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A synthetic lipopeptide targeting top-priority
multidrug-resistant Gram-negative pathogens
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The emergence of multidrug-resistant (MDR) Gram-negative pathogens is an urgent global

medical challenge. The old polymyxin lipopeptide antibiotics (polymyxin B and colistin) are

often the only therapeutic option due to resistance to all other classes of antibiotics and the

lean antibiotic drug development pipeline. However, polymyxin B and colistin suffer from

major issues in safety (dose-limiting nephrotoxicity, acute toxicity), pharmacokinetics (poor

exposure in the lungs) and efficacy (negligible activity against pulmonary infections) that

have severely limited their clinical utility. Here we employ chemical biology to systematically

optimize multiple non-conserved positions in the polymyxin scaffold, and successfully dis-

connect the therapeutic efficacy from the toxicity to develop a new synthetic lipopeptide,

structurally and pharmacologically distinct from polymyxin B and colistin. This resulted in the

clinical candidate F365 (QPX9003) with superior safety and efficacy against lung infections

caused by top-priority MDR pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and

Klebsiella pneumoniae.
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Antimicrobial resistance is a major global health crisis
requiring urgent attention1,2. Notably, hospital-acquired
pneumonia and ventilator-associated pneumonia caused

by multidrug-resistant (MDR) Pseudomonas aeruginosa, Acine-
tobacter baumannii, and Enterobacterales (e.g. Klebsiella pneu-
moniae) are major causes of morbidity and mortality3–5.
Carbapenem-resistant isolates of these pathogens have been
identified by the World Health Organization (WHO) as the top
three priority pathogens to be targeted for antibiotic drug
development2. The current dry drug development pipeline for
new antibiotics has forced clinicians to resort to using the old
polymyxin antibiotics (polymyxin B and colistin) as a last-line
therapy against these difficult-to-treat Gram-negative
pathogens6–8. First discovered in the 1940s, the polymyxins are
a family of naturally occurring polybasic cyclic lipopeptides
produced as non-ribosomal secondary metabolites by the soil
bacterium Paenibacillus polymyxa (Fig. 1a and Supplementary
Table 1)9. Polymyxin B and colistin (as its pro-drug colistin
methansulfonate) were first introduced into clinical practice in
the late 1950s8,9. They have very similar chemical structures,
differing only by a single amino acid at position 6 in the cyclic
ring of the polymyxin scaffold (Fig. 1a). Remarkably, since their
introduction over 60 years ago, no new polymyxins have been
approved for clinical use9.

The effective use of polymyxin B and colistin in the clinic is
severely hampered by several major pharmacological issues.
Firstly, their therapeutic window is very narrow due to significant
dose-limiting nephrotoxicity, which can occur in up to 60% of
patients receiving intravenous (IV) polymyxins10,11. Secondly,
acute toxicity severely limits the maximal dose of intravenous
administration12. Thirdly, limited exposure in the lungs following
intravenous administration13,14 and binding to lung surfactant15

render them often inefficacious for pulmonary infections.
Fourthly, polymyxin B and colistin products are still manu-
factured by fermentation as multicomponent mixtures (Fig. 1a),
presenting pharmaceutical quality issues16. Therefore, there is an
urgent need to develop new polymyxins with a much-improved
therapeutic window and efficacy, in particular against
pneumonia17–21. Here we present for the first time, a rational
drug design strategy focused on concomitantly optimizing poly-
myxin structure-activity relationship (SAR), structure-toxicity
relationship (STR), and structure-pharmacokinetic relationship
(SPR, focusing on lung exposure) through modification of mul-
tiple non-conserved positions within the polymyxin scaffold
(Fig. 1b). This led to the development of a synthetic lipopeptide,
which has a wider therapeutic window, reduced nephrotoxicity
and acute toxicity, improved drug exposure, and efficacy
against lung infections compared to polymyxin B and colistin.

Results
Lipopeptide design strategy. Previously, we established an SAR-
based mechanistic model of polymyxin antimicrobial activity
built on the interaction of the polymyxin molecule with the lipid
A component of LPS, the primary target of the polymyxins in the
outer membrane of Gram-negative bacteria19,21. Here, binding of
the polymyxin molecule to lipid A is characterized by a unique
folded conformation wherein its N-terminal octanoyl fatty-acyl
group and D-Phe6 and Leu7 make hydrophobic contacts with the
hydrocarbon tails of lipid A; while the positively charged L-2,4-
diaminobutyric acid (Dab) side-chains make ionic contact to the
phosphates of lipid A and the ketodeoxyoctonic acid (Kdo)
group. This ultimately results in displacement of divalent cations
and disruption of membrane lipid packing leading to permeabi-
lization of the outer membrane (Fig. 1b). We used this SAR-based
mechanistic model to identify amino acid positions within the

polymyxin scaffold that would be amenable to structural mod-
ification to modulate toxicity and lung pharmacokinetics without
reducing antimicrobial activity. To this end, we identified the
N-terminal fatty-acyl group, and positions 3, 6, and 7 (Fig. 1b, c),
as being potential positions that can be targeted.

The amino side chain groups of Dab1, Dab5, Dab8, and Dab9

form critical ionic interactions with the 1- and 4′-phosphate
groups of lipid A (Fig. 1b). These electrostatic interactions are the
primary driver for initiating the interaction of the polymyxin
molecule with lipid A21. Therefore, these four Dab residues,
which are conserved residues in all native polymyxins (Supple-
mentary Table 1), appear to be essential for antimicrobial activity
and not tolerant to modification19,21. The hydrophobic
N-terminal fatty-acyl group and residues at positions 6 and 7
form hydrophobic interactions with the fatty-acyl chains of lipid
A. The Dab residue at position 3 appears to make hydrophilic
contact with the Kdo sugars of lipid A (Fig. 1b)21. Importantly,
these positions in the polymyxin scaffold are not structurally
conserved in the native polymyxins (Supplementary Table 1),
which potentially made them attractive sites to target for
modification. At the N-terminus and positions 6 and 7, our
strategy was to reduce the hydrophobicity at these sites (Fig. 1c).
Conceivably, this would reduce membrane interactions with
kidney tubular cells decreasing nephrotoxicity, lessen binding to
lung surfactants and reduce acute toxicity. Previously, it has been
shown that removing the hydrophobic N-terminal fatty-acyl
group altogether from the polymyxin scaffold significantly
reduces nephrotoxicity and acute toxicity19, but the loss of
hydrophobicity significantly changes the interaction with LPS21

and is detrimental to antimicrobial activity19,21. Furthermore,
while reducing the hydrophobicity of the N-terminal fatty-acyl
group alone can maintain potency it does not overcome the
nephrotoxicity19. Therefore, a possible solution would be to target
a more balanced reduction of the hydrophobicity at the
N-terminus as well as the hydrophobic motif at positions 6 and
7 in the polymyxin scaffold (Fig. 1c). Modeling suggested that this
design strategy would potentially generate lipopeptides that retain
the ability to adopt a folded conformation similar to polymyxin B
upon interacting with the LPS and retain antibacterial activity
(Fig. 1d). Furthermore, native polymyxin M, which contains the
same N-terminal fatty-acyl groups as polymyxin B and colistin
but has a less hydrophobic motif (D-Leu6-Thr7) at positions 6
and 7 (Supplementary Table 1), displayed similar LPS binding
and antimicrobial potency against Gram-negative isolates to
polymyxin B21. At position 3, we looked at removing the positive
charge, changing the stereochemistry, and increasing or reducing
the length of the residue side chain22 (Fig. 1c, d).

