated animals for different uses and environments, resulting 
in a wide diversity of morphology and behavior. In fact, for 
some traits, the variation observed in domesticated animals 
is much greater than that found in laboratory or wild species. 
The striking diversity observed among individuals within 
domesticated species provides advantages for genetic studies 
of traits with direct relevance to biomedical research as well 
as traits with economic and cultural value. For example, some 
traits, such as herding behavior in some varieties of dogs or 
a comfortable riding gait in a gated horse, facilitate specific 
animal uses. Other traits, such as milk or wool production, 
represent an increasingly salient avenue of study as the global 
demand for food and fiber increases. Some adaptations may 
even be shared between humans and domesticated animals, 
such as altered metabolism to facilitate living in extreme 
environments. A better understanding of the underlying bio-
logical mechanisms associated with these traits will help fur-
ther selection for increased productivity, utility, and health. 
Indeed, the health of domesticated animal populations is 
closely tied to that of our own societies and the environments 
that we share with them.1 Domesticated animals are threat-
ened by zoonotic diseases that also threaten us2 and have risk 
factors for hereditary diseases that often closely mimic our 

own.3–5 Many of these diseases represent natural models for 
the corresponding human conditions, and clinical studies in 
domesticated animals receiving advanced veterinary care may 
facilitate the development of innovative treatment strategies 
also of use in human medicine.3,6 Progress in understanding 
human inherited diseases, the genetic architecture of complex 
phenotypes, and development of treatments against infectious 
or inherited diseases can, therefore, be significantly advanced 
through studies of similar traits and conditions in domesti-
cated animals.

The history and population structure of domesticated 
species make them well suited for genetic studies.7,8 Selec-
tion of domesticated strains for different morphological and 
other characteristics has led to the formation of “breeds” that 
are maintained in complete or partial reproductive isolation 
from each other. This practice of closed breeding generally 
results in reduced effective population size (ie, the number of 
individuals in a population who contribute genetically to the 
next generation) within breeds. This reduction is due to three 
effects: small founding populations, population bottlenecks, 
and the popular sire effect.9,10 As a result of closed breeding 
and intense selection for specific traits, individuals within 
a breed commonly share long stretches of homozygosity 
at genomic loci related to the traits under selection.7,11,12 
Although the haplotype associated with a specific trait can 

Transcriptome Analysis in Domesticated Species:  
Challenges and Strategies

Jessica P. Hekman, Jennifer L. Johnson and Anna V. Kukekova
Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA.

Supplementary Issue: Current Developments in Domestic Animal Bioinformatics

Abstract: Domesticated species occupy a special place in the human world due to their economic and cultural value. In the era of genomic research, 
domesticated species provide unique advantages for investigation of diseases and complex phenotypes. RNA sequencing, or RNA-seq, has recently emerged 
as a new approach for studying transcriptional activity of the whole genome, changing the focus from individual genes to gene networks. RNA-seq analysis 
in domesticated species may complement genome-wide association studies of complex traits with economic importance or direct relevance to biomedical 
research. However, RNA-seq studies are more challenging in domesticated species than in model organisms. These challenges are at least in part associ-
ated with the lack of quality genome assemblies for some domesticated species and the absence of genome assemblies for others. In this review, we discuss 
strategies for analyzing RNA-seq data, focusing particularly on questions and examples relevant to domesticated species.

Keywords: RNA-seq, transcriptomics, NGS, domestication

SUPpLEMENT: Current Developments in Domestic Animal Bioinformatics

Citation: Hekman et al. Transcriptome Analysis in Domesticated Species: Challenges and 
Strategies. Bioinformatics and Biology Insights 2015:9(S4) 21–31 doi: 10.4137/BBI.S29334.

TYPE: Review

Received: October 21, 2015. ReSubmitted: December 21, 2015. Accepted for 
publication: December 26, 2015.

Academic editor: J. T. Efird, Associate Editor

Peer Review: Six peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 1605 words, excluding any confidential comments to the academic editor.

Funding: The project was supported by USDA Federal Hatch Project 538922, AKCCHF 
grant 02193-A, and FCP grant 84–74. Jessica Hekman is supported by the Jonathan 
Baldwin Turner Fellowship, College of ACES, University of Illinois at Urbana-Champaign. 
The authors confirm that the funders had no influence over the study design, content of 
the article, or selection of this journal.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: hekman2@illinois.edu

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is 
an open-access article distributed under the terms of the Creative Commons CC-BY-NC 
3.0 License.

