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Abstract: Short-fiber reinforced composites are widely used for the mass production of high-resistance
products with complex shapes. Efficient structural design requires consideration of plasticity and
anisotropy. This paper presents a method for the calibration of a general material model for stress–
strain curve prediction for short-fiber reinforced composites with different fiber mass fractions.
A Mori–Tanaka homogenization scheme and the J2 plasticity model with layered defined fiber
orientation were used. The hardening laws: power, exponential, and exponential and linear were
compared. The models were calibrated using experimental results for melt front, orientation tensor
analysis, fiber length, and diameter and tension according to ISO 527-2, for samples of PA6 which
were either non-reinforced, or reinforced with 10%, 15%, 20%, and 30% carbon fiber mass fractions.
The novelty of this study lies in the transition from the strain–stress space to the strain–stress–fiber
fraction space in the approximation of the material model parameters. We found it necessary to
significantly reduce the fiber aspect ratio for the correct prediction of the mechanical characteristics
of a composite using the Mori–Tanaka scheme. This deviation was caused by the ideal solution of
ellipsoidal inclusion in this homogenization scheme. The calculated strength limits using Tsai–Hill
failure criteria, based on strain, could be used as a first approximation for failure prediction.

Keywords: composite; mechanical characteristics; material model; short fibers; polyamide 6; fiber
mass fraction

1. Introduction

Reinforced polyamide 6 (PA6), like many other reinforced thermoplastics, has found
applications in durable goods, computer hardware, biomedical, automobile, and aerospace
sectors [1–4]. For example, in the aerospace industry, short-fiber reinforced thermoplastics
have been utilized in several components of A340-600 and C295 [5], A350 XWB [6], and V-22
tilt-rotor aircraft [7]. Reinforced thermoplastics are of interest for their high performance
in structural applications, low-cost manufacturing process, ease of manipulation [1], and
ability to meet waste and recycling regulations [8–10]. However, the difficulty of predicting
the anisotropy throughout the design process leads to their implementation in secondary
components more than in primary structures [11,12]. For example, accounting for the effect
of anisotropy on the mechanical behavior of the components [13–18] requires knowledge
of both the fiber length distribution and the fiber orientation distribution, which depend on
the fiber content, the geometry of the mold, the processing conditions, and the injection
gate [19,20].

Currently, anisotropy is considered in structural analysis by implementing a solution
to the inclusion problem by introducing Eshelby’s tensor [21], and a micromechanical
method such as the Mori–Tanaka model for predicting the effective properties of two-phase
composites [22]. Contemporary investigation has focused on the mechanical behavior
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of short-fiber reinforced polymers (SFRP) with high fiber volume fractions [15,16], and
the theory presented by Fu. S.-Y. on modeling SFRP [13,14] provides evidence of the
importance of studying the influence of the fiber content on the mechanical characteristics
of the polymers [23]. Furthermore, creating a more precise short-fiber model is a relevant
topic that has been addressed by [24,25]. Although these studies increase the reliability of
modeling for anisotropy, data for SFRP are generally provided for a specific fiber volume
fraction, which limits the material model. Hence, selecting the material in the early stages
of design requires the usage of an accurate material model with the ability to adjust the
fiber weight fraction.

This study presents a general material model for PA6 reinforced with different fiber
mass fractions. To create the model, experimental studies were conducted using PA6
reinforced with different short carbon fiber weight fractions. The results of the experiments
were used to obtain the mechanical characteristics as well as the fiber length and fiber
orientation distributions, which were subsequently used for modeling the material using a
second-order Mori–Tanaka homogenization scheme and three different hardening laws.
The material models obtained are presented alongside their calibration data, which were
obtained by applying curve fitting through optimization of the material parameters.

2. Materials and Methods

The creation of a composite material model requires knowledge of the mechanical
characteristics of its components. We started by obtaining the mechanical characteristics
of non-reinforced PA6 using a tensile test. The fiber aspect ratio was then determined by
burning a sample of reinforced PA6. The unidirectional short-fiber reinforced composite
was modeled as a transversely isotropic material by application of the Mori–Tanaka ho-
mogenization scheme. Tucker’s procedure was applied to transform the material from a
unidirectional transversely isotropic one into a composite, which depended on the fiber
orientation. We assumed that the stress and strain of the composite depend on its per-
centage content fractions. The plasticity of the matrix was modeled using the J2 plasticity
model. The following three different laws were used to model hardening: the power, the
exponential, and the exponential and linear laws.