Simultaneous optimization of the SAR, STR, and SPR. We
concomitantly optimized for multiple parameters, including
antimicrobial activity (against a panel of clinical MDR and ATCC
reference strains, including carbapenem-resistant isolates of P.
aeruginosa, A. baumannii, and K. pneumoniae), nephrotoxicity16,
acute toxicity, and lung surfactant binding (Table 1, Fig. 2). An
iterative design process was utilized, first looking at modifications
to positions 6 and 7, followed by optimizing combinations of
modifications to positions 3, 6, and 7, then the N-terminus,
positions 3, 6, and 7 (Table 1). At positions 3, 6, and 7 we
explored both proteogenic and non-proteogenic α-amino acid
residues, while at the N-terminus we explored non-branched fatty
acids and substituted aromatic-acyl groups. To generate our
lipopeptide candidates a total synthesis approach was utilized
using our efficient synthesis platform (Supplementary Fig. 1),
which afforded lipopeptides in sufficient yields to enable

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29234-3

2 NATURE COMMUNICATIONS |         (2022) 13:1625 | https://doi.org/10.1038/s41467-022-29234-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


H
N

HN

NH

O

O
N
H

O

NH2

OH
N

O
N
H

NH2

H
N

N
H

O

O

O

OH

NH2

NH2

O

N
HO

HN

H
N

O

1 L-Dab 3 L-Dab

2 L-Thr

6 D-Phe

8 L-Dab

9 L-Dab

10 L-Thr

4 L-Dab

7 L-Leu

5 L-Dab

R

HO

Polymyxin B1 R = Me
Polymyxin B2 R = H

NH2

H
N

HN

NH

O

O
N
H

O

NH2

OH
N

O
N
H

NH2

H
N

N
H

O

O

O

OH

NH2

NH2

O

N
HO

HN

H
N

O

1 L-Dab 3 L-Dab

2 L-Thr

6 D-Leu

8 L-Dab

9 L-Dab

10 L-Thr

4 L-Dab

7 L-Leu

5 L-Dab

R

HO

Colistin A R = Me
Colistin B R = H

NH2

H
N

HN

NH

O

O

R6

N
H

O

NH2

OH
N

O
N
H

R3H
N

N
H

R1

O

O

O

OH

NH2

NH2

O

N
HO

HN

H
N

O R7

NH2

HO

F365
(QPX9003)

H
N

HN

NH

O

O
N
H

O

NH2

OH
N

O
N
H

NH2
H
N

N
H

O

O

O

OH

NH2

NH2

O

N
HO

HN

H
N

O

HOClCl

3 L-Dap
6 D-Leu

7 L-Abu

2,4-Dichlorobenzoyl

NH2

O

O

Cl

N
H

O

O

FCl

N-terminal fatty-acyl
↓ Hydrophobicity

O
N
H

NH2

O
N
H

OH

O
N
H

NH2

Position 3
Modify charge, side 

chain length and 
stereochemistry

O
N
H O

N
H O

N
H

OH

Position 6
↓ Hydrophobicity

O
N
H O

N
H O

N
H

OH

Position 7
↓ Hydrophobicity

↑ Antimicrobial activity
↓ Nephrotoxicity
↓ Acute toxicity
↓ Lung surfactant binding
↑ Therapeutic Index

Polymyxin B

F365 (QPX9003)

a b

c d

Fig. 1 Chemical structures of the polymyxins and lipopeptide design strategy. a Structures of polymyxin B1, polymyxin B2, colistin A, and colistin B, the
two major components in commercial polymyxin B and colistin drug products, respectively. Polymyxin B and colistin differ by only a single amino acid at
position 6 (highlighted in red). The structures of the other minor components identified in commercial polymyxin B and colistin products are shown in
Supplementary Table 1. b Molecular model of the interaction of a polymyxin B molecule with LPS showing key ionic and hydrophobic interactions of
individual residues. c Optimization of SAR, STR, and SPR resulted in the discovery of the synthetic lipopeptide F365 (QPX9003). dMolecular model of the
interaction of the F365 (QPX9003) molecule with LPS showing key ionic and hydrophobic interactions of individual residues. Although the hydrophobicity
is decreased at both the N-terminus and positions 6 and 7 compared to polymyxin B, F365 appears to retain the ability to form a similar folded
conformation to polymyxin B upon interacting with the LPS. Substitution of the Dab residue at position 3 to Dap, does not appear to impact the electrostatic
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Fig. 2 Nephrotoxicity and acute toxicity in mice and in vitro activity of polymyxin B, colistin, and synthetic lipopeptides. a Representative kidney
histology images for saline control (n= 4), polymyxin B, colistin, F287, and F365 treatment groups (n= 3) from the initial nephrotoxicity screening
(Table 1). Images of saline control, F287 and F365 show no damage (SQS= 0) while polymyxin B and colistin caused severe damage (SQS=+5),
including large tubular casts, areas of necrosis, acute cortical necrosis of tubules, and tubular degeneration. b MICs against P. aeruginosa ATCC 27853 for
polymyxin B, colistin, and synthetic lipopeptides in the absence and presence of 10% Survanta®. c Maximum tolerated dose (MTD, mg/kg) for polymyxin
B, colistin, and synthetic lipopeptides after a single IV bolus dose (n= 4, data are shown as mean ± s.d.). d Relative safety profiles for polymyxin B, colistin,
and synthetic lipopeptides, measured as the ratio of average MTD to the MIC of an MDR clinical isolate P. aeruginosa FADDI-PA025 (an isolate in our initial
screening panel that polymyxin B and colistin were the least active against, see Table 1). e–g MIC distributions of polymyxin B, F287 and F365 against
panels of MDR clinical isolates of P. aeruginosa (n= 213, 55 carbapenem-resistant), A. baumannii (n= 210, 200 carbapenem-resistant) and Enterobacterales
(n= 177, including K. pneumoniae [n= 129], Escherichia coli [n= 13], Enterobacter cloacae [n= 27], K. oxytoca [n= 3], En. aerogenes [n= 1], Citrobacter
freundii [n= 4]; 152 carbapenem-resistant).
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preliminary in vitro and in vivo screening. Representative
examples of the lipopeptides synthesized are shown in Table 1.