�Paper subject to independent expert blind peer review. All editorial decisions made 
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of 
agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://www.la-press.com
http://dx.doi.org/10.4137/BBI.S29334
mailto:hekman2@illinois.edu
http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Hekman et al

22 Bioinformatics and Biology Insights 2015:9(S4)

be relatively long within a breed, a comparison of haplotypes 
across breeds characterized by the same phenotype allows 
a reduction of the critical interval and thereby facilitates 
identification of the genes under selection.7,13,14 For example, 
small size in dogs is linked to a specific haplotype for IGF1, 
which is shared by a majority of toy dog breeds.15,16 Closed 
breeding also leads to accumulation of disease-associated 
mutations, as has been demonstrated in dogs,17 cattle,18–20 
and other species.21–25 The identification of disease-associated  
genes in domesticated animals as compared to human pop-
ulations is facilitated by domesticated species population 
structures and access to samples from many individuals in 
a pedigree.11,26,27 For example, limited within-breed genetic 
diversity in dogs and the elevated occurrence of particular 
cancers in particular breeds facilitates the study of cancer 
susceptibility loci in that species.28,29

With the sequencing of the dog, cow, and pig geno
mes,7,30,31 genome-wide association studies (GWAS) have 
become a common approach for the identification of genomic 
regions implicated in traits of interest in domesticated animals. 
This approach tests the probability of association of genetic 
markers with a trait; in domesticated animals, GWAS have 
commonly found a relatively small number of loci for such com-
plex phenotypes as height, skull shape, or coat quality.4,8,32,33 
The fact that variation in these traits is explained by a small 
number of loci in these species is likely due to intense selective 
pressure.34–36 As a result, many GWAS in domesticated spe-
cies have successfully identified causal genes both for Mende-
lian traits and for complex traits controlled by loci with large 
effect size (for a review, see Schoenebeck and Ostrander4 and  
Andersson.8) However, not all traits are amenable to inves-
tigation by this technique. Although the longer stretches of 
homozygosity common to breeds result in relatively large tar-
get regions that provide a strong signal, such large loci may 
contain dozens of genes and therefore may provide poor reso-
lution for the identification of causative genes lying within 
them. Additionally, study design may be complicated by a 
lack of knowledge about the underlying genotype of a trait 
shared by multiple breeds, which may be identical by descent 
or different due to distinct causal mutations. Finally, not 
all traits in domesticated animals are controlled by a small 
number of genes of large effect; some complex traits, such as 
behavior, weight, meat quality, milk production, and some 
diseases, such as hip dysplasia and cancer, are controlled by 
many genes of small effect.37–40 As has been demonstrated by 
GWAS in humans, loci of small effect may prove particu-
larly challenging in the elucidation of molecular mechanisms, 
as they may require large sample sizes to achieve statistical 
significance.41,42

When the identified regions of interest are large, when 
many loci of small effect are implicated, or when the function 
of the discovered genes is unknown, GWAS alone will not 
be sufficient to elucidate genetic mechanisms associated with 
the phenotype under investigation. An alternative approach 

employs the analysis of gene expression differences to pinpoint 
changes in pathways rather than in specific genes. For example, 
gene expression studies have proven particularly well suited to 
investigate genomic changes in neoplastic cells, illuminating 
the molecular distinctions between different types of breast 
cancer43 and contributing, along with copy number variation 
analysis, to the identification of oncogenes.44

Microarray gene expression studies pioneered the use 
of genome-wide techniques in the hunt for sets of genes or 
gene networks implicated in complex phenotypes in domesti-
cated species.45–47 However, microarray technology is limited 
by its dependence on the use of known probes, requiring a 
species-specific chip for most accurate results. Cross-species 
microarray use may result in decreased specificity of hybridi
zation and can therefore be used only for closely related 
species, preferably ,10  million years divergent from each 
other.45,48 Moreover, even with a chip designed for the spe-
cies under study, the dependence of microarray technology on 
known probes implies that transcripts that do not correspond 
to known sequences will not be detected, and novel isoforms 
will not be distinguished from known splice forms.

The advent of next-generation sequencing (NGS) revolu-
tionized gene expression studies by obviating the need for pre-
existing probes for transcripts. RNA sequencing, or RNA-seq, 
uses the high-throughput reads produced by NGS to represent 
the entire transcriptome: in other words, all transcripts pro-
duced in a tissue sample including previously uncharacterized 
transcribed sequences and novel isoforms. RNA-seq is used 
for a variety of applications, most commonly to discover lists 
of genes that are differentially expressed between experimen-
tal groups, such as samples from different tissues,28,49 samples 
from different treatment groups,50,51 or samples from different 
populations.52,53 To identify gene networks associated with 
inherited diseases or other genetic traits, individuals can be 
grouped by disease status (affected versus unaffected) or by 
different haplotypes at the mapped loci.28,52,54–56 Differential 
gene expression may complement association studies when 
used to provide differential expression information about genes 
in the genomic regions of interest identified by GWAS.28,29  
In addition to gene expression differences, some RNA-seq 
studies may seek differences in isoform expression57,58 and 
allele-specific gene expression.59,60 Concurrently with the 
analysis of gene expression, RNA-seq data may be used for 
calling variants such as single-nucleotide polymorphisms 
(SNPs) or simple sequence repeats for subsequent use in marker 
studies.61,62 This use is well suited to nonmodel species with 
limited genomic resources and to call variants that are novel 
for the species or that are enriched in the population under 
study. Finally, RNA-seq is used to improve genomic annota-
tions through the identification of novel transcripts.63–65

RNA-seq has a particular advantage in nonmodel spe-
cies, specifically those less common domesticated species for 
which species-specific chips for microarray studies are lacking.  
However, despite the promise of RNA-seq technology, 
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performing differential gene expression experiments with 
RNA-seq may be challenging in domesticated species with 
low-quality genomes or a lack of high-quality reference 
annotation. In this review, we discuss strategies for perform-
ing differential expression analysis in nonmodel species, 
focusing particularly on the challenges common to studies in  
domestic species.

