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ABSTRACT

ResponseNet v.3 is an enhanced version of Respon-
seNet, a web server that is designed to highlight
signaling and regulatory pathways connecting user-
defined proteins and genes by using the Respon-
seNet network optimization approach (http://netbio.
bgu.ac.il/respnet). Users run ResponseNet by defin-
ing source and target sets of proteins, genes and/or
microRNAs, and by specifying a molecular interac-
tion network (interactome). The output of Respon-
seNet is a sparse, high-probability interactome sub-
network that connects the two sets, thereby reveal-
ing additional molecules and interactions that are
involved in the studied condition. In recent years,
massive efforts were invested in profiling the tran-
scriptomes of human tissues, enabling the inference
of human tissue interactomes. ResponseNet v.3 ex-
pands ResponseNet2.0 by harnessing ∼11,600 RNA-
sequenced human tissue profiles made available by
the Genotype-Tissue Expression consortium, to sup-
port context-specific analysis of 44 human tissues.
Thus, ResponseNet v.3 allows users to illuminate the
signaling and regulatory pathways potentially active
in the context of a specific tissue, and to compare
them with active pathways in other tissues. In the era
of precision medicine, such analyses open the door
for tissue- and patient-specific analyses of pathways
and diseases.

INTRODUCTION

Signaling and regulatory pathways underlie cellular re-
sponses to environmental changes, hormones, stress and
other perturbations. Alteration in these pathways could

give rise to various diseases, including cancer. Due to
their importance, massive efforts were invested in detect-
ing the molecular interactions composing these pathways
and other processes by a variety of experimental approaches
(1,2). The integration of the detected interactions into a
global molecular interaction network, known as an interac-
tome, was shown to illuminate protein functions and cellu-
lar processes (3), thereby laying the foundation for the field
of network biology (4).

The inference of molecular pathways is challenged by
the huge sizes of interactomes. For instance, the interac-
tomes of the heavily studied yeast and human, though still
incompletely mapped, are already in the order of 110,000
and 400,000 protein–protein interactions (PPIs), respec-
tively (5). Further complicating pathway inference is the
fact that most known interactions were detected in standard
or non-physiological conditions, making them context-less,
while the pathways themselves are highly context specific.
Across the years, these challenges were met by numerous ap-
proaches aimed at identifying linear and complex pathways
that are meaningful in the studied context by, e.g. learning
from known pathways and applying context-based filtering
(6,7).

In recent years, analysis of tissue contexts has been
greatly facilitated owing to large-scale tissue profiling ef-
forts, such as the Genotype-Tissue expression (GTEx) (8)
and the Human protein Atlas (9). To date, GTEx is one of
the largest resources, containing ∼11,600 RNA-sequenced
tissue profiles from over 40 human tissues. The integration
of tissue profiling data with the context-less human interac-
tome allowed for construction of tissue interactomes, where
interactions were weighted according to the expression of
the interacting partners in the respective tissue (10). The re-
sulting tissue interactomes were shown to outperform the
global interactome in prioritizing disease genes (11), and to
illuminate protein functions (12) and disease mechanisms
(13,14).
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ResponseNet is an integrative approach designed to iden-
tify a high-probability interactome subnetwork connecting
user-defined proteins to their downstream affected genes
(15). Formulated as a minimum cost-flow optimization
problem that is solved by linear programming, Respon-
seNet outputs a sparse, high-probability subnetwork that
the user can grasp and subsequently define testable hypothe-
ses. ResponseNet was originally applied and tested on a
yeast model of synucleinopathy related to Parkinson’s dis-
ease, where it revealed pathways that were validated ex-
perimentally (15). Later implemented as a web server (16)
and extended to support analysis of human data (17), Re-
sponseNet was successfully used to infer pathways in vari-
ous contexts, e.g. to establish the subnetwork acting down-
stream of the Rio1 kinase in yeast (18), to predict pathways
involved in intellectual and behavioural disabilities (19) and
to identify signaling pathways responding to bacterial infec-
tion (20).