Examining modifications to the hydrophobic motif at positions
6 and 7 revealed that decreasing the hydrophobicity of the residue
at position 7 generally decreased potency relative to polymyxin B
and colistin, particularly against P. aeruginosa and A. baumannii
isolates; with valine (F225) or L-2-aminobutyric acid (Abu)
(F319) having the least impact on potency (Table 1). Reducing
the hydrophobicity of position 6 alone (F228) or in combination
with decreased hydrophobicity at position 7 (F229 and F230)
could result in an even greater decrease in potency relative to
polymyxin B and colistin (Table 1). However, incorporation of
less hydrophobic residues at position 6 (e.g. F228) or 7 (e.g. F100,
F124, F224, F225, F226, F227, F319) alone or in combination
(e.g. F229, F230) showed a remarkable reduction of nephrotoxi-
city relative to polymyxin B and colistin in our mouse model,
with no nephrotoxicity being observed in most cases within the
tolerated doses (Table 1, Fig. 2a). Examination of modifications to
position 3 in combination with D-Leu at position 6 and less
hydrophobic modifications (Thr or Abu) to position 7 (Table 1),
revealed that antimicrobial activity and nephrotoxicity could be
modulated by structural changes at this position. Shortening the
length of the side chain of Dab3 through the incorporation of L-
2,3-diaminopropionic acid (Dap), improved antimicrobial activ-
ity (e.g. F100 vs F251 and F319 vs F287), consistent with
previously reported data22. Increasing the length of the side chain
at position 3 by one carbon (F252) did not impact potency but
appeared to increase nephrotoxicity slightly (e.g. F100 vs F252;
Table 1). Changing the stereochemistry at position 3 from the L-
to the D-configuration did not have a significant impact on
potency overall against the panel of bacterial isolates, but
substantially increased nephrotoxicity (e.g. F100 vs F085 and
F251 vs F300), showing that the stereochemistry of position 3 is a
key structural feature of the polymyxin scaffold that influences
nephrotoxicity (Table 1). This explains the nephrotoxicity of
polymyxin A, the first native polymyxin to be discovered, which
has a D-Dab residue at position 3 and a D-Leu6-Thr7 motif at
positions 6 and 7 (Supplementary Table 1). It was never
introduced into clinical practice because it was believed to be
more nephrotoxic than polymyxin B and colistin9. Compared
with polymyxin B and colistin, F287 was the best lipopeptide of
this series having comparable potency against the panel of
bacterial isolates and no nephrotoxicity at a dose up to 72 mg/kg/
d in our mouse model (Table 1, Fig. 2a). Finally, we optimized the
N-terminus of F287. Replacement of the octanoyl fatty-acyl
group of F287 with a less hydrophobic C6-alkyl chain (F342)
slightly decreased potency against several A. baumannii isolates
(Table 1); whereas replacement with an unsubstituted phenyl
group (F379) significantly decreased potency (>8 fold) against
most isolates relative to F287 (Table 1). Increasing the
hydrophobicity of F379 with the incorporation of an additional
phenyl ring at the para position (F477) did improve potency
against all isolates compared to F379; however, F477 was not
more active than F287 and also resulted in slightly increased
nephrotoxicity (Table 1). Monochloro substitution on the phenyl
group of F379 afforded lipopeptides with improved potency (e.g.
F371 and F378) relative to F379 (Table 1). Dichloro-substitution
on the phenyl ring could yield more potent lipopeptides (e.g.
F365, F381) than the mono-chlorinated analogs (Table 1). F365
and F381 were also the most active of all the lipopeptides tested
against P. aeruginosa FADDI-PA025 (Table 1). Notably, with the
chloro-substituted analogs, the potency, nephrotoxicity, and acute
toxicity were dependent on the positions of chloro-substitution
(e.g. F365 vs F360 and F365 vs F381) (Table 1 and Fig. 2c).
Substitution of a chlorine atom on the phenyl ring of F365 with
fluorine at either the 2 or 4-position (e.g. F448 and F449)

appeared to decrease potency relative to F365 against several
isolates of P. aeruginosa and A. baumannii (Table 1). Overall,
F365 was the best of this series of N-terminal analogs having
similar potency to F287 (slightly better than polymyxin B and
colistin) and no nephrotoxicity even at a dose up to 72 mg/kg/d in
our mouse model (Fig. 2a). Subsequently, we evaluated the
efficacy of the potential lead lipopeptides in a neutropenic mouse
bloodstream infection model developed by our group16 to allow
for rapid screening of large numbers of lipopeptides (Table 1).
Several of our lipopeptides (e.g. F365, F371, F381, and F477)
showed a greater reduction in the bacterial burden in blood than
polymyxin B and colistin (Table 1).

To predict the in vivo efficacy against lung infections, the
in vitro antibacterial activity of our lipopeptides was further
examined in the presence of Survanta®, a natural bovine lung
surfactant extract that has been used to examine the potential
lung surfactant binding of lipopeptides in antibiotic
development23. MICs of both polymyxin B and colistin increased
8-fold in the presence of the lung surfactant; whereas the MICs of
our synthetic lipopeptides were not impacted (e.g. F365) or
slightly impacted (e.g. F251) in the presence of the lung
surfactant (Fig. 2b). It appears that position 7 is a driver of lung
surfactant binding of polymyxin B and colistin, as substitution
with a less hydrophobic residue at position 7 helped to restore
activity in the presence of lung surfactant (e.g. polymyxin B/
colistin vs F319 in Fig. 2b). The N-terminus also had an impact
on lung surfactant binding, which appeared to be dependent on
the hydrophobicity of the N-terminal group, e.g. F477 (N-
terminal biphenyl [C12], D-Leu6-Abu7) vs F342 (N-terminal
hexanoyl [C6], D-Leu6-Abu7). Modification to position 3 did not
appear to have any significant influence on binding to lung
surfactant (e.g. F287 vs F319 and F183 vs F251, Fig. 2b).
Together, the results here indicate that the combined overall
hydrophobicity of the position 7 residue and N-terminal group is
the primary driver of lung surfactant binding. In a mouse, acute
toxicity model, both polymyxin B, and colistin had an average
maximum tolerated dose (MTD) of 5.4 and 5.3 mg/kg respec-
tively, while our lipopeptides achieved up to a 4-fold increase in
the MTD relative to polymyxin B and colistin (Fig. 2c). Our
results clearly show that the N-terminal fatty-acyl group is the
primary structural component of the polymyxin scaffold that
drives the acute toxicity (e.g. F287 vs F342 and F379, Fig. 2c),
with position 3 and positions 6/7 having less impact (e.g. F287 vs
polymyxin B, Fig. 2c). Using the ratio of MTD/MIC as an
indicator of the relative safety (Fig. 2d), it is evident that these
lipopeptides have the potential for much better safety than
polymyxin B and colistin, with F365 being a stand-out candidate.

Selection of a lead candidate with a significantly improved
safety profile. The therapeutic potential of F287 and F365 was
further evaluated to select a lead candidate to move forward. To
this end, extended MIC screening was conducted against a large
panel (n= 600) of MDR clinical isolates, including 407
carbapenem-resistant isolates (Fig. 2e–g). Specifically, against P.
aeruginosa (n= 213), F365 (MIC50/MIC90, 0.5/1 μg/mL) was
2-fold more potent than polymyxin B (MIC50/MIC90, 1/2 μg/mL)
and slightly more potent than F287 (MIC50/MIC90, 1/1 μg/mL).
Against A. baumannii (n= 210), F287 (MIC50/MIC90, 0.25/
0.5 μg/mL) and F365 (MIC50/MIC90, 0.25/1 μg/mL) were up to
8-fold and 4-fold more potent than polymyxin B (MIC50/MIC90,
1/4 μg/mL), respectively. In addition, a 7-day in vitro passaging
study showed that resistance to polymyxin B, colistin, F287, and
F365 at 4× MIC emerged within 3 days; while at 16× MIC,
regrowth was observed from day 3 and 4 for polymyxin B and
colistin respectively; but not for F287 and F365 (Supplementary
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Fig. 2), indicating a lower potential of resistance for both lipo-
peptides than polymyxin B and colistin. No growth was observed
over 7 days with polymyxin B, colistin, F287, or F365 at 32×
MIC. Overall, F287 and F365 had very similar in vitro anti-
microbial activity profiles. To gauge their potential therapeutic
windows, F287 and F365 were administered intraperitoneally
(IP) in mice at a total dose of 120 mg/kg (as 6 divided doses every
2 h). At 20 h after the last dose, F365 showed no damage to the
kidneys, similar to the saline control, whereas mice treated with
F287 at the same dose, showed minor signs of damage to the
kidneys (Supplementary Table 2). The nephrotoxicity profile of
F365 was further evaluated in mice at a higher total dose of
150 mg/kg IP with treated mice showing no significant damage to
the kidneys, similar to the saline control (Supplementary Fig. 3).
Considering the in vitro potency and the higher dose achieved
without observing nephrotoxicity, it was evident that F365 had a
greater relative safety than F287 and therefore was selected as the
lead candidate to progress forward.

