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Cathepsin B fraction active at physiological pH of 7.5
is of prognostic significance in squamous cell
carcinoma of human lung*
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Summary |In this study we examined both the pH dependence of cathepsin B (cath B) activity and its stability at physiological pH of 7.5 in
lung tumours and normal lung tissue by means of fluorogenic assays with Z-Arg-Arg-AMC as specific substrate. Specificity was verified with
the cath B blocking inhibitors E-64 and CA-074. With respect to pH dependence of activity, we found a deviation from a normal-shaped pH-
activity curve. Besides the typical activity peak at pH 6.0, there were shoulders at pH 4.5-5.5 and at pH 7.0-7.5. This heterogeneity was found
in both tumour and normal tissue. To test the stability of cath B at physiological pH of 7.5, homogenates were kept at pH 7.5 for 60 min.
Altogether, 82-100% of residual cath B activity was found at pH 5.0-5.5, whereas activity in the range between 5.5 and 7.4 dropped
drastically to 26—42%. At pH 7.5, there was still 20—-34% residual cath B activity detectable. To test the hypothesis whether the cath B fraction
active at pH 7.5 is more abundant in tumour tissues compared with the normal counterparts, we determined this fraction in 91 pairs of lung
tumour and normal lung tissue. We found a 2.3-fold increase of median cath B fraction active at pH 7.5 in tumour tissue, although this fraction
represented only a small part (about 16%) of the native, acidic (pH 6.0) cath B activity. However, in contrast to native cath B at 6.0, the cath B
fraction active at pH 7.5 was related to post-operative probability of survival in curatively operated patients, since activity values higher than
292 (LEU mg protein) were significantly associated with poor prognosis in patients with squamous cell carcinomas (n = 33, P= 0.04). It is
concluded that in lung tumour and in normal lung tissue, cath B activity can be divided into at least three fractions with stability optima at
different pH values, indicating various forms of cath B. The cath B fraction active at pH 7.5 provides prognostic information in patients with

squamous cell carcinoma.
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Biochemical studies with purified cathepsin B (cath B; EC
3.4.22.1) revealed a pH optimum at acidic (pH 6.0) and rapid inac-
tivation at alkaline pH (Barrett and Kirschke, 1981; Turk et al,
1994; Kirschke et al, 1995). In most studies, cath B activity was
determined under conditions standardized for the purified enzyme
applying a pH of 6.0 (Barrett and Kirschke, 1981). However, this
test does not accurately account for the physiological situation of
plasma membrane-associated or -secreted cath B, which are
presumably stable and active at physiological pH (Sloane et al,
1994). Numerous studies have focused on the characterization of
cath B from tumours or tumour cells, particularly with respect to
its stability and activity at physiological pH (7.3-7.5). These
studies described cath B from tumours or tumour cells of breast
(Mort et al, 1980; Moin et al, 1992; Buck et al, 1992), colorectum
(Sheahan et al, 1989; Moin et al, 1992) and cervix (Pietras and
Roberts, 1981) as well as from sera of tumour-bearing individuals
(Pietras et al, 1979; Dufek et al, 1984) being active and stable at
pH 7.5. In addition, Buck et al (1992) reported that normal and
tumour-derived cath B degraded large extracellular matrix com-
ponents at neutral pH.
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Cath B was shown to appear in differently charged molecular
forms (isoforms). Smith et al (1988) described six cath B isoforms
with pl between 5.2 and 5.8 in rat pancreas. Ryan et al (1995)
found at least three different charged forms with pls between 4.5
and 5.5 in murine microglia cells. Krepela et al (1995) clearly
demonstrated in human lung (tumour and normal) tissue up to 20
differently charged forms of cath B in the pl range 4.33-5.51.
Charge differences have also been found for the cath B precursor
(Pagano et al, 1989; Werle et al, 1996). However, it is not known
whether differently charged forms of cath B have different traf-
ficking pathways and consequently different subcellular and/or
extracellular distribution. It is also not known whether differently
charged forms are responsible for the observed stability and
activity of cath B at neutral pH, which was reported for tumour-
associated cath B in the literature. The first aim of this study was
to investigate the stability of cath B activities at different pH upon
incubation of tissue homogenates at physiological pH in normal
lung tissue as well as in lung tumours.