Several other approaches were introduced to infer causal
pathways, in the form of interactome subnetworks connect-
ing sets of proteins and genes associated with a certain phe-
notype or disease. Such methods were formulated as, e.g.
Prize-collecting Steiner trees (21), network flow (22), inte-
ger programming (23) or electrical circuits (24). Several ap-
proaches were provided as open software, such as iPoint (25)
and Omics Integrator (26), or as webservers (27,28), making
them accessible to researchers.

In recent years it became clear that multiple traits
and phenotypes manifest in a tissue-selective manner.
Mendelian diseases tend to be highly tissue-specific
(13,19,20,29,30), and variation in genomic sequences were
shown to underlie tissue-specific altered gene expression
and complex traits (31). To help uncover the pathways un-
derlying tissue-selective traits and diseases, we expanded the
ResponseNet web server toward analysis of pathways in tis-
sue contexts. By integrating data from GTEx (8), we created
tissue interactomes for 44 tissues, enabling their analysis via
ResponseNet. To facilitate the interpretation of the output
network and the design of follow-up experiments, we aug-
mented the output with data of disease-related proteins and
protein targets of approved drugs. Lastly, we added graph-
ical network comparisons, making it feasible to compare
between subnetworks predicted for different tissues or be-
tween individual runs with slightly distinct inputs, thereby
facilitating the interpretation of genotype–phenotype rela-
tionships.

RESULTS

To identify signaling and regulatory pathways by using
the ResponseNet webserver, the user defines two sets: a
source set containing proteins, and a target set contain-
ing genes, proteins or microRNAs. The two sets can vary
in size from few to hundreds. Examples include analysis
of disease-causing mutations and genes that are differen-
tially expressed in patients (18); the proteins affected by a
virus and the host response to viral infection (32,33); or
the results of a genetic screen and the cellular response to
perturbation (15). The user then selects the interactome to
be searched, or uploads a weighted interactome. The out-
put includes a weighted interactome subnetwork, connect-

ing a subset of the source set to a subset of the target set
via high-probability pathways. In case the target set is com-
posed of genes and/or microRNAs, the connecting path-
ways are composed of PPIs and end with a regulatory inter-
action, thereby illuminating signaling and regulatory path-
ways (Figure 1A and B). More details about the perfor-
mance of ResponseNet and its usability can be found else-
where (17). Below we focus on the features we introduced in
ResponseNet v.3.

Construction of human tissue interactomes

ResponseNet v.3 integrated data of molecular interactions
and tissue transcriptomic profiles to create human tissue in-
teractomes. For this, we first gathered experimentally de-
tected molecular interactions involving human proteins,
genes and microRNAs. Data of PPIs were gathered from
BioGRID (5), MINT (34) and IntAct (35) by using the
MyProteinNet web server (36). MyProteinNet was used to
ensure that only PPIs detected by established experimental
methods were included, and to associate interactions with
probabilistic weights, such that interactions participating in
known response pathways were favored (15). Data of regu-
latory interactions between transcription factors (TFs) and
their target genes were downloaded from TRRUST (37) and
TransmiR (38). Regulatory interactions between microR-
NAs and their target transcripts were downloaded from
miRecords (39). These interactions were combined into a
global human interactome containing 327,408 interactions
between 22,264 molecules (Table 1).

To create tissue interactomes, we integrated the global hu-
man interactome with over 11,200 RNA-sequenced profiles
of 44 tissues, made available by the GTEx consortium (8).
The interactome of a specific tissue was created via a fil-
tering scheme (13), such that only PPIs in which both pair
mates were expressed in that tissue above a certain threshold
were included (See ‘Methods’, (40)). Interactions involving
microRNAs were not filtered. This resulted in interactomes
for 44 tissues containing on average 223,052 interactions
between 13,776 proteins, 535 microRNAs and 3,540 genes.
Tissue interactomes can be downloaded from the Respon-
seNet download page. Note that since the interactomes do
not contain all human genes, some of the input proteins and
genes might not be connected via ResponseNet.

User session maintenance and email notifications

ResponseNet algorithm is executed on dedicated servers.
Due to interactome sizes, run times can take up to 35 min
for a single global interactome run and about 5 min for
tissue-specific interactomes, and may take longer if random-
izations are carried (17). Users are therefore encouraged to
specify a user name in ResponseNet to save their sessions.
Sessions will be kept for 3 months. ResponseNet v.3 allows
users to provide an email address, through which they will
be notified once their run is complete.