Efficacy and pharmacokinetics of F365. The in vivo efficacy of
F365 was firstly examined in a neutropenic mouse pneumonia
model against polymyxin-susceptible MDR clinical isolates of P.
aeruginosa, A. baumannii, and K. pneumoniae, which also
included carbapenem-resistant isolates (Fig. 3a–c). At 45 mg/kg/
d, the highest IP dose that could be safely administered for
polymyxin B, both polymyxin B and F365 did not show any
significant killing at 24 h (compared to the pre-treatment bac-
terial inoculum) against the polymyxin-susceptible MDR clinical
isolates (Fig. 3a–c). However, the improved acute tolerability of
F365 allowed us to safely increase the IP dose to 90 mg/kg/d to
achieve bacterial killing at 24 h against P. aeruginosa, A. bau-
mannii, and K. pneumoniae (Fig. 3a–c). In a neutropenic mouse
thigh infection model against a polymyxin-susceptible carbape-
nem-resistant A. baumannii clinical isolate FADDI-AB30, F365
also showed >2.0 log10 reduction in CFU/thigh than polymyxin B
(Supplementary Fig. 4). Considering the superior safety profile of
F365 and its lack of binding to lung surfactant, we further
examined its efficacy against polymyxin-resistant isolates of P.
aeruginosa, A. baumannii, and mcr-1 positive K. pneumoniae in
the neutropenic mouse pneumonia model (Fig. 3d–f; MICs are
shown in Supplementary Table 3). Pleasingly, F365 (240 mg/kg/d
subcutaneously) displayed significant bacterial killing (up to 4.65
log10 reduction in CFU/lung) against the polymyxin-resistant
isolates, highlighting the advantage of the increased therapeutic
index and lower lung surfactant binding of F365 to achieve
efficacious drug exposure at the infection site.

Protein binding of F365 in mouse (36%), rat (33%), and
human (45%) plasma were similar and substantially lower than
polymyxin B (95%, 80%, and 68%, respectively). The pharmaco-
kinetics of F365 and polymyxin B in both mice and rats showed
that F365 had a higher total body clearance and shorter half-life
than polymyxin B (Fig. 4a, b and Supplementary Table 4).
However, F365 had a higher free (unbound) drug exposure
(fAUC) in plasma than polymyxin B in mice at 5 mg/kg and also
in rats at 1 mg/kg. In rats we observed higher (>4-fold) urinary
recovery for F365 than polymyxin B, suggesting decreased
reabsorption of F365 by the kidneys (Supplementary Table 4).
We further examined the pharmacokinetics of F365 and
polymyxin B in mouse pulmonary epithelial lining fluid (ELF)
(Supplementary Table 4 and Fig. 4c). After a single subcutaneous
dose of 40 mg/kg, F365 and polymyxin B had very different
concentration-time profiles, with F365 having a 3-fold higher
Cmax, than polymyxin B. While the AUCELF of F365 (86.2 mg·h/L)
was comparable to that of polymyxin B (80.0 mg·h/L), based on
the marked loss of antibacterial activity (87.5%) of polymyxin B

due to binding to lung surfactant (Fig. 2b), the estimated fAUCELF

of F365 would be approximately 8-fold higher than that for
polymyxin B (Supplementary Table 4). Collectively, our results
demonstrated significantly different pharmacokinetics in the
lungs, which explains the much-improved efficacy of F365 in
the mouse pneumonia model, including against polymyxin-
resistant isolates with polymyxin B MICs of 4–8 μg/mL.

Mechanisms of improved activity and reduced nephrotoxicity.
Polymyxins exert their antibacterial effect by disrupting the
Gram-negative outer membrane21. We demonstrated that F365
was able to permeabilize the outer membrane of P. aeruginosa
and inhibit efflux to a greater extent than polymyxin B (Sup-
plementary Fig. 5). We also conducted transcriptomics analyses
to examine the mechanism underlying improved potency of
F365. Treatments of A. baumannii AB5075 with F365, F287,
F319, and colistin induced significant perturbations to bacterial
gene expression in a concentration- and time-dependent manner
(Fig. 5a, b). A low concentration (2 μg/mL) of all lipopeptides
resulted in enhanced cell envelope biogenesis, expression of
membrane transporters, fatty acid degradation, and arginine
metabolism, and reduced trehalose biosynthesis (Fig. 5c). At the
high concentration (8 μg/mL), all lipopeptides caused extensive
transcriptomic perturbations, with approximately 33% and 50%
of the genome differentially expressed at 1 and 4 h, respectively
(Fig. 5b); particularly upregulated biosynthesis of major cell
constituents, carbohydrate, and energy metabolism; and down-
regulated lipid A biosynthesis (lpxC, lpxH, lpxB). Notably, at 8 μg/
mL F365 caused the highest upregulation of fatty acid bio-
synthesis genes (e.g. fabG, fabZ, fabD) (Fig. 5c), indicating that
F365 caused greater membrane destabilization consistent with its
increased potency (Table 1, Fig. 2e–g).

Polymyxin nephrotoxicity is associated with high levels of
accumulation in renal proximal tubular cells in which transpor-
ters (megalin/PEPT/OCTN2) and endocytosis play key roles24.
We have demonstrated that intracellular accumulation of
polymyxin B and colistin results in oxidative stress and
apoptosis25. Here we examined the impact of the synthetic
lipopeptides F365, F287, F319, polymyxin B, and colistin on the
transcriptomes of human HK-2 cells (Fig. 5d–f). At 100 μM,
polymyxin B, colistin, F287, and F319 significantly changed the
expression of 1576, 1282, 1076, and 763 genes, respectively, while
F365 only changed the expression of 70 genes (Fig. 6a). Gene
expression following treatment with polymyxin B, colistin, F287,
or F319 are close to each other, but are well segregated from F365
and the untreated control in the Principal Component Analysis
plot (Fig. 5d). Consistently, F365 had a relatively low similarity
(0.78-0.82, semantic analysis) of perturbed gene ontology
compared with polymyxin B, colistin, F287, and F319. Polymyxin
B and colistin caused the most significant transcriptomic
perturbations (Fig. 5e). Notably, all lipopeptides except F365
altered the expression of potassium channels (Fig. 5f), including
KCNJ16 (inwardly rectifying potassium channel Kir5.1). Further-
more, F365 had no effect on cell viability of HK-2 cells or
KCNJ16 knockout, while KCNJ16 knockout protected HK-2 cells
against 24 h treatment with all other lipopeptides (Fig. 6b). These
results are consistent with our recent CRISPR screen findings
where KCNJ16 was top-ranked in mediating polymyxin-induced
toxicity in HK-2 cells26. All lipopeptides except F365 repressed
the expression of key endocytic genes (Fig. 5f), but upregulated
HSC70 chaperone genes associated with clathrin coat disassem-
bly. Overall, F365 caused minimum perturbations to HK-2
transcriptome compared to polymyxin B, colistin, F287, and
F319 (Fig. 6c), consistent with its significantly reduced
nephrotoxicity.
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Matrix enhanced-surface-assisted laser desorption/ionization
mass spectrometry (ME-SALDI-MS) imaging revealed very
different distribution, accumulation, and metabolism of F365
compared to polymyxin B and colistin in mouse kidney tissues
(Fig. 7). MS signals corresponding to the [M+ K]+ and
[M+Na]+ molecular ions for each lipopeptide were observed
in the kidney tissue samples. Polymyxin B1/B2 and colistin A/B
had a similar level of distribution in both cortical and medullary
regions; whereas F365 was primarily in the cortex with very little
medullary distribution (Fig. 7a, b). Concentrations of polymyxin
B1/B2 (38.2 and 70.9 µM, respectively) and colistin A/B (86.7 and
140.8 µM) in the cortex region were ~2–7 fold higher than F365
(20.8 µM) (Fig. 7b). Ion signals were observed for putative
metabolites (M1, M2, M3) of polymyxin B1, colistin, and F365
that lacked the N-terminal region (Fig. 7c, Supplementary Figs. 6,
7). Polymyxin B2 and colistin B appeared to undergo less
metabolism than polymyxin B1 and colistin A, respectively
(Supplementary Fig. 7). This potentially explains the differences
in the concentrations observed here for polymyxin B1/B2 and
colistin A/B in the kidney tissue. Metabolism of F365 in the
kidneys differed from polymyxin B and colistin, with M3 being
the major metabolite and no M1 metabolite detected (Fig. 7c and
Supplementary Fig. 7). Collectively, the pharmacokinetic and

mechanistic results show that the very low potential for
nephrotoxicity of F365 is a combination of less kidney
reabsorption (and accumulation in tubular cells) and less
intracellular toxicity.