RNA-Seq Experimental Design
Number of replicates. One of the first steps in the exper-

imental design of an RNA-seq study is the selection of the 
optimum number of biological replicates. At least a few rep-
licates are necessary in order to characterize biological varia-
tion and separate it from technical variation,66 and additional 
replicates provide additional benefits. Specifically, increas-
ing the number of replicates in an RNA-seq study results 
in increased power available for differential gene expression 
analysis. When a trade-off must be made between the num-
ber of replicates and the depth of sequencing, replicates may 
be more instrumental than sequencing depth in increasing 
the power to detect differential expression.67,68 Additionally, 
studies employing samples from outbred domesticated ani-
mals require a larger number of replicates than those employ-
ing a group with reduced genetic diversity, such as inbred 
mouse strains.69

Sample preparation. A variety of commercial RNA 
extraction kits are available for RNA isolation; though the 
kits generally extract similar amounts of RNA, they differ in 
the quality of RNA extracted. Therefore, the choice of kit may 
affect study results.70 After RNA extraction, messenger RNA 
(mRNA) is isolated using either the polyA capture or rRNA 
depletion protocol. The polyA capture protocol results in a bias 
to the 3’ end of transcripts, while the rRNA depletion protocol 
results in more variation in depth of coverage throughout the 
length of transcripts.71 Decreased depth on the 5’ end of tran-
scripts sequenced from libraries built with the polyA capture 
protocol may result in decreased likelihood of identifying dif-
ferential exon expression on the 5’ end of transcripts, decreased 
depth of sequencing of long genes compared to short genes, 
and poor coverage of 5’ untranslated regions, particularly 
important in the use of RNA-seq for improvement of tran-
scriptome annotation. The rRNA depletion protocol depends 
on known ribosomal RNA sequences, and the probes have not 
been tested on all species. For example, while the Ribo-Zero 
Kit (Illumina) is predicted to work on all mammalian species 
due to probe homology, it has only been tested on human, 
mouse, rat, and dog, as stated in its manual. Its efficiency on 
avian genomes such as chicken and turkey is also unknown. 
After mRNA isolation, cDNA libraries are constructed. 
Libraries may be nonstrand-specific, or may support strand-
specific RNA reads, which allow transcripts to be identified 
as sense or antisense. Strand-specific reads have been used in 
transcriptome assembly72,73 and may facilitate differentiation 
of reads from adjacent or overlapping genes transcribed from 

opposite strands.74 Additionally, Illumina sequencers support 
either single- or paired-end read sequencing. Paired-end 
sequencing may be more expensive, but increases the percent-
age of reads successfully mapped to the genome. Its use is rec-
ommended for the detection of distinct isoforms; however, its 
increase in the mapping of unique reads may be only marginal, 
so use of paired-end reads is not recommended unless maxi-
mizing unique read mapping is critical to the project.69

Sequencing strategy. After the construction of the 
library, transcripts are typically sequenced on an NGS plat-
form; currently, Illumina sequencers are the most common. 
Sequencing considerations include determining the appro
priate read length and the number of lanes (ie, sequencing 
depth). Illumina HiSeq 2500 sequencers produce reads of 
50–150 bp in length; they employ flow cells with eight lanes, 
and multiple samples may be run on a single lane. To differen-
tiate reads from different samples after sequencing on the same 
lane, a unique bar code may be attached to each sample dur-
ing library preparation. The appropriate number of lanes must 
be determined by taking into account the necessary depth of 
sequencing; for example, studies that rely on the detection of 
rare transcripts or polymorphisms will require greater depth.75 
Artifactual variation per lane may contribute technical varia-
tion to a study, but this can be avoided by the use of multiplex-
ing, eg, ensuring that each lane contains a balanced number of 
samples from each treatment group.66

Longer reads result in an increased percentage of mapped 
transcripts and improved handling of splice junctions during 
alignment.76 Longer reads may therefore prove particularly 
useful for projects using species without an existing reference 
genome sequence that require de novo transcriptome assembly 
or identification of alternative transcripts; otherwise, a 50–bp 
read length should be sufficient.69 In the past, 454 pyrose-
quencing (454 Life Sciences) has been used to produce RNA-
seq reads between 100 and 500 bp in length.77–86 However, 
this technology has proven prohibitively expensive and is cur-
rently not widely available. Emerging platforms such as PacBio 
(Pacific Biosciences), which provide longer read lengths, may 
prove popular in the future, perhaps even providing the ability 
to sequence entire transcripts in a single read.

RNA-Seq Bioinformatic Workflow
A typical bioinformatic workf low using a reference genome 
and aimed at the identif ication of differentially expressed 
genes is described below and summarized in Table 1. The 
workf low begins with raw reads, which are aligned to a 
reference genome. Gene counts are then quantif ied from 
the alignment f iles and used in differential gene expres-
sion analysis.