2.1. Plate Molding Experiment

The filling process dictates the fiber orientation. The effect of the fiber mass fraction
on the filling process and mechanical characteristics of short-fiber PA6 with different
fiber mass fractions was investigated. The weight of each pellet was measured using an
electronic balance (0.01 g resolution), and its size was measured using a Vernier caliper
(0.1 mm resolution). PA6, and PA6 reinforced with carbon fiber, had a mass of 0.0102 g
and 0.0048 g, respectively; a length of 3.3 ± 0.17 and 2.02 ± 0.11 mm, respectively; and a
diameter of 2.3 ± 0.09 and 2.27 ± 0.14 mm, respectively. Figure 1 shows the pellets used
for experimental investigation: non-reinforced PA6 (matrix material), short-fiber reinforced
PA6 with 30% carbon fiber mass fraction (Gamma Plast UPA6—30 M), and a combination
of both materials mixed in mass proportions of 1:2, 1:1, and 2:1 to fabricate the fiber mass
fractions of 10%, 15%, and 20%, respectively. A standard cement mixer was used for mixing
all materials until the mixture was homogeneous. The pellets were dried at a temperature
of 90 C for 4 h in a plastic pellet dryer before injection.
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Tensile tests using 1B samples as specified by the ISO 527-2 standard were performed
to obtain the mechanical characteristics of the material. The samples were cut from plates
with the dimensions 200 mm × 150 mm × 4 mm (Figure 2a). The manufactured plates
are shown in Figure 2b. Plates of different fiber compositions were injected using a Negri
Bossi VE 210-1700 injection molding machine. The filling parameters were as follows: melt
temperature 225 ◦C, mold temperature 80 ◦C, and flow rate 42 cm3/s.
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2.2. Investigation of Fibers under Scanning Electronic Microscope

Modeling the mechanical behavior of the short-fiber reinforced PA6 requires knowl-
edge of the aspect ratio (AR) between the diameter and the length of the fibers [26–28].
Measuring the dimensions of the fibers can be achieved if the polymer containing the fibers
is degraded at an elevated temperature (Figure 3). The technique used by [29] was taken as
a basis for the fiber acquisition. Samples with fiber mass fractions of 15% (Figure 3a) and
30% were cut from the molded plates and burnt in an inert atmosphere oven (Figure 3b).
The oven’s camera was filled with a nitrogen atmosphere to avoid fiber degradation, and
maintained without a flow rate. The process was initiated at 20 ◦C with a heating rate of
5 ◦C/min and reached a temperature of 900 ◦C that was held for 20 min, before cooling at a
rate of −5 ◦C/min. The fibers obtained were investigated under a Tescan Vega electronic
microscope (Figure 3c).
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2.3. The Effective Fiber Length

For correct modeling and prediction of the fiber strength, the concept of the effective
fiber length was introduced. It was first considered by Rosen [30] in 1965 while describing
the mechanical characteristics of continuously reinforced composites. In [31], the effective
fiber length is known as the debonding fraction due to the substitution of the ellipsoidal
inclusion for the “equivalent debonded inclusion”, and in that study the fraction of the
debonded interface surface was 0.26. In the present work, the effective fiber length was
estimated quantitatively. This technique may be described using the following formula:

ϕ =
ARmodel

ARexperimental
(1)

2.4. Calculation of Short-Reinforced Composite Tensile Curves

The material modelling was performed in Digimat-MF, while the parameters were
identified using Digimat-MX RVE. The microstructure consisted of two phases—the elasto-
plastic PA6 matrix, and the elastic short-carbon fibers modeled as elliptic inclusions. The
models of the matrix were obtained after performing curve fitting of the tensile test results
for the specimens without reinforcement.