F365 safety in a primate model. To further evaluate the safety of
F365, a 14-day repeat-dose GLP toxicology study was undertaken
in cynomolgus monkeys (Supplementary Table 5). F365 was well
tolerated with no adverse clinical signs, including signs of acute
toxicity, observed at any dose level. Kidney histopathological
results revealed minimal tubular degeneration in 2 of 8 monkeys
at the dose of 20 mg/kg/day; and minimal (4 of 8 monkeys), mild
(1 of 8 monkeys), and moderate (1 of 8 monkeys) tubular
degeneration at the highest examined dose of 50 mg/kg/day.
Histopathological changes correlated with elevated serum crea-
tinine and urea in 2 of 8 monkeys that received 50 mg/kg/day for
14 days. From these findings above, the No-Observed-Adverse-
Effect-Level (NOAEL) for F365 was considered to be at least
20 mg/kg/day. It has been previously reported that polymyxin B
administered to female cynomolgus monkeys at 3.8 mg/kg/12 h
(7.6 mg/kg/day) for a shorter time period of 7 days, showed
increased histological damage in all test animals along with mild
increases in serum creatinine and blood urea nitrogen
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29234-3

8 NATURE COMMUNICATIONS |         (2022) 13:1625 | https://doi.org/10.1038/s41467-022-29234-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


concentrations27. In patients, the maximum recommended dose
for intravenous polymyxin B is 2.5 mg/kg/day, with nephrotoxi-
city and acute toxicity being observed at these doses12,28–30. Based
on allometric scaling and the No-Observed-Adverse-Effect-Level
(NOAEL)31 in monkeys of 20 mg/kg/day from our 14-day GLP
toxicity study of F365, it is estimated that F365 can be safely
administered to patients at a dose of at least 6.5 mg/kg/day
without any acute toxicity or nephrotoxicity.

Discussion
Developing safer, potent polymyxin lipopeptides is very challen-
ging due to the complex interrelationships between structure and
antibacterial activity, nephrotoxicity, acute toxicity, lung drug
exposure, and lung surfactant binding19. There have been efforts
to address their pharmacological liabilities with the development
of new polymyxin analogs derived from polymyxin B and
colistin8,17–22,32–34. While many novel polymyxin B and colistin
derivatives have been generated using this approach, very few
have entered clinical evaluation19,35. The polymyxin B analog
SPR206 has successfully completed a Phase 1 study of both single-
and multipleascending dose cohorts35. While no nephrotoxicity
was observed at up to 100 mg q8h in the multiple-ascending dose
cohort, neurotoxicity at single doses exceeding 200 mg was
observed35. These drug development efforts have primarily
focused on modification of the N-terminus of the polymyxin B

and colistin scaffold with very limited exploration of the
remaining lipopeptide scaffold, especially the cyclic ring19,21.
Furthermore, previous polymyxin drug discovery programs have
traditionally relied on cell-based assays using human kidney cells
to screen for nephrotoxicity. However, there is a growing con-
sensus that the results from these in vitro cytotoxicity assays do
not translate to in vivo models and are not able to reliably dif-
ferentiate the nephrotoxicity of different polymyxins16,22,32. To
address this, our group was the first to develop a mouse model to
screen for potential nephrotoxicity16, which was also utilized in
this work. Finally, while previous polymyxin drug discovery
efforts have focused on trying to ameliorate nephrotoxicity, this
has been done without also targeting acute toxicity and the high
lung surfactant binding.

Our approach of systematically modifying multiple positions
throughout the polymyxin scaffold, while optimizing for multiple
parameters (antibacterial activity, nephrotoxicity, acute toxicity,
lung drug exposure, and lung surfactant binding) concomitantly,
represents a different strategy for the discovery of new poly-
myxin lipopeptides. This is the first time that positions 6 and 7 in
the polymyxin scaffold have been specifically targeted to mod-
ulate their pharmacological properties. As a result, we identified
several new structural hotspots driving antimicrobial activity
(positions 6 and 7), nephrotoxicity (positions 3, 6, and 7), acute
toxicity (N-terminal fatty-acyl group), and lung surfactant
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Fig. 4 Pharmacokinetics of F365 and polymyxin B in rodents. a Plasma concentration versus time profiles of F365 and polymyxin B (n= 3 mice) following
an intraperitoneal dose (5 mg/kg) in mice. b Plasma concentration versus time profiles of F365 (n= 5 rats) and polymyxin B (n= 11 rats) following an
intravenous dose (1 mg/kg) in rats. c ELF concentration versus time profiles following a subcutaneous dose (40mg/kg) in mice (n= 3 mice). All data are
shown as mean ± s.d.
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binding (N-terminus and position 7). Additionally, our results
highlight how narrow the chemical space can be for exploring
modifications to the polymyxin scaffold when optimizing for
multiple parameters simultaneously. Optimizing the combina-
tion of modifications at all the positions targeted (N-terminus,
positions 3, 6, and 7) was critical for providing lipopeptides with
the best balance between potency and toxicity. Subtle structural
changes to individual positions of the lipopeptide scaffold could
cause pronounced changes to activity and toxicity. This was
nicely exemplified by simply changing the positions of the
chloro-substituents in the phenyl ring at the N-terminus,
whereby going from the 2,4-dichloro substitution (F365) to the
2,6-dichloro substitution (F360), resulted in a significant
decrease in potency, but did not impact nephrotoxicity (F360 vs
F365 in Table 1). However, going from the 2,4-dichloro sub-
stitution (F365) to the 3,5-dichloro substitution (F381) main-
tained potency but increased nephrotoxicity and acute toxicity
(F365 vs F381 Table 1 and Fig. 2c). Similarly, switching of the
stereochemistry of a Dab or Dap residue at position 3 from the
L- to D-stereoisomer led to increased nephrotoxicity, without

impacting potency (e.g. F085 vs F100 and F251 vs F300 in
Table 1). The findings here indicate that along with hydro-
phobicity, molecular conformation may also play an important
role in polymyxin activity and toxicities.