New usability features

The output of ResponseNet includes, per gene, its descrip-
tion and GO annotations and per interaction, its detec-
tion methods. To this we added several new features aimed
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Figure 1. ResponseNet v.3 output and subnetwork comparisons. (A and B) The subnetworks predicted by ResponseNet as connecting between proteins
that are causal for muscular dystrophy (diamond-shaped node) and genes that were differentially expressed in muscle biopsies of patients versus healthy
controls (rectangle-shaped nodes). (A) Subnetwork predicted by using the global interactome, containing 86 connecting proteins and microRNAs. (B)
Subnetwork predicted by using the skeletal muscle interactome, containing 33 connecting proteins. This subnetwork contained several unique pathways,
including the path connecting DNAJB6 to COL1A2, and the predicted involvement of miR-29 in the regulation of COL3A1, described in the text.

to facilitate the interpretation of the output network and
experimental planning. To enhance interpretation and to
identify potentially relevant diseases, genes associated with
Mendelian diseases were distinctly marked as such in the
graphical network, and disease information was provided
in the properties tab. To facilitate the planning of follow-up
experiments, protein targets of approved drugs were gath-
ered from DrugBank (41) and were listed in the properties
tab for applicable genes. Since drug effectiveness could be
lower for genes whose expression varies across individuals
(42), a score representing this variability (with zero for non-
variable and 100 for maximum variability) also appears,
thereby facilitating candidate prioritization.

Subnetwork comparison

ResponseNet v.3 also allows users to compare between sub-
networks. Such subnetworks could represent the pathways
inferred in distinct tissues, or in individuals with distinct
genotypes or phenotypes. ResponseNet offers a graphical
layers mechanism to support subnetwork comparisons. The
user can define a layer by selecting a subset of the output
network, by selecting subnetworks from previous sessions,
or by importing a network from other runs by using the ex-
port option. Once a layer was defined, the user can name
it and compare it to other layers using union, intersection,
difference or XOR operations. By that, pathways that are
common to multiple layers (e.g. multiple tissues or individ-
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Table 1. Numbers of molecular interactions in the global human interactome

Interaction type Proteins Genes microRNAs Interactions

PPI 18,178 311,737
TF–DNA 855 2,937 10,500
TF–microRNAs 372 402 2,369
microRNAs–RNA 996 267 1,582
Total 18,189 3,540 535 327,408

uals), or pathways that are unique to a certain layer can be
immediately recognized.

Use case

To demonstrate the power of the ResponseNet v.3 server
and the tissue-specific networks we analyzed the signal-
ing and regulatory networks that might be involved or dis-
rupted in muscular dystrophy. To define the source set, we
gathered from the OMIM database 34 genes known to cause
muscular dystrophy. To define the target set, we used 97
genes that were found to be differentially expressed in biop-
sies of Duchenne muscular dystrophy patients relative to
healthy controls (43). We then applied ResponseNet to find
pathways that connect the two sets in the global human in-
teractome (Figure 1A) and in the interactome of skeletal
muscle (Figure 1B). The output subnetwork predicted by
ResponseNet for skeletal muscle was smaller than the sub-
network predicted for global interactome (33 versus 86 con-
necting proteins and microRNAs) and offered several po-
tential pathways. For example, it identified a pathway con-
necting the source protein DNAJB6, a chaperone that is
causal gene for limb-griddle muscular dystrophy (44), and
the target gene COL1A2 that was shown to be upregu-
lated in muscular dystrophy patients (43). ResponseNet po-
sitioned DNAJB6 upstream of BRMS1, which it is known
to stabilize (45), and BRMS1 upstream of HDAC2. BRMS1
and HDAC2 are part of a histone deacetylase complex
(HDAC), and the predicted disruption of this pathway in-
deed fits with studies that linked muscular dystrophies to
deregulated HDAC activity (46). Another pathway placed
the COL3A1 gene, which was shown to be upregulated in
muscular dystrophy (43), downstream of miR-29, whose
loss was indeed connected to dystrophic muscle pathogen-
esis (47). ResponseNet also suggested that a problem in
the SYNE2 gene, which is known to cause Emery Drei-
fuss muscular dystrophy, leads to the loss of miR-29 by
affecting the MYC transcription regulation complex. No-
tably, these pathways were not predicted in the global in-
teractome, stressing the advantage of using context-specific
networks.