Read Filtering. Post sequencing, several filtering steps 
are recommended in order to produce a high-quality data-
set. Common tools for removal of low-quality sequences as 
well as barcodes and platform-specific adapters added during 
library construction are the fastx-toolkit,87 FLEXBAR,88 and 
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Trimmomatic.89 These tools operate on FASTQ-format files 
and accept command-line parameters to specify the mini-
mum length or Phred score below which a read should be 
discarded. Ribosomal and mitochondrial sequences may sub-
sequently be removed, although these types of RNA should 
have been depleted in large part during library construction.90 
Removal of mitochondrial or ribosomal reads may be accom-
plished through alignment of all reads to mitochondrial and 
ribosomal sequences from related species, obtained, for exam-
ple, from National Center for Biotechnology Information’s 
(NCBI’s) Reference Sequence collection (RefSeq) database 
(http://www.ncbi.nlm.nih.gov/refseq/). Unaligned reads kept 
for further processing will then be depleted of mitochondrial 
and ribosomal sequences. Although the exact percentage of 
removed reads will depend on the details of the chosen pipe-
line, in our laboratory, following this protocol in three sepa-
rate tissues sequenced in different runs resulted in removal of 
5.7%–13.3% of reads (unpublished data).

Alignment. After filtering, the RNA reads are typi-
cally aligned to a reference genome. This mapping process is 
complicated by the presence of splice junctions in the reads, 
originating from post processing of mRNA. Two approaches 
may be used to reduce the number of reads mismapped as a 
result of splice junctions. First, a splice-junction-aware aligner 
should always be used for mapping RNA reads, as alignment 
of this type of reads with a nonsplice-aware aligner such as 
Bowtie2 or BWA results in a higher percentage of mapping 
errors.91 TopHat292 and STAR93 are two splice-aware aligners 
that are widely used for RNA read mapping; STAR operates 
at greater speeds than other aligners but has a correspond-
ingly larger memory footprint.69 These aligners have similar 
mapping performance with a low median error rate.91 Second, 
annotation of splice junction locations in the genome should 
be provided to the aligner when available. Typically, spe-
cies annotations are archived at Ensembl (ftp://ftp.ensembl.
org/), RefSeq (ftp://ftp.ncbi.nlm.nih.gov), and UCSC (http://
genome.ucsc.edu/). Selection of an annotation with a broader 

gene coverage will result in an increased percentage of reads 
mapped to genes. In human, the Ensembl annotation pro-
vides the broadest gene coverage and, as a result, corresponds 
to the highest gene mapping rates.94 Ensembl also provides 
increased coverage of dog, including intron and untranslated 
regions (UTR) annotation, which is not available through the 
other two annotations (personal observation). The appropriate 
choice of annotation may vary from species to species, but, in 
general, the annotation with the broadest coverage should be 
selected to maximize mapping rates.

Alignment of reads to the genome is further complicated 
by reads that map to complementary sequences at multiple 
locations in the genome. Ambiguous mapping may be due 
to conserved domains of paralogous genes, pseudogenes, and 
repeats.76 Such reads are particularly problematic in gene dif-
ferential expression studies, as some gene count quantifica-
tion tools discard them.91 A paired-end sequencing approach 
results in an increased percentage of uniquely mapped reads, 
though this improvement may be minimal.69

Visualization of aligned reads offers the opportunity to 
evaluate the dataset before continuing. Such evaluation can pro-
vide opportunities to better understand problems such as cover-
age bias, intronic or intergenic reads, or overlapping genes. Two 
such visualizers are GenomeBrowse (Golden Helix) and IGV 
(Broad Institute). Although exonic reads make up the prepon-
derance of RNA-seq datasets, introns, untranslated regions, and 
intergenic regions are often retained, albeit at lower depth. These 
nonexonic regions may not be artifactual but may be a result of 
pervasive transcription of the genome.95 Reads that align to 
intergenic regions may also represent unannotated exons96 or 
long noncoding RNA (lncRNA) transcripts. At least 15,512 
lncRNAs have been identified in human97 and 7,224 in dog.65

Differential gene expression analysis. Gene expression 
must be quantified in reads before differences in expression 
can be identified. An assessment of quantification tools shows 
that while results from different tools are often highly corre-
lated, results from a subset of genes may display differences as 
great as 10-fold. Identification of the quantification tool with 
the greatest accuracy is difficult, as accurate counts may not be 
known for comparison. However, in a comparison of differ-
ent pipelines composed of a variety of quantification tools and 
aligners, pipelines including the HTSeq-count quantification 
tool numbered among those with the best performance.91

Outlier samples may influence differential expression 
results, and should be identified and removed prior to differ-
ential gene analysis. George et  al.98 describe a leave-one-out 
approach for the detection of outliers. Alternatively, some dif-
ferential expression analysis tools, such as DESeq2,99 perform 
outlier detection and removal automatically. Another differ-
ential expression tool, edgeR,100 incorporates outlier detec-
tion into its estimate of genewise dispersion when the robust =  
TRUE parameter is specified in the estimateDisp() method.101

Differential gene expression analysis tools are confronted 
with normalization difficulties that are inherent in the analysis 

Table 1. RNA-seq bioinformatic workflow for calling differentially 
expressed genes.