The fibers (inclusions) and the matrix were homogenized via Digimat-MF, using a
second-order Mori–Tanaka homogenization scheme for the computation of the mechanical
properties. The unidirectional short-fiber reinforced composite was modeled as a trans-
versely isotropic material. The elastic moduli introduced by Tandon and Weng [32] were
used to calculate the elastic coefficients:

E11

Em
=

1

1 +
φ f (A1+2υm A2)

A6

(2)

E22

Em
=

1

1 +
φ f [−2υm A3+(1−υm)A4+(1+υm)A5 A6]

2A6

, (3)

where Em and υm are the Young’s modulus and Poisson ratio of the matrix, respectively.
The volume fraction of the fiber is represented by φ f . The parameters Ai are the functions
of Eshelby’s tensor and can be found in [33]. In this study, we used Eshelby’s tensor for
elliptical inclusion, and this depends on the fiber aspect ratio. The Tucker’s averaging
procedure was used to determine the fiber orientation tensor, which is described as follows:

Cijkl = B1aijkl + B2
(
aijδkl + δijakl

)
+ B3

(
aikδjl + ailδjk + ajlδik + ajkδil

)
+B4

(
δijδkl

)
+ B5

(
δikδjl + δilδjl

)
,

(4)

where aijkl is the fourth-order fiber orientation tensor, δij is the second-order unit tensor, and
the coefficients B are related to the components of the stiffness matrix of the transversely
isotropic unidirectional composite [34]. The fourth-order tensor in Tucker’s averaging
procedure was reduced to a second-order tensor by applying the orthotropic closure
approximation presented by Cintra and Tucker in [35]. The approximation parameters of
the fiber orientation tensors mainly influence the calculation of the stress–strain curves.
The fiber direction from 0 to 90◦ was divided into 20 equal parts, with a tolerance interval
in the fiber orientation tensor of 0.01.

The composite stress and strain depend on the stress and strain of the matrix and fiber,
proportional to their volume fractions:

ε =
(

1 − φ f

)
εm + φ f ε f , (5)

σ =
(

1 − φ f

)
σm + φ f σf . (6)
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The stress–strain state of the matrix is described using the J2 plasticity model [36],
based on the von Mises equivalent stress, σeq. When σeq exceeds the initial yield stress, the
response becomes nonlinear and plastic deformation appears. Plastic strength is expressed
as follows:

σeq = σY + R
(
εp
)
, (7)

where σY is the initial yield stress; R
(
εp
)

is the isotropic strain hardening function; and εp
is the accumulated plastic strain.

Poisson’s ratio of the matrix, in the plastic range, is predicted through Lame parameters
using spectral decomposition [37]; elastic bulk module K is taken as a constant, and shear
moduli G will be

G = Ge

1 − 3Ge

3Ge +
d R(εp)

d εp

, (8)

where Ge, the elastic shear modulus, is defined using a Lame parameter, based on the given
Young’s modulus and the Poisson’s ratio of the matrix in the elastic range.

For all models so described, the matrix Poisson’s ratio in the elastic range is equal to the
experimentally measured average value. Poisson’s ratio of the matrix in the elastic range
had a slight effect on the stress–strain curves for reinforced PA6 when reverse-engineering
the curves, and was not accurate, therefore, Poisson’s ratio of the matrix in the elastic range
was excluded from the reverse-engineered parameters.

A comparison between the three hardening stress functions is provided in [38]:

• Power law [39]:
R
(
εp
)
= kεp

m; (9)

• Exponential law:
R
(
εp
)
= R∞

[
1 − e−mεp

]
; (10)

• Exponential and linear law:

R
(
εp
)
= kεp + R∞

[
1 − e−mεp

]
. (11)

where k is linear hardening modulus, MPa; m is hardening exponent; and R∞ is
hardening modulus, MPa.

3. Results
3.1. Melt Front and Microstucture Experimental Investigation

An experimental study of the melt front was conducted by studying partially filled
molds (Figure 4). This study allowed us to verify the plastic injection molding models and
showed that the fiber mass fraction had a small effect on the melt front of the plates.
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The fiber orientation determines the mechanical characteristics of the material to a
great extent. To investigate the fiber orientation at the resultant fracture location, a sample
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was extracted from the 90◦ tensile test specimens with fiber mass fractions of 15% and
30% (Figure 2a). The shape and roughness of the fibers have a significant influence on the
adhesion quality and strength of the composite material [40,41]. The morphology of the
fracture surface is shown in Figure 5, it can be observed in the pulled-out fiber and defects
in the background.
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Several factors characterize composite failure, including the adhesion between the
matrix and the fiber. The failure surface of the 90◦ sample with 30 wt. % was analyzed
by X-ray fluorescence under a scanning electron microscope (Figure 6). The spectrum on
the center of the fiber surface (Figure 6a) consisted of 93.65% C and 6.35% O (Figure 6b),
showing a low presence of PA6.
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Figure 6. Reinforced PA6 with 30 wt. % short-carbon fiber: (a) SEM; (b) XRF spectra.