SUMMARY

The ResponseNet v.3 web server enables users to apply the
ResponseNet network optimization approach to infer sig-
naling and regulatory pathways active in tissue contexts. In
addition to features supported by previous versions of Re-
sponseNet, ResponseNet v.3 highlights disease-related pro-
teins and drug targets, and provides a graphical network
comparison tool. ResponseNet v.3 functionality is easily ex-
pandable to additional tissues, cell types and other contexts.

Tools such as ResponseNet that can provide meaningful
views into the pathways underlying traits and diseases (31)
and their therapeutic manipulation (48), are highly timely
in light of the increasing availability and declining cost of
genomic and transcriptomic profiling, and their enhanced
usage in clinical settings.

METHODS

Expression data sources

RNA sequencing profiles were obtained from the GTEx
portal (version 7) (8), resulting in 11,216 samples from 44
tissues. Only genes with more than five read counts in at
least 10 samples were included in the analysis. Raw read
counts were normalized for sample library size via the
TMM method by edgeR (49) to produce counts per million
(cpm). Only genes with cpm values ≥ 8 in at least 10 samples
were considered henceforth. Samples per tissue were merged
such that the expression of each gene was set to its median
expression value across samples. Only genes with a median
cpm log2 value ≥ 8 were considered as expressed in the re-
spective tissues.

Protein–protein interactions data and weighting scheme

Human and Yeast PPIs were gathered from BioGrid (5),
MINT (34) and IntAct (35) by using the MyProteinNet
web-server (36). MyProteinNet ensures that only PPIs de-
tected by established methods for physical interactions de-
tection were considered. Moreover, it associates interac-
tions with weights that represent their reliability and ten-
dency to appear in response pathways. Human transcrip-
tion regulation interactions between TFs and their tar-
get genes were downloaded from the TRRUST (37) on 16
April 2018. Transcription regulation interactions between
TFs and their target microRNAs were downloaded from
the TransmiR database v.2 (38). Experimentally detected
interactions between microRNAs and their target tran-
scripts were downloaded from the miRecords database (39).
All transcription regulation interactions (TF–DNA, TF–
microRNA and microRNA–RNA) were assigned a weight
of 1. To consolidate the interactions from the different
databases, all identifiers were converted to Ensemble gene
IDs using the MyGene.info web-service (50) and combined
into one interactome. Each node in the interactome was
defined by its identifier and its type (protein, gene or mi-
croRNA), thereby allowing for distinct nodes for a gene and
its product.

Additional supporting data

Associations between diseases and their causal genes were
downloaded from the OMIM database on January 2018



W246 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

(51). Data of approved drugs and their protein targets were
downloaded from the DrugBank database on December
2018 (41). Expression variability scores per gene were ob-
tained from Simonovsky et al. (42). Data of genes that were
differentially expressed in patients with Duchenne muscular
dystrophy versus controls were obtained from Haslett et al.
(43).

Implementation

The ResponseNet v.3 server was implemented in Python by
using the Flask framework with data stored on a MySQL
database. The website client was programmed using the Re-
actJS framework and designed with Semantic-UI. The net-
work view is displayed by the cytoscape.js plugin (52). The
website supports all major browsers. Recommended view-
ing resolution is 1440 × 900 and above.

Download

Interactomes are available for download under the per-
missive Creative Commons Attribution License (http:
//creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution and reproduction in
any medium, provided this work is properly cited. For
commercial use, please contact the corresponding author.
Downloadable data are versioned by numbered tissue inter-
actomes builds and by global interactome build dates. The
download page enables users to download data separately
for each tissue.

Web service access

The ResponseNet v.3 web-server supports a web-service ac-
cess to programmatically download previous sessions. This
is implemented via a REST-API method, which is callable
via code or wget. More information can be found at http:
//netbio.bgu.ac.il/respnet-api.
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