Step Tools Challenges

1. �Remove low-quality  
reads, barcodes, and  
adapters

Fastx-toolkit, 
FLEXBAR, or 
Trimmomatic

Follow recommended  
protocol

2. �Remove  
mitochondrial  
and ribosomal  
sequences

Bowtie2 Sequences from the  
same or related  
species should be  
used

3. �Align to reference  
genome

TopHat2 Incomplete or  
nonexistent  
reference genome

4. �Call differentially  
expressed genes

DESeq2,  
edgeR, or  
limma

Incomplete or  
nonexistent reference  
genome annotation
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of RNA-seq reads, namely, bias due to different depths of 
sequencing per sample or to gene length.75 Additionally, these 
tools must contend with the small replicate numbers that are 
typical of RNA-seq experiments, often as low as 2–3 repli-
cates.99 A comparison of 11 different methods for differential 
expression analysis showed that while some widely used meth-
ods have similar accuracy, the sets of differentially expressed 
genes found by different methods vary significantly.102 There-
fore, analysis of a single dataset by several methods may provide 
increased sensitivity, by considering genes identified by any 
tool as differentially expressed, as well as increased specificity, 
by considering genes identified only by multiple tools as differ-
entially expressed. The tools DESeq2, edgeR, and limma have 
been found to have superior specificity and sensitivity67 and 
are widely used. To ensure that the findings from the RNA-
seq analysis are not artifactual, it is recommended that real-
time quantitative polymerase chain reaction (RT-qPCR) be 
used to evaluate a representative set of differentially expressed 
genes.50,51,103 The use of RT-qPCR, a well-established method 
for the evaluation of gene expression, provides technical vali-
dation of the RNA-seq procedure and data analysis used for 
the identification of differentially expressed genes.

Although differential expression has conventionally 
been performed using the gene or the exon as the base unit, 
it may alternatively be performed at the level of the nucle-
otide or region of sequential nucleotides. DER Finder104 
analyzes differential expression by nucleotide, and there-
fore does not require annotation of gene locations. It does 
require a sequenced genome, which may be a draft assem-
bly. This tool may, therefore, prove useful in species lacking 
genome annotation. It may also be used concurrently with 
the pipeline described above to provide additional informa-
tion about expression differences at the base, rather than the 
gene, level.

Analysis of differentially expressed gene lists. Typi-
cal differential expression analyses produce lists of hundreds 
of differentially expressed genes, requiring further analysis 
to construct a high-level overview of changes between the 
groups being compared. A commercial package, Ingenuity  
Pathway Analysis (QIAGEN), provides a graphical user inter-
face to assist in discovery of pathways enriched in differen-
tially expressed genes, generates publication-quality figures, 
and offers links to peer-reviewed articles about differen-
tially expressed genes and related pathways. For studies with 
smaller budgets, the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID)105 offers a freely available 
alternative with a web-based interface. DAVID associates dif-
ferentially expressed genes with other genes that have similar 
functions. While DAVID does not provide figure generation, 
visualization may be accomplished by use of the freely avail-
able tool Cytoscape.106,107 This tool, which will run on OS X, 
Windows, or Linux, provides a graphical interface to allow  
the user to specify how to visualize a network of genes. Finally, 
weighted gene coexpression network analysis (WGCNA)  

may be used to identify clusters of genes with highly corre-
lated coexpression patterns. This tool identifies networks of 
genes that are perturbed together, thereby suggesting biologi-
cal pathways affected by the model in question.108

SNP detection. In addition to their use in gene expres-
sion studies, RNA-seq reads may be used to call SNPs. The 
Genome Analysis ToolKit (Broad Institute) provides a pipe-
line for calling SNPs specifically in RNA data. Alternatively, 
the SAMtools and BCFtools toolkits may be used in con-
junction to call SNPs.109,110 Both pipelines require alignment 
files (BAM) as input rather than raw reads (FASTQ ). The 
identified SNPs will for the most part be in exonic or UTR; 
calling of intronic or intergenic SNPs requires genomic, not 
transcriptomic, data.

Computing resources. Alignment and SNP calling 
processes may be computationally expensive and are best per-
formed on a high-performance server or cluster rather than a 
desktop computer. An eight-core cluster with 32 GB of RAM 
has been recommended as the minimum hardware require-
ment for a typical alignment process. However, a desktop com-
puter is generally sufficient for calling differentially expressed 
genes.111 Additionally, file sizes for reads from an individual 
sample aligned to a genome may be expected to reach ∼10 GB 
in size, depending on the read depth (unpublished data).