Importantly, for the first time, we have been able to structurally
disconnect the antimicrobial activity from nephrotoxicity, acute
toxicity, and lung surfactant binding to develop a synthetic
lipopeptide that is pharmacologically distinct from the existing
polymyxin drugs. The improved activity, safety, and minimal
lung-surfactant binding of F365 allowed us to achieve sufficient
drug exposure following parenteral administration to target lung
infections, even those caused by polymyxin-resistant Gram-
negative isolates. Considering the increased potency and efficacy,
decreased acute toxicity and nephrotoxicity, and the higher
unbound lung exposure, F365 represents a promising synthetic
lipopeptide drug candidate for targeting problematic
carbapenem-resistant pulmonary infections in humans. To this
end, F365, now known as QPX9003, has completed IND-
enabling studies and has commenced Phase 1 clinical develop-
ment (NCT04808414).
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Fig. 5 Gene expression changes in A. baumannii AB5075 and HK-2 following treatments with polymyxin B (PMB, HK-2 only), colistin (COL), F287,
F319 and F365. a PCA plot of gene expression in A. baumannii AB5075. b Gene expression changes in A. baumannii AB5075 following treatments with
colistin and synthetic lipopeptides at low (L) and high (H) concentrations at 1 and 4 h (n= 3 biologically independent samples). Data from innermost-to-
outermost circles are the average values of normalized read abundance (FPKM) under all treatments, gene names, and heatmap of gene expression
changes (linear model and empirical Bayes statistics for differential expression in limma package, fold change≥ 2, FDR-adjusted P-value≤ 0.05). Enlarged
for details. c Heatmap of key gene expression changes and average values of normalized read abundance (FPKM, in log10 scale) under all treatments.
Groups of genes: (A) respiration; (B) fatty acid biosynthesis; (C) fatty acid degradation; (D) aromatic compound degradation; (E) lipid A biosynthesis.
d PCA plot of gene expression in HK-2. e Gene expression changes in HK-2 cells following treatments with colistin and synthetic lipopeptides at 24 h (n= 3
biologically independent samples). Data from innermost-to-outermost circles are gene regulation pairs from Signor database, averaged read abundance
(FPKM), critical genes of polymyxin toxicity identified by previous CRISPR screening27, chromosome cytotypes, and heatmap of gene expression changes
(linear model and empirical Bayes statistics for differential expression in limma package, fold change≥ 1.5, FDR-adjusted P-value < 0.05) under treatments
with polymyxin B, colistin, F287, F319, and F365, with insignificant genes indicated by gray. Enlarged for detail. f Heatmap of key gene expression changes
and averaged values of normalized read abundance (FPKM, in log10 scale) under all treatments. Groups of genes: (A) metallothionein; (B) apoptosis; (C)
mitochondrial respiratory chain; (D) endocytosis; (E) ion channels; (F) ubiquitination; (G) cell proliferation; (H) SLC transporter family. Fig. 5c, f share the
same Log2FC scale bar. Source data are provided as a Source Data file.
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Methods
Materials. Polymyxin B sulfate and colistin sulfate were obtained from BetaPharm
(Shanghai, China). The isolation of purified polymyxin B1 and polymyxin B2,
colistin A and B from commercial preparations of polymyxin B and colistin,
respectively, was conducted as previously described16.

Modeling of the polymyxin B and F365-Lipid A complex. The methodology used
for the construction of the models of polymyxin B and F365 in complex with Kdo-
lipid has been previously described by our group36.

Lipopeptide synthesis. The general methodology used for the preparation of the
synthetic lipopeptides has been previously reported by our group37. A full
description of the materials used, synthesis protocol, and analytical data obtained
are presented in the Supplementary Information.

Measurements of minimum inhibitory concentrations (MICs). MICs were
determined in cation-adjusted Mueller–Hinton broth (CaMHB) by the broth
micro-dilution method against ATCC strains and clinical isolates16. MICs in the
presence of Survanta® were determined as described above against P. aeruginosa
ATCC 27853. In the 100 μL of fresh CaMHB containing polymyxins, 10% Sur-
vanta® (v/v, 2.5 mg/mL phospholipids) was added. MICs in the presence and
absence of Survanta® were compared to determine the effect of binding to lung
surfactant on the antibacterial activity of polymyxins.

In vitro permeabilization and efflux inhibition assays. Bacterial strains were
seeded in 50 mL of Luria-Bertani (LB) broth at OD600 0.05 and grown at 37 °C for
3-4 h until an OD600 of 0.6–0.8 was achieved. Bacterial cells were washed twice with
25 mL of buffer (50 mM sodium phosphate, 0.5% glucose, pH 7, with or without
1 mM Mg2+), resuspended in 10 mL of the buffer, and then adjusted to an OD600

of 0.4. F365 and polymyxin B (n= 3) were titrated in 2-fold dilutions starting with
40 μg/mL in 50 μL of buffer; 50 μL of the substrate (4 × nitrocefin or Leu-Nap) at
256 μg/mL in buffer was added to each concertation followed dilution with 50 μL of

Fig. 6 Transcriptomic changes in human kidney proximal tubular HK-2 cells following treatments with polymyxin B (PMB), colistin (COL), F287, F319,
and F365. a Numbers of differentially expressed genes. Distinctive intersections are color-coded. b Cell viability difference (two-tailed Student’s t-test,
n= 4 biologically independent cells, Benjamini–Hochberg adjusted P-values) between wild-type HK-2 and KCNJ16 knockout (KO) cells following 24 h
treatment with lipopeptides. n.s., not significant; *adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.001. Data are shown as mean ± s.d. and individual
data points. c Extracted transcriptional regulatory network from Signor database with 1-step neighbor constraints (enlarged for detail). Source data are
provided as a Source Data file.
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Fig. 7 ME-SALDI-MS imaging of polymyxin distribution, accumulation, and metabolism in mouse kidneys. Mice (n= 3) were administered lipopeptides
(10 μmol/kg) subcutaneously, 6 doses (2-h interval) on Day 1 and 3 doses (2-h interval) on Day 2. Histological examination revealed that all the kidneys
exposed to polymyxin B1, polymyxin B2, colistin A, and colistin B had severe microscopic damage with SQS scores up to +5; whereas the kidneys exposed
to F365 showed no significant microscopic damage and were not graded for damage. a Representative cryo-images of mouse kidney tissue sections after
treatment with polymyxin B1, colistin A, F365, and saline control; and the corresponding ME-SALDI-MS image of the tissue sections after scanning for the
parent ions [M+ K]+ for polymyxin B1, colistin A, F365, respectively. b Representative ME-SALDI-MS images highlighting the distribution and
accumulation of polymyxin B1, polymyxin B2, colistin A, colistin B, and F365 in mouse kidney tissue. c Representative ME-SALDI-MS images showing the
distribution and accumulation of F365 and its metabolites M2 and M3 in mouse kidney tissue after treatment. All ME-SALDI-MS images were normalized
to total ion count based on the highest intensity peak across each tissue section and its corresponding concentration curve. Selected lipopeptide-related
ions are displayed with a scale between 0 and 40% relative to the highest intensity peak in the summed spectrum of the whole tissue. A default color
intensity gradient is used to visualize and differentiate low concentrations (purple to blue), mid-range concentrations (green to yellow), and high
concentrations (orange to red) of lipopeptide disposition.
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the buffer. Bacterial suspension (50 μL, OD600 0.4) in buffer was added to the
lipopeptide solutions and the rate of substrate hydrolysis was measured at 490 nm.

In vitro passaging. Log-phase cultures (OD600= 0.5, ~108 CFU/mL) of A. bau-
mannii AB5075 were inoculated (1:10, v/v) in 200 μL fresh CaMHB (cation-
adjusted Mueller–Hinton broth) containing 2, 8 and 16 μg/mL polymyxin B,
colistin, F287, and F365 in a 96-well microplate with 4 biological replicates. The
cultures were incubated at 37 °C for 12 h before the next dilution (1:10, v/v) with
fresh CaMHB. Successive subculturing was conducted for 7 days.

Animal experiments. All animal studies conducted by Monash University and
Qpex Biopharma were approved by the Monash Animal Ethics Committee and
Qpex Institutional Animal Care and Use Committee, respectively. Mice were
housed in micro-isolators in a PC2 animal laboratory with a 12 h/12 h (6 pm, 6 am)
dark/light cycle; the room temperature was controlled between 20 and 24 °C and a
relative ambient humidity was between 50-70%.

Acute toxicity in mice. Lipopeptide solutions were prepared in 0.9% saline and
stored at 4 °C before use. Swiss mice (female, 7-week-old, 22–28 g) were used in the
study. A mouse was administered an intravenous bolus of the lipopeptide (mg/kg
free base) through a lateral tail vein (≤0.1 mL). After the injection, the mouse was
released back into the cage and monitored for clinical signs of toxicity from 0 to
24 h after injection as follows: every 10 min in the first 2 h, every half hour from 2
to 4 h, every hour from 4 to 12 h, and every 2 h from 12 to 24 h. If the mouse
displayed any sign of toxicity, the mouse was humanely sacrificed immediately
according to the recommended Euthanasia/Humane Experimental Endpoint Cri-
teria. The maximum dose (mg of free base per kg) that did not cause any side effect
was regarded as the MTD (n= 4).