The sample was examined in three places at the failure line; the images obtained
under the microscope are shown in Figure 7. Qualitative evaluation of the fiber orientation
tensor was performed by comparing the size of the layer against the fiber orientation
tensor components. The average values of the specific skin layer, the core layer thickness,
and the thickness of the samples with 15% fiber mass fraction, were 7.31%, 25.79%, and
3.98 mm, respectively. In Figure 7, in the shell layer (the layer between the skin and the core
layers), the fibers are oriented along the x-axis, which corresponds to the fiber orientation
tensor values of the component a11. In addition, the fiber orientation tensor predicts that
the component a11 has the highest probability. The fibers presented a chaotic appearance
within the core layer. The skin layer comprised approximately 3% of the thickness, while
the core layers constituted 19%. The start and end of every layer were difficult to determine,
especially at the transition from the skin layer to the shell layer.
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3.2. Injection Molding and the Fiber Orientation Models Validation

The injection molding simulation of PA6 reinforced with 30% mass fiber fraction was
performed using Moldex3D R17 on a structured mesh of 4,499,918 elements. The number of
elements in the plate (without runner and sprue) along the x-axis was 600, along the y-axis
296, and along the z-axis 24; this totaled 4,262,400 elements. A comparison of the simulated
and experimental filling processes is shown in Figure 8a. The fiber orientation tensor is
shown in Figure 8b and Table 1, and used in the models of the mechanical characteristics of
the materials.

Table 1. Calculated fiber orientation tensor components.

Layer Thickness, mm a11 a22 a33 a12 a13 a23

1 0.1667 0.603 0.304 0.0929 0.00104 0.00019 0.00011
2 1.5003 0.821 0.126 0.0533 0.00087 0.00001 0.00003
3 0.1667 0.711 0.244 0.0451 −0.00131 −0.00033 0.00008
4 0.3334 0.461 0.486 0.0526 −0.01870 −0.00113 −0.00495
5 0.1667 0.711 0.244 0.0451 −0.00131 −0.00033 0.00008
6 1.5003 0.821 0.126 0.0533 0.00087 0.00001 0.00003
7 0.1667 0.603 0.304 0.0929 0.00104 0.00019 0.00011
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Quantitative evaluation was performed by comparing the components of the fiber
orientation tensor (Figure 8b) against the experimental data presented by Foss et al. [42],
and we obtained a reasonable agreement. Microstructure analysis at the orientations 0 and
90◦ are shown in Figure 9.
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3.3. Determination Length and Diameter of the Fibers

To measure the size of the fibers, five images were recorded for each material using a
scanning electronic microscope. From every image, 25 to 35 different fibers were measured.
In the sample with a 15% fiber mass fraction, it was found that the diameter had a mean
of 6.8 µm and a standard deviation of 1.04 µm, and the length had a mean of 167.41 µm
and a standard deviation of 72.22 µm. In the sample with a 30% fiber mass fraction, was
found that the diameter had a mean of 6.33 µm and a standard deviation of 1.14 µm, and
the length had a mean of 135.66 µm and a standard deviation of 67.06 µm. The distribution
of the diameter and length of the fibers is presented in the form of histograms in Figure 10.
The AR of the fibres was calculated by dividing their measured lengths by their mean
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diameter (equal to 6.80 for the 15%, and 6.33 for the 30% fiber mass fractions). The AR
distribution is presented in Figure 11.
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3.4. Experimental Stress–strain Curves

Tensile tests were performed for construction of the material models according to
ISO 527-2 on 1B specimens from non-reinforced PA6 and composites with 10%, 15%, 20%,
and 30%. For each material, nine samples were investigated, cut out from the plates at 0◦

(red lines), 45◦ (green lines), and 90◦ (blue lines) to the flow direction (Figure 2a). The test
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machine MTS 322.21, as well as the biaxial extensometer MTS 632.85F-14, were used for
registering the force and displacement of the specimens.