RNA-Seq in Domesticated Species
Challenges of RNA-seq in domesticated species. The 

RNA-seq analysis pipeline described above has been success-
fully employed in species with “finished” reference genomes, 
such as human, mouse, and fruit fly, to identify genes that are 
differentially expressed between different samples.51,63,112 These 
genomes were constructed using Sanger sequencing,113–115  
resulting in high-quality assemblies with low scaffold num-
bers, high scaffold N50 lengths, and low total assembly gap 
lengths. These widely used reference genomes are also exten-
sively annotated, making available a large number of tran-
scripts for gene expression studies, with high percentages of 
curated transcripts. Curated transcripts have been manually 
reviewed to remove sequence errors and ensure association 
with the correct genomic locus.116

A small number of the genomes of domesticated spe-
cies were also constructed entirely or in part using Sanger 
sequencing, including dog,7 chicken,117 cow,30 and pig.31 The 
assemblies for these species are of variable quality compared to 
human and mouse. All four have a larger number of scaffolds, 
and chicken, pig, and cow have a significantly shorter N50 
length (Table 2). Annotation of these widely used domesti-
cated animal genomes is also less complete than in human 
or mouse, with fewer total transcripts in RefSeq and a much 
smaller percentage of manually curated transcripts (Table 3). 
As a result, gene expression pipelines in these species will have 
the use of many fewer isoforms and may encounter a higher 
percentage of transcripts with sequence errors. Moreover, 
annotation of gene and exon locations may be inadequate to 

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Hekman et al

26 Bioinformatics and Biology Insights 2015:9(S4)

identify important genes even in relatively well-annotated 
genomes.65 For example, the POMC gene is not present in 
the dog RefSeq database (verified by a search on the UCSC 
Genome Browser, October 20, 2015). This gene encodes 
pre-pro-opiomelanocortin, which is cleaved to produce 
β-endorphin and met-enkephalin, which are endogenous opi-
oid peptides; a-melanocyte-stimulating hormone, which is 
important in feeding behavior and energy homeostasis; and 
adrenocorticotropic hormone, which is a component of the 
hypothalamic–pituitary–adrenal axis. POMC ’s function is 
therefore well characterized and this gene may be expected 
to be of interest in various studies. Incomplete annotation is 
a significant limitation for an RNA-seq pipeline, as existing 
differential expression tools rely on accurate annotation.104

Although domesticated animal genomes constructed 
using Sanger sequencing have some limitations, they are of 
relatively high quality. However, in the face of the plummet-
ing cost of NGS, the number of unfinished “draft” genomes 
has increased.118,119 Many genomes of less studied domesti-
cated species were constructed entirely with NGS, such as 

Illumina or 454, as for example turkey,120 yak,121 and ferret.122 
NGS uses libraries with smaller insertions than does Sanger 
sequencing, usually not longer than 10–20 kb; as a trade-off, 
it produces shorter scaffolds. These shorter, sometimes misas-
sembled scaffolds result in fragmented genes and a significant 
number of missing coding exons.119,123 The assemblies for the 
reference genomes of turkey, yak, and ferret, for example, have 
many more scaffolds than do the human and mouse assem-
blies (Table 2). Annotation of these newer genomes may also 
lag behind that of more widely studied species, as is evidenced 
by the lower number of total transcripts and dramatically 
lower number of curated transcripts in RefSeq for turkey, yak, 
and ferret (Table 3). Assembly errors in draft genomes such as 
these have been shown to result in misannotation, particularly 
by automated annotators; moreover, the completeness of draft 
genome annotations is difficult to assess.124

Overall, domestic animal reference sequences have a 
wide range of qualities. Some may prove to have assemblies 
and annotations that are complete enough to support the 
described pipeline as a sole approach to RNA-seq analysis. 

Table 3. Numbers of curated and uncurated transcripts annotated in the RefSeq database for human, mouse, and domesticated species.

Species Species name used in  
RefSeq search

Total RefSeq  
transcripts

Curated RefSeq 
transcripts

Uncurated 
RefSeq 
transcripts

Human Homo sapiens 100,068 39,623 60,445

Mouse Mus musculus 78,241 29,900 48,341

Dog Canis lupus familiaris 47,095 1,675 45,420

Chicken Gallus gallus 32,244 6,197 26,047

Cow Bos taurus 70,342 13,329 57,013

Pig Sus scrofa 47,445 4,154 43,291

Turkey Meleagris gallopavo 26,450 93 26,357

Yak Bos mutus 28,868 7 28,861

Ferret Mustela putorius furo 48,113 61 48,052

Note: All data were downloaded by searching “Species name”[porgn] AND refseq[filter] AND biomol_mrna[PROP] (eg, “Canis lupus familiaris”[porgn] AND 
refseq[filter] AND biomol_mrna[PROP]) at http://www.ncbi.nlm.nih.gov/nuccore/ on December 10, 2015.

Table 2. Properties of assemblies of human, mouse, and domesticated species.

Species Assembly Sequencing 
technology

Scaffolds Scaffold N50 (bp) Total gap 
length (bp)

Human GRCh38.p5 Sanger 797 59,364,414 161,368,151

Mouse GRCm38.p4 Sanger 293 52,589,046 79,356,756

Dog CanFam3.1 Sanger 3,310 45,876,610 18,261,639

Chicken Gallus_gallus−4.0 Sanger 16,847 12,877,381 14,074,301

Cow Btau_4.6.1 Sanger 13,387 2,599,288 176,429,395

Pig Sscrofa10.2 Sanger and NGS 9,906 576,008 289,397,178

Turkey Turkey 5.0 NGS 233,806 3,801,642 35,294,427

Yak BosGru 2.0 NGS 41,192 1,407,960 120,154,638

Ferret MusPutFur1.0 NGS 7,783 9,335,154 132,851,443

Note: All data were downloaded from ncbi.nlm.nih.gov on December 2, 2015.