Nephrotoxicity in mice. The experimental methodology has been previously
reported by our group16. Briefly, individual lipopeptide solutions were prepared in
sterile saline (6 mg/mL). Swiss mice (female, 7-week-old, 22–28 g) were sub-
cutaneously administered at 12 mg/kg in, 6 doses every 2 h to reach a total dose of
72 mg/kg (n= 3). For high-dose nephrotoxicity experiments, mice were intraper-
itoneally administered at 20 or 25 mg/kg, in 6 doses every 2 h to reach a total dose
of 120 mg/kg (n= 6) or 150 mg/kg (n= 3). At 20 h after the last dose, the right
kidney from each mouse was collected and placed in 10% buffered (pH 7.4) for-
malin (Sigma-Aldrich, Castle Hill, NSW, Australia). The kidneys were subjected to
histological examination at the Australian Phenomics Network-Histopathology
and Organ Pathology (University of Melbourne, Parkville, VIC, Australia), who
was blind to the treatment groups16.

Neutropenic mouse bloodstream infection model. The experimental metho-
dology for the neutropenic mouse bloodstream infection model was described
previously16. Briefly, 7-week-old female Swiss mice (22–28 g) were rendered neu-
tropenic by intraperitoneal administration of cyclophosphamide, 4 days (150 mg/
kg) and 1 day (100 mg/kg) prior to inoculation. Bloodstream infection was estab-
lished by intravenous administration of a 50 µL bolus of early log-phase bacterial
suspension (4 × 108 CFU/mL). Lipopeptide solutions were prepared at 1 mg/mL
(free base) in sterile saline. At 2 h after inoculation, mice (n= 3) were injected
intravenously with lipopeptide solution at 4 mg/kg (free base) or saline control. At
0 and 4 h after administration, blood was collected, diluted serially in sterile saline,
and plated on nutrient agar plates. Agar plates were incubated at 37 °C overnight
for bacterial colony counting and the bacterial load in the blood (log10 CFU/mL) in
each mouse was calculated. In vivo efficacy was calculated as the difference of the
log10 CFU/mL blood values between the treated mice and the saline-treated mice at
4 h post dosing (Δlog10 CFU/mL blood= log10 [treated] CFU/mL blood−
log10[control] CFU/mL blood).

Neutropenic mouse pneumonia model. The experimental methodology for the
neutropenic mouse lung infection model was previously described in detail13.
Briefly, Swiss mice (female, 7-week-old, 22–28 g) were rendered neutropenic by
intraperitoneal administration of cyclophosphamide, 4 days (150 mg/kg) and 1 day
(100 mg/kg) prior to inoculation. Lung infection was established by the adminis-
tration of 25 µL of early log-phase bacterial suspension (polymyxin-susceptible or
resistant isolate, 4 × 107 CFU/mL), directly into the lungs via the trachea using a
MicroSprayer™ device. Lipopeptide solutions were prepared in sterile saline. At 2 h
after inoculation, mice (n= 3 or 4) were administered lipopeptide (45–240mg/kg/d
free base) or control (sterile saline) via an intraperitoneal or subcutaneous bolus
injection in three divided doses every 8 h. At 0 or 24 h after the administration of
lipopeptide solution or saline (control), animals were euthanized and lungs were
collected and homogenized under sterile conditions. Homogenate was filtered and
the filtrate was collected, serially diluted in sterile saline, and spread on nutrient agar
plates. Agar plates were incubated at 37 °C overnight for bacterial colony counting
and the bacterial load of the lung (log10 CFU/lung) in each mouse was calculated. In
vivo efficacy was calculated as the difference of the log10 CFU/lung values between
the treated mice at 24 h and the pre-treatment (control) at 0 h (Δlog10 CFU/
lung= log10 [treated] CFU/lung− log10 [pre-treatment] CFU/lung).

Neutropenic mouse thigh infection model. The experimental methodology for
the neutropenic mouse thigh infection model was previously described in detail38.
Briefly, Swiss mice (female, 7-week-old, 22–28 g) were rendered neutropenic by
intraperitoneal administration of cyclophosphamide 4 days (150 mg/kg) and 1 day
(100 mg/kg) prior to inoculation. Thigh infection was established by the admin-
istration of a 50 µL bolus of early log-phase bacterial suspension (4 × 108 CFU/mL)
directly into each thigh of two mice in each group (n= 4 thighs); this method is
well accepted in antibiotic pharmacokinetic/ pharmacodynamic studies to mini-
mize animal usage. Lipopeptide solutions were prepared in sterile saline. At 2 h
after inoculation, mice were administered a lipopeptide or control solution via an
intraperitoneal bolus injection at 15 mg/kg, three doses every 8 h. At 0 and 24 h
after the administration, animals were euthanized and each thigh was collected and
homogenized under sterile conditions. Homogenate was filtered and the filtrate was
collected, serially diluted in sterile saline, and spread on nutrient agar plates. Agar
plates were incubated at 37 °C overnight for bacterial colony counting and the
bacterial load of both thighs (log10 CFU/thigh) in each mouse was calculated. In
vivo efficacy was calculated as the difference of the log10 CFU/thigh values between
the treated mice at 24 h and the pre-treatment (control) at 0 h (Δlog10 CFU/
thigh= log10 [treated] CFU/thigh− log10 [pre-treatment] CFU/thigh).

Pharmacokinetic studies. The plasma pharmacokinetic profiles of F365 and
polymyxin B were assessed in Swiss mice (female, 7-week-old, 22–28 g) after a
single intraperitoneal dose (5 mg/kg, n= 3). Blood samples were collected at var-
ious time points over 24 h post dosing for analysis. The plasma pharmacokinetic
profiles of F365 (n= 5) and polymyxin B (1 mg/kg, n= 11) in Sprague-Dawley rats
(male, 10-week-old, 280 to 330 g) were assessed after intravenous administration
(1 min) of F365 and polymyxin B via an indwelling jugular vein cannula. Blood
samples (~0.3 mL) were collected via an indwelling carotid artery cannula at var-
ious time points over 24 h post dosing. Urine samples were collected at 4 °C using a
metabolic cage during the period between 0 and 24 h post dosing. Concentrations
of F365 and polymyxin B in plasma and urine samples were determined using LC-
MS/MS and pharmacokinetic analysis was conducted using WinNonlin (Pharsight
Corp., Mountain View, CA). The ELF pharmacokinetic profiles of F365 and
polymyxin B was determined in neutropenic Swiss mice (female, 7-week-old,
22–28 g) after subcutaneous injection (40 mg/kg, n= 3). Bronchoalveolar lavage
(BAL) samples were collected at various time points over 24 h post dosing from the
cannulated trachea using Milli-Q water as BAL washing media. The average
volume of ELF in mice was calculated by the ratio of urea concentrations in plasma
and BAL samples. Concentrations of F365 and polymyxin B in plasma and BAL
were analyzed by LC-MS/MS. Pharmacokinetic parameters were calculated using a
non-compartment model with WinNonlin. For mouse, rat, and human plasma
protein binding of F365 and polymyxin B, pooled plasma samples (n= 3) from
each species were spiked with F365 or polymyxin B. The spiked plasma samples
were subjected to ultrafiltration and the corresponding filtrates were analyzed by
LC-MS/MS to determine the concentration of F365 and polymyxin B and the
protein binding in each species.