PA6 stress–strain curves are shown in Figure 12a; due to its isotropic composition
a low variation in mechanical behavior existed between specimens (red lines—0◦, green
lines—45◦, blue lines—90◦ specimens). The plastic behavior of the material is unreliable in
determining the value of the elastic behavior limit. The offset yield point, σY, depends on the
offset plastic strain, εp, and is shown in Figure 12b with a logarithmic scale. The dependence
σY
(
εp
)

can be approximated as lg(σY) = p1lg
(
εp
)
+ p2, where the coefficients (with a 95%

confidence interval) are p1 = 0.383(0.3615, 0.4044) and p2 = 1.978(1.945, 2.012). Poisson’s
ratio is shown in Figure 12c. The values for Poisson’s ratio were calculated in a small strain
region, and ranged from 0.31 to 0.42, with a mean of 0.3721. The Poisson’s ratio obtained
satisfactorily agrees with that presented by D.V. Rosato [43]. The Poisson’s ratio value of
0.3721 was used for the matrix of all material models.
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Figure 12. Tensile test of ISO 527-2 PA6 matrix samples: (a) Tension curves; (b) Yield stress;
(c) Poisson’s ratio.

Stress–strain curves of short-fiber reinforced PA6 with different carbon-fiber mass
fractions are shown in Figure 13. As expected, samples with a lower fiber content showed
behavior closer to that of an isotropic material. Increasing the fiber mass fraction content
increased the anisotropic behavior of the material. Moreover, the strength of the 0◦ samples
increased more than the strength of 45◦ and 90◦ samples. Specimens, especially at 0◦

with higher fiber content, were more fragile—the value of ultimate strain decreased. The
stress–strain curves of the samples with a 30% fiber mass fraction show the differences
between them.

3.5. Determination of the Matrix Material Models

Results of the ISO 527-2 tensile test for the PA6 matrix are presented in Figure 14 with
dashed lines. The scatter of experimental stress measurements when strain equaled 0.03 had
a standard deviation of 2.49 MPa, and a coefficient of variation of 3.71%. The identification
of the parameters of the matrix models, including the parameters of the hardening laws
in Equations (9)–(11), was established using the Digimat-MX RVE curve fitting module,
and was based on the tensile tests presented in Figure 12a. To estimate the accuracy of the
approximation, the averaged relative error for each hardening law was obtained [38]. The
parameters of the matrix models and the relative errors of the approximations are provided
in Table 2. Approximated curves are presented in Figure 14.
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Figure 13. Experimental stress–strain curves for ISO 527-2 samples of PA6 composites with different
fiber mass fractions, cut at 0◦, 45◦ and 90◦ angles to flow direction: (a) 10%; (b) 15%; (c) 20%; (d) 30%.

Table 2. Calibrated pure PA6 tension curve parameters of elastoplastic matrix material models.

Hardening Law Power Exponential Exponential and Linear

Young’s modulus, MPa 3341 3547 3552
Yield stress, MPa 12.57 8.27 6.68

Hardening modulus, R∞ MPa - 60.59 55.41
Hardening Exponent m 0.21891 433.69 528.67

Linear hardening modulus k,
MPa 158.12 - 623.17

Relative error, % 5.32 4.81 4.77
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3.6. Comparison of the Effect of Considering the Distribution of Fiber Lengths and the Distribution
of the Orientation Tensor on the Accuracy of Approximation of the Tensile Curves of a
Short-Reinforced Composite

During model construction, it was impossible to simultaneously consider the dis-
tribution of the AR of the fibers and the distribution of the fiber orientation tensor over
the thickness of the sample. The stress–strain curves of short-fiber reinforced PA6 with a
30% carbon-fiber mass fraction, presented in Figure 15, were created using the exponential
law. In Figure 15a, a comparison between single layer and multilayer (using Table 1) orien-
tation tensor definitions, with a single AR value of 26.5 is presented. Figure 15b compares a
fixed AR of 26.5 with the AR distribution according to Figure 11. It can be concluded that
allowing for the layered orientation tensor had a more noticeable effect on the simulation of
a 90◦ sample, whereas accounting for AR distribution could be replaced by an equivalent
constant value.
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3.7. Determination of the Parameters of the Composite Material Models, Common for Different
Fiber Mass

Identification of the model parameters was performed to find a material model suitable
for describing the mechanical properties of short-carbon fiber reinforced PA6 with different
percentages of fiber mass fraction (Figure 16). The stress–strain curves corresponding to
calibrated material models based on experimentally obtained fiber and matrix properties
are presented in the first row of Figure 16. The curves overestimated stiffness values for
the materials, especially for samples at 0◦. The most important influence on composite
parameters was fiber size.