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://www.ncbi.nlm.nih.gov/nuccore/
http://ncbi.nlm.nih.gov


Advancing transcriptome analysis in domesticated species.

27Bioinformatics and Biology Insights 2015:9(S4)

Analysis of others using the described pipeline may prove 
difficult if the associated reference genome and annotation 
contain significant missing information. Still others may have 
no reference genome at all. Therefore, an alternate approach 
may be required for the analysis of RNA-seq reads from less 
widely studied species.

Alignment of RNA-seq reads to a related reference. 
One solution to this impasse is the use of a reference genome 
and annotation from a closely related species. For example, a 
study of gene expression changes in macrophages of red deer 
in response to paratuberculosis used the cow genome for align-
ment of deer RNA-seq reads.125 This solution may be practical 
for an increasing number of less common domesticated spe-
cies as more genomes are assembled and annotated. Critically, 
the reference used must itself be mature and well annotated 
for this approach to provide real benefit; moreover, the related 
genome should be not more than 15% divergent for the  
best results.111

Alignment of reads from one species to the genome of 
another may prove challenging due to species divergence, 
even in closely related species. Genomic differences such as 
SNPs and indels may decrease mapping accuracy when reads 
are aligned to the genome of a different species, resulting in 
a decreased depth of coverage due to the loss of reads that 
cannot be mapped. The default parameters of splice-aware 
aligners may therefore not be appropriate for use in this situ-
ation. For example, without modification of its default para
meters, TopHat2 will not accept an alignment of a read to 
a location if that alignment has more than two mismatches. 
As a result, three or more differences in a read of 100 or 150 
base pairs (2%–3% divergent) will result in a rejected align-
ment. A difference may be a mismatch due to a SNP, or an 
edit due to either a SNP or a gap (indel). TopHat2’s tolerance 
for mismatches and edits may be increased using the –read-
mismatches and –read-edit-dist parameters. In our labora-
tory, alignment of Vulpes vulpes reads to the Canis familiaris 
3.1 reference using TopHat2 with default parameters resulted 
in 69% alignment. Alignment with –read-mismatches  =  3 
and –read-edit-dist = 3 increased alignment to 79% (unpub-
lished data). Increasing the allowed mismatches and edit 
distance should be performed with caution, for fear of false  
positive alignments.126

An alignment tool designed to handle divergent genomes, 
Stampy,127 is tolerant of up to 15% sequence divergence. 
Stampy assumes 0.001 substitutions per site, but this default 
may be modified by the command-line parameter –substiti-
tionrate = . Stampy has been successfully used to map RNA-
seq reads from white-throated sparrow, song sparrow, and 
white-crowned sparrow to the zebra finch genome with the 
substitution rate set to 0.05.55

De Novo Assembly of RNA-Seq Reads
If a high-quality reference genome of a closely related species 
is not available, an alternative solution is to use the de novo 

assembly of a reference transcriptome from available RNA-seq 
reads. This approach was successfully used in our laboratory 
for the assembly of the brain transcriptome of silver fox (Vulpes 
vulpes) using 454 reads.85 De novo assembly may be performed 
in the absence of any genome, or may be guided by a reference 
genome if one is available. This approach suffers from difficul-
ties in annotating the assembled contigs as well as increased 
computation requirements.104 Additionally, the use of a refer-
ence genome from a related species that is #15% divergent 
was found to recover more bases than use of a de novo genome 
from the species under investigation.111 In practice, however, 
the choice to use a reference approach over a de novo assem-
bly approach may depend not just on the divergence of the 
two genomes but also on the quality of the reference genome 
assembly and completeness of its annotation. When no refer-
ence of a closely related species is available, or the available 
reference is not sufficiently annotated, the de novo approach 
may be a valid alternative.

Widely used assemblers that will operate independently of 
a genome include Trinity,73 Velvet,128 and Oases.129 Genome-
independent assembly typically requires significant time on a 
high-end server or cluster. Exact requirements vary depending 
on the number of reads, but may include hundreds of giga-
bytes of memory and hundreds of hours of runtime.130,131 For 
example, recommendations for use of Trinity include alloca-
tion of ∼1 GB for every one million reads assembled, and from 
256 GB to 1 TB of memory.132 Laboratories that do not have 
access to their own high-end server may consider purchas-
ing time on a campus cluster or Amazon Web Services,133 or 
applying for time through XSEDE.134

The assembly process produces putative transcripts, known  
as contigs. Ideally, a single contig is equivalent to a single 
isoform, but in practice a contig may represent an entire iso-
form (a complete transcript), part of an isoform (an incom-
plete transcript), or a chimera (a transcript consisting of two 
transcripts that are biologically independent). Therefore, after 
assembly, chimeric contigs must be identified and discarded, 
and remaining contigs must be annotated with the appropriate 
gene symbol. Some programming, using a scripting language 
such as Python (The Python Software Foundation, python.
org), may be necessary to accomplish this. A set of protocols 
and scripts exists to aid in the analysis of de novo assemblies,135 
or the following protocol may be observed.