Distribution, accumulation, and metabolism in mouse kidneys. Individual
solutions of polymyxin B, colistin, or F365 were subcutaneously (SC) administered
to Swiss mice (female, 7-week-old, 22–28 g) at 10 μmol/kg, 6 doses on Day 1 and 3
doses on Day 2 at every 2 h (n= 3). At 2 h after the last dose on Day 2, mice were
rapidly euthanized. The left kidney was collected, flash-frozen in liquid nitrogen,
and stored at -80˚C for MS imaging analysis. The right kidney was fixed in 10%
formalin for histological examination (Histopathology and Organ Pathology Unit
at the University of Melbourne). The level of histological damage to the kidneys
was graded as previously described16. The distribution of lipopeptides in kidney
tissues from dosed animals was analyzed by ME-SALDI-MSI on a Shimadzu
MALDI-7090, tandem time-of-flight (TOF)-MS instrument in reflectron positive
mode at a spatial resolution of 50 µm. Validation of the detected lipopeptides was
performed comparing MS/MS analysis results with lipopeptide standards of
polymyxin B1, polymyxin B2, colistin A, colistin B, and F365. MS analysis was
conducted using 5 mg/mL α-cyano-4-hydroxycinnamic acid (α-CHCA) dissolved
in a mixture of 70% acetonitrile and 30% water with 0.1% trifluoroacetic acid
(TFA), mixed 1:1 with purified lipopeptide standards. A total of 1 µL was spotted
onto electrochemically etched, porous-silicon semiconductor substrates for deso-
rption/ionization on silicon (DIOS)39. MS/MS fragmentation experiments were
conducted using an ion selection window of ±1.5 Da and helium as the collision gas
to generate collision-induced dissociation (CID) spectra. For lipopeptide dis-
tribution in mouse kidneys, serially sectioned 8-µm frozen slices of the kidney were
loaded onto DIOS substrates and coated with a thin layer of α-CHCA using a
matrix sprayer (TM-Sprayer, HTX) for MSI analysis. A thin α-CHCA layer was
applied using two spray passes of 5 mg/mL, dissolved as above, at a flow rate of
0.12 mL/min and velocity of 1200 mm/min at 75 °C. Mounted tissue was scanned
for imaging alignment (Epson Perfection V370) and calibrated as previously
described. Resulting polymyxin maps were visualized and normalized against the
total ion current (TIC) of each section using IonView software (Shimadzu).
Lipopeptide accumulation in mouse kidneys was determined by simultaneous ME-
SALDI-MS analysis of kidney tissue from treated animals and serial dilutions of the
drug deposited on control kidney tissue. Two kidney tissue sections (one for the
control and one from the treated kidney sample) were placed on the same DIOS
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substrate for imaging with an adjacent standard curve (12.5–250 µM). The signal
intensities were compared to the corresponding concentration standard curve to
calculate the concentration of lipopeptide present. Putative metabolites in the
kidneys treated with lipopeptides were identified by ME-SALDI-MSI. Control
kidney sections were used to differentiate lipopeptide metabolites from endogenous
metabolites and MS/MS data from lipopeptide standards were used to differentiate
lipopeptide metabolites from the parent ion generated via CID processed in the
acquisition software (MALDI Solutions, Shimadzu). Levels of accumulated lipo-
peptide metabolites were determined by normalization to the parent ion in
MSI data.

Transcriptomic analysis. Mid-log phase A. baumannii AB5075 (~108 CFU/mL) in
CaMHB was treated with colistin (2 and 8 μg/mL), F287, F319 or F365 (equimolar
concentration to colistin) for 1 and 4 h. Total RNA was extracted using TRIzol
Reagent (Invitrogen, USA) and RNeasy Mini Kit (Qiagen, Germany). Quality check
of RNA samples was conducted with NanoDrop (Thermo Fisher Scientific, USA)
and Agilent 2100 Bioanalyzer (Agilent Technologies, USA) for sequencing (150 bp
paired-end) at Genewiz (Shanghai, China). Raw reads were aligned to A. bau-
mannii AB5075 genome (GCF_000963815, https://www.ncbi.nlm.nih.gov/
assembly/GCF_000963815.1/) using subread-aligner (subread 2.0.1) and sum-
marized by featureCounts (subread 2.0.1). Principal component analysis (PCA)
was conducted with mixOmics 6.14.1 in R. Differentially expressed genes were
determined using limma 3.46.0 with a combination of fold change ≥ 2 and false
discovery rate (FDR, by Benjamini–Hochberg algorithm) adjusted P-value ≤ 0.05
(n= 3). Enrichment analysis of gene differential expression in AB5075 was con-
ducted using BioCyc (A. baumannii AB5075, version 25.5). UpSetR 1.4.0, Com-
plexHeatmap 2.6.2 and circlize 0.4.13 were used for data visualization. Raw data
were deposited in Short Reads Archive (SRA) database under accession numbers
SRR15235669-SRR15235725.

Human Kidney-2 (HK-2) cells (CRL-2190™, American Type Culture Collection)
were treated with 100 μM colistin, F287, F319, and F365 for 24 h. Previous
transcriptomic data of HK-2 cells following 24 h treatment with polymyxin B26

were also employed for comparative bioinformatic analysis. RNA extraction was
conducted as described above. Raw reads were aligned to genome GRCh38.94
(Ensembl genome database, http://ftp.ensembl.org/pub/release-94/fasta/
homo_sapiens/dna/) using subjunct and summarized by featureCounts.
Differentially expressed genes were determined using limma 3.46.0, with a
combination of fold change ≥ 1.5 and FDR (by Benjamini–Hochberg algorithm)
adjusted P-value ≤ 0.05 (n= 3). Key regulatory genes of HK-2 were analyzed in the
context of signaling network in the Signor 2.0 database. Enrichment analysis of
gene differential expression in HK-2 cells was conducted using enrichR 2.1. UpSetR
1.4.0, ComplexHeatmap 2.6.2, circlize 0.4.13 and iGraph 1.2.11 were used for data
visualization. Raw data were deposited in the Short Reads Archive database under
accession numbers SRR15239061-SRR15239078.

Toxicology in monkeys. A 14-day repeat-dose GLP toxicology study of F365 was
conducted in Cynomolgus monkeys. The study complied with the OECD Princi-
ples of Good Laboratory Practice. Non-GMP grade F365 HCl salt (95.8% purity)
manufactured by PolyPeptide (San Diego, USA) was used as the test material for
the study. Cynomolgus monkeys were approximately 2–4 years of age and weighed
between 2.0 and 2.9 kg at the start of treatment. Four male and four female
cynomolgus monkeys were used for each dose group. F365 (in 0.9% sodium
chloride for injection) was administered four times daily (i.e. 6 h ± 15 min apart) as
60-min intravenous infusion at 5, 20, and 50 mg/kg/day for 14 consecutive days;
the reference item (vehicle control) was also administered. Assessments of mor-
tality checks, clinical observations, body weight, ophthalmology, and electro-
cardiography were conducted. Blood and urine samples were collected pre-
treatment and at the end of the dosing period for hematology, clinical chemistry,
coagulation, and urinalysis assessments. Other blood samples were collected after
the first and last dose for toxicokinetic assessment. Following the end of the 14-day
dosing period, animals were euthanized on Day 16 and examined macroscopically.
Organ weights and macroscopic observations were recorded at necropsy for all
groups. Histopathological examinations were performed on the specified tissues
and organ list for animals across all groups.

Statistics. All statistical analyses including two-detailed Student’s t-test and one-
way analysis of variance (ANOVA) were performed in R. Differentially expressed
genes were identified using limma package40. For ANOVA, Tukey’s honestly sig-
nificant difference (HSD) post-hoc tests were conducted for pairwise comparisons.
Benjamini–Hochberg procedure was used to FDR adjust P-values in multiple tests.
Unless otherwise stated, all data are shown as mean ± standard deviation (s.d.).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available within the article and the
supplementary information or from the corresponding authors on reasonable request.

Transcriptomics were deposited in the Short Reads Archive database under accession
numbers SRR15235669-SRR15235725 and SRR15239061-SRR15239078. Source data are
provided with this paper.

Code availability
All codes for RNA-Seq data processing and analysis are available at https://doi.org/
10.5281/zenodo.591536941.
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