The second row of Figure 16 shows the material models based on the mean reverse-
engineered values of the AR of the fibers (Table 3). CV in Table 3, and below, is the
coefficient of variation, which is the ratio of the standard deviation to the mean value of the
corresponding quantities.

Table 3. Fiber aspect ratio (AR) calibration for composites with different fiber mass fraction.

Hardening Law
Fiber Mass Fraction, %

Mean AR Model
Param. CV, %10 15 20 30

Aspect ratio

Power 14.00 16.53 14.47 14.82 15.00 7.35
Exponential 14.53 16.94 15.14 15.47 15.52 6.60

Exponential and linear 14.30 16.75 14.71 15.27 15.30 7.03
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lines, 90◦—blue lines. Experimental data—black dashed lines.

The mean AR value for all reinforced PA6 material models was approximately 15, which
constitutes 57% of the 26.5 value, equivalent to the experimentally observed distribution
(Figure 10). Hence, the calculated effective fiber length (1) in this study was 0.57.

The third row shows the models constructed with mean value parameters after ap-
proximation of all matrix elastoplasticity model parameters and fiber AR (Table 4). The
particularity in the construction of Figure 16 is that the average values of the parameters
were taken from every material model to build a mean model that describes the mechanical
characteristics of the reinforced PA6 with a range of fiber mass fractions from 10 to 30%.

The mean relative error of tension stress–strain curve fitting, using the mean models
obtained, is presented in Table 5. The power, exponential, exponential and linear hard-
ening laws had similar mean relative error values. In this study, the shape of the matrix
stress–strain curve was more consistent with the exponential law. Adding a linear function
to the exponential hardening law increased the stress–strain curve approximation accuracy
only if the model parameters were calibrated in the composite tension experiment. The
exponential and linear hardening law model, based on experimentally obtained matrix
parameters, increased the composite curve approximation error due to the low precision in
describing the slope at the end of the matrix stress–strain curve.

Figure 17 shows the PA6 matrix stress–strain refined curves after curve fitting of the
composites according to the mean parameters model (Table 4). It was found that, for a
better description of the parameters of the composite material, the stiffness of the matrix
was overestimated during the calibration process.
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Table 4. Calibration of all parameters of the matrix elastoplasticity model and fiber aspect ratio.

Parameter
Fiber Mass Fraction, %

Mean Parameters Model Parameters CV, %
10 15 20 30

Power Law

Young’s modulus, MPa 4383 4437 4162 3759 4185 7.4
Yield stress, MPa 12.3 12.6 10.2 9.9 11.2 12.3

Hardening modulus, MPa 147.6 161.9 124.6 137.0 142.8 11.1
Hardening exponent 0.1995 0.2238 0.2023 0.2475 0.2183 10.2

Fibers’ AR 8.84 12.23 14.19 16.79 13.01 25.8

Exponential Law

Young’s modulus, MPa 4654 4615 4741 3994 4501 7.6
Yield stress, MPa 13.8 21.2 12.4 16.1 15.9 24.3

Hardening modulus, MPa 59.2 51.0 51.5 38.7 50.1 17.0
Hardening exponent 404.8 370.6 353.6 377.8 376.7 5.7

Fibers’ AR 9.02 12.25 13.37 16.62 12.8 24.4

Exponential and linear law

Young’s modulus, MPa 4672 4842 4625 3994 4533 8.2
Yield stress, MPa 13.6 13.0 14.5 14.5 13.9 5.4

Hardening modulus, MPa 56.6 54.9 46.1 37.0 48.6 18.6
Hardening exponent 447.1 417.7 381.1 458.3 426.0 8.1

Hardening linear modulus, MPa 208.8 216.0 144.1 188.4 189.3 17.1
Fibers’ AR 8.82 12.36 13.80 16.54 12.9 24.9

Table 5. Mean relative error of stress–strain curve prediction of different fiber mass fraction com-
posites with models based on fibers and matrix characteristics obtained experimentally, mean fiber
aspect ratio calibrated models, and the mean parameter model.