Initial analysis of a de novo assembly should include 
masking of repetitive sequences, to avoid false positives dur-
ing chimera identification. RepeatMasker136 uses a database  
of known repetitive elements to substitute Ns or Xs for repeti-
tive sequences.

Assembly annotation may be accomplished using 
BLAST137 or BLAT.138 The contigs should be compared to 
a well-annotated genome that is as closely related as possible. 
If no closely related genome exists and results using distantly 
related genomes are insufficient, a protein–protein comparison 
may be made instead of a nucleotide–nucleotide comparison, 
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thereby eliding synonymous variations. Typically, multiple 
matches will be found for many genes. This is to be expected, 
as assemblers may not successfully differentiate between dif-
ferent isoforms, so that multiple contigs may represent dif-
ferent isoforms of the same gene. Additionally, a contig 
representing an incomplete transcript may match to one set of 
exons in a gene, while a different contig may match to a differ-
ent set of exons, together completing the transcript. Chimeric 
contigs that match multiple genes should be removed from 
the assembly.

The BLAST or BLAT results may be used to rename 
individual contigs according to the gene they best match. Tools 
exist to aid in this process; for example, BioPython139 provides 
tools to handle and rename sequences as Python objects. The 
BLAST or BLAT results may then further be used to identify 
chimeric contigs that match to multiple genes. Some apparently 
chimeric contigs may actually match two genes from the same 
gene family that have very similar sequences, and therefore do 
not need to be removed. To identify these apparently chimeric 
but actually legitimate contigs, a BLAST or BLAT search com-
paring the reference genome to itself may be performed. Genes 
that match to other genes may be considered pseudo-chimeric, 
and contigs matching multiple pseudo-chimeric genes need 
not be removed from the assembly. Additionally, contigs with 
multiple matches of extremely different lengths (for example, 
one match 10 times longer than the second match) need not 
be removed from the assembly, as differential gene expression 
tools will be able to choose the appropriate (longer) match and 
discard the other (shorter) match.

Nonexonic sequences may be retained in some contigs, 
comprising both the UTR, intronic sequence from pre-splicing 
mRNA, and intergenic sequence, now known to be perva-
sively transcribed though at lower levels than intra-genic 
sequence.95 Intron removal is a challenging proposal for  
de novo assemblers.130

The differential expression tools described in the refer-
ence genome RNA-seq pipeline require a genome, not a tran-
scriptome, as their reference. This makes them inappropriate 
for use with a de novo assembled transcriptome. However, an 
alternative differential expression tool, Cuffdiff, was designed 
to work with the genome-guided assembler Cufflinks, and 
will perform differential expression analysis against assem-
blies constructed by alternative assemblers.140

Conclusions
Species from a marked diversity of taxa have been domesti-
cated, from mammals to fish to birds, including both com-
monly studied species such as the dog and less commonly 
studied species such as the yak. Many domesticated species 
have phenotypes of biomedical or economic value for humans, 
making them important subjects of research. Compared to 
wild animals, domesticated animals are well suited for study 
with RNA-seq, which is a new technology for evaluating tran-
scriptional activity across the entire genome. First, the striking 

phenotypic diversity of these species provides opportunities 
for comparison of traits of interest among individuals. Second, 
reduced genetic diversity within domesticated breeds results 
in increased statistical power in many studies. Third, the 
breeding of domesticated species is under human control, so 
samples may more easily be collected from individuals with 
specific phenotypes and at specific time points in their devel-
opment. Finally, domesticated animals commonly receive vet-
erinary care, providing an opportunity for sample collection 
from individuals with well-characterized disease status or 
subject to advanced treatment. Domesticated animals remain 
critical for human well-being, and molecular genetic studies 
provide insights into the mechanisms involved in the regula-
tion of the complex phenotypes for which these animals have 
been selected. Using this knowledge, we can not only advance 
human medicine but also select animals better suited to the 
changing climate and to human needs.

While many of the most common domesticated species, 
such as dog, cow, pig, and chicken, have high-quality genomes, 
other species have lower quality, fragmented NGS genomes, 
and still others are not yet sequenced. While the genomes of 
all domesticated species may well be sequenced in the com-
ing decades, newly sequenced genomes can be expected to 
be subject to the limitations of NGS assemblies. RNA-seq 
is becoming a standard method for the annotation of NGS 
genome assemblies, and its use in improving the annotations 
of the high-quality genome assemblies produced using Sanger 
sequencing has been demonstrated.

In this review, we have discussed two strategies for the 
analysis of RNA-seq data in species with lower quality genome 
assemblies. Use of a mature, well-annotated genome from a 
closely related species may prove sufficient, especially if strin-
gent requirements are relaxed during alignment to tolerate an 
increased rate of sequence divergence. If even a closely related 
genome annotation is lacking, a de novo assembly may be 
constructed and used as a reference. Using either a reference 
genome or a de novo transcriptome assembly, differentially 
expressed genes may be called. This list of genes may be further 
analyzed to ascertain groups of differentially expressed genes 
with similar functions or networks of genes that are coex-
pressed. Therefore, even in the absence of the resources avail-
able for RNA-seq analysis of model species, RNA-seq analysis 
is a powerful tool for use in the investigation of the genomic 
underpinnings of phenotypes in domesticated species.
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