Hardening Law
Fiber Mass Fraction, % Mean Level

of Error, %10 15 20 30

Models, based on fibers and matrix characteristics obtained experimentally

Power 29.0 25.7 35.8 35.9 31.6
Exponential 27.8 25.2 33.7 34.7 30.4

Exponential and
linear 28.6 25.9 36.1 35.7 31.6

Mean fiber aspect ratio calibrated models

Power 11.7 12.1 12.0 11.1 11.7
Exponential 11.5 12.3 11.3 11.7 11.7

Exponential and
linear 11.7 12.5 12.6 12.2 12.3

Mean with the calibration of all matrix and fiber aspect ratio parameters

Power 7.4 7.6 4.9 7.7 6.9
Exponential 6.9 6.8 4.1 8.0 6.5

Exponential and
linear 7.0 6.9 3.9 7.9 6.4

3.8. Failure Criterion Parameter Identification for Short-Fiber Reinforced Thermoplastic Composites

For strength prediction, the Tsai–Hill 3D transversely isotropic strain-based failure
criterion was applied to the reinforced PA6 (composite level) in the local finite element
coordinate system (local axes) [38]. The critical fraction of failed pseudo-grains was 0.75,
and multilayer failure occurred using the all-layer failure condition. The results of the
identification of the model parameters are presented in Table 6.
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Table 6. Failure criteria strain limits for different fiber mass fraction cases.

Parameters
Fiber Mass Fraction, %

Mean Strain Limits Parameters CV, %
10 15 20 30

Power law

Axial tensile
strain limit, 10−2 2.009 2.957 1.944 1.880 2.197 23.16

Inplane tensile
strain limit, 10−2 3.516 3.855 3.573 2.151 3.274 23.30

Transverse shear
strain limit, 10−2 5.606 5.140 5.235 4.364 5.086 10.26

Exponential law

Axial tensile
strain limit, 10−2 1.566 2.353 1.832 2.031 1.945 17.05

Inplane tensile
strain limit, 10−2 2.999 3.524 3.430 2.278 3.058 18.57

Transverse shear
strain limit, 10−2 5.873 5.249 5.355 4.076 5.138 14.77

Exponential and linear law

Axial tensile
strain limit, 10−2 2.141 2.402 1.908 1.944 2.099 10.81

Inplane tensile
strain limit, 10−2 3.684 3.573 3.559 2.012 3.207 24.90

Transverse shear
strain limit, 10−2 5.607 5.140 5.140 4.798 5.171 6.42

The mean strain limits for the ultimate tensile strength of short-fiber reinforced PA6
were close to those of the different plasticity models, and constituted axial tensile 0.02,
in-plane tensile 0.032, and transverse shear 0.051 (Table 6). Figure 18 shows material
models with different fiber mass fraction stress–strain curves, constructed using the mean
parameters of the power, exponential and exponential and lineal hardening laws exposed
in Table 4, and selected failure criterion. The mean relative error of the failure criteria for
fracture strain is shown in Table 7.

Table 7. Mean relative error (%) of ultimate strain prediction for different fiber mass fraction compos-
ites with models based on fiber and matrix characteristics obtained experimentally, mean fiber aspect
ratio calibrated models, and the mean parameter model.

Hardening Law
Fiber Mass Fraction, %

Mean Level of Error, %
10 15 20 30

Power 16.24 7.79 18.92 56.63 24.90
Exponential 17.30 8.87 19.73 55.04 25.24

Exponential and
linear 16.26 7.79 19.02 56.36 24.86



Polymers 2022, 14, 1781 16 of 20

Polymers 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

The mean strain limits for the ultimate tensile strength of short-fiber reinforced PA6 
were close to those of the different plasticity models, and constituted axial tensile 0.02, in-
plane tensile 0.032, and transverse shear 0.051 (Table 6). Figure 18 shows material models 
with different fiber mass fraction stress–strain curves, constructed using the mean param-
eters of the power, exponential and exponential and lineal hardening laws exposed in 
Table 4, and selected failure criterion. The mean relative error of the failure criteria for 
fracture strain is shown in Table 7. 

 
Figure 18. Stress–strain curves prepared from the mean obtained strain limits, and using Tsai–Hill 
3D transversely isotropic strain-based values for 10%, 15%, 20%, and 30% fiber mass fractions. Ma-
terial model—color lines: 0°—red lines, 45°—green lines, 90°—blue lines. Experimental data—black 
dashed lines. 

  

Figure 18. Stress–strain curves prepared from the mean obtained strain limits, and using Tsai–Hill 3D
transversely isotropic strain-based values for 10%, 15%, 20%, and 30% fiber mass fractions. Material
model—color lines: 0◦—red lines, 45◦—green lines, 90◦—blue lines. Experimental data—black
dashed lines.

4. Discussion

A general model material for short-fiber reinforced polyamide 6 with carbon-fiber
mass fractions from 10% to 30% was constructed using a second-order Mori–Tanaka homog-
enization scheme. The matrix was modeled using the J2 plasticity model along with power,
exponential, and exponential and linear hardening laws. The mechanical characteristics of
the matrix, the fiber aspect ratio, and stress–strain curves of the composites were obtained
experimentally. From the examination of the three different hardening laws, it was found
that the exponential law described the PA6 stress–strain curve with considerable accuracy.
Furthermore, the addition of a linear term into the hardening law (exponential and lineal)
increased the accuracy of model parameters that were previously reverse-engineered.
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The results from general calibration produced models for PA6 reinforced composite which
could determine the mechanical characteristics of materials with different fiber mass fractions.
The novelty of this approach lies in the transition from two-dimensional (stress–strain) to
three-dimensional (stress–strain–fiber fraction) approximation space (Figure 19).
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It was found that the use of the experimental AR value in the construction of the
models increased the strength and stiffness of 0◦ samples by a factor of 1.7. Such a deviation
may have been caused by a failure to account for fibers with a low AR during the electron
microscopy analysis; however, a more probable reason is the inadequate consideration
of the influence of including the closed surface (ellipsoid) [32] and its ideal solution in
the Mori–Tanaka homogenization scheme. Moreover, the introduction of an equivalent
AR value was able to replace the AR distribution, simplifying the material model. The
relative effective fiber length, i.e., the ratio between the equivalent and experimental ARs,
was ϕ = 0.57, which corresponds to a virtual length reduction of the fiber, at both ends, of
approximately 21.5%.

The mean values for the material models obtained after performing curve fitting to
the reinforced matrix’s parameters were used for the construction of the mean models. A
mean model was produced that was capable of modeling reinforced PA6 across a wide
range of fiber mass fraction, from 10 to 30%, and allowed the prediction of the mechanical
characteristics with a mean relative error of 6.60%.

The calibration of mean Tsai–Hill strength failure criteria based on strain, via a trans-
versely isotropic statement, was performed, and produced a description of the strength of
reinforced PA6 with 10 to 30% carbon fiber mass fractions. The calibrated strength failure
criteria could be used only as a first approximation for the failure of carbon-reinforced
PA6 structures because the fracture strain mean relative error value, the large dispersion
in the experimental fracture strain values, and the question of failure criteria require
further investigation.

5. Conclusions

The Mori–Tanaka model allowed us to accurately predict the stiffness of a short-
reinforced composite with an arbitrary fraction of reinforcing fibers, but required curve
fitting for the whole composite because using fiber and matrix parameters obtained experi-
mentally led to an erroneous overestimation of the composite’s mechanical characteristics.
Fiber elongation had a decisive influence on the stiffness of the composite. It was found
that for the correct prediction of the mechanical characteristics of a composite using the
Mori–Tanaka model, it was necessary to significantly reduce the fiber aspect ratio. The
exponential hardening law of the matrix provided a good description of the tensile diagram
of the composite. Adding a linear term and switching to an exponential and linear model
allowed an even more accurate demonstration of material behavior when approaching the
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strength limit, but required attention to the calibration of the slope of the tensile curve at
high strain values.

When dealing with different fiber fractions, adding a third dimension to the two-
dimensional stress–strain space in the form of a fiber fraction allowed us to combine the
flexibility of the Mori–Tanaka model with the accuracy of calibrated tension curves from a
single fiber fraction composite material. This makes it possible to improve the accuracy
of the selection of the fiber fraction in material to be used in the construction of structures
during the early stages of design.

In this work, averaging of the parameters of the tension curves calibrated for individ-
ual volume fractions was used to construct a three-dimensional, calibrated, Mori-Tanaka
model. In the future, we plan to develop an algorithm and software that would allow simul-
taneous calibration of three-dimensional models over the entire volume of experimental
data available.
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