Cath B activity was found to be poorly correlated with clinical
prognostic factors, such as histology or anatomical extent of
tumours (Ebert et al, 1994; Ledakis et al, 1996). However,
increased cath B activity (Ebert et al, 1994; Knoch et al, 1994)
and protein content (Inoue et al, 1994; Sukoh et al, 1994a, b) was
associated with poor prognosis in lung carcinoma as well as in
colon carcinoma (Campo et al, 1994). In contrast to our previous
studies, the second aim of this study was to correlate both native
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acidic cath B activity at pH 6.0 and a cath B fraction, which is
stable and active at physiological pH of 7.5 in lung tumour tissue,
to the histopathology and clinical status of the disease. Finally, the
influence of both cath B fractions on the probability of survival of
lung cancer patients was studied.

MATERIALS AND METHODS
Chemicals

The substrate 7-[N-Benzyloxycarbonyl-L-arginyl-L-arginylamido]-
4-methylcoumarin *2HCle H,O (Z-Arg-Arg-AMC) was purchased
from Novabiochem (Laufelfingen, Switzerland). The inhibitor
1-[L-N-(trans-epoxysuccinyl)-leucylJamino-4-guanidinobutan (E-
64) was obtained from Sigma (Deisenhofen, Germany). The
inhibitor propyl amide of epoxysuccinyl-L-Leu-L-Pro-OH (CA-
074) was a gift from Taisho Pharmaceutical Company, Japan. The
protein determination assay was purchased from Biorad (Munich,
Germany). All other chemicals were of analytical grade and were
obtained from commercial sources. The substrate Z-Arg-Arg-
AMC and the inhibitors E-64 and CA-074 (Buttle et al, 1992) were
stored as 10 mM stock solutions in dimethyl sulphoxide (DMSO) at
4°C. They were diluted to appropriate concentration with 0.1%
(w/v) Brij in water before use.

Patients

Non-cancerous lung tissue (normal) and lung tumour tissue were
obtained as paired samples from 91 patients with recognized lung
tumours resected by surgery. The age of patients ranged from 15 to
81 years (mean 58.4 years). The normal tissue was taken from
areas at least 6 cm apart from the tumour. Most of the patients
were smokers. The cell type of lung cancer was classified
according to the WHO protocol and based on the predominant cell
type (World Health Organization, 1981). The tumour disease stage
(pPTNM) was classified according to the international staging
system (Hermanek and Sobin, 1987).

Tissue homogenization

Tissue homogenization was performed as described earlier (Werle
et al, 1995). Briefly, tumour and lung tissue from the same lobe
were frozen in liquid nitrogen immediately upon removal and kept
at —80°C until homogenates were prepared. Lung tumour (0.1-6 g)
and corresponding lung tissue (0.54 g) were thawed, washed with
0.9% sodium chloride solution and homogenized with 7 vol (w/v)
of 50 mM sodium acetate buffer, pH 5.0, containing 100 mM sodium
chloride, 4.0 mM sodium EDTA and 0.1% Triton X-100 (v/v)
(homogenization buffer) in an Ultra-Turrax (Janke und Kunkel,
Staufen, Germany, adapter 18 kg or 10N, 4 x 60 s, 1/1 speed, 4°C).
In order to avoid rise of temperature, homogenization was inter-
rupted after each 30 s. The resulting homogenate was left for a
minimum of 60 min at 4°C. Then, debris was removed by centrifu-
gation in a Sorvall Instrument RC5C, rotor SS-34, at 39 000 x g
for 30 min. The supernatants were filtered through a 0.45-um
sterile filter from Millipore (Eschborn, Germany) and 100-1000 pl
aliquots were made. The aliquots were kept frozen at —80°C.

Determination of protein concentration

Protein concentrations were determined according to Bradford
(1976). Bovine serum albumin was used as a standard.

British Journal of Cancer (1997) 75(8), 1137-1143

Determination of cath B activity

Aliquots of supernatants were thawed, centrifuged for 10 min at
17 000 g in a Heraeus Biofuge 15 R (Heraeus, Osterode, Germany)
and kept at 4°C. Dilutions of aliquots to appropriate protein concen-
tration were made with the homogenization buffer, pH 5.0. A
thawed aliquot was used only once for cath B activity determination.

Cath B activity measurements were done with the substrate
Z-Arg-Arg-AMC according to Barrett and Kirschke (1981) slightly
modified. Briefly, to 100 ul of diluted homogenate (aliquot with
approximately 60 pg of protein), 875 ul of 100 mM phosphate buffer
(potassium hydrogen phosphate/disodium hydrogen phosphate),
pH 6.0 (for stability measurements pH 7.5 was used), 1.35 mm
sodium EDTA and freshly prepared 2.7 mM (final concentration) L-
cysteine base were added and incubated for 5 min at 25 °C. The reac-
tion was started by addition of 25 pl of substrate solution (final
concentration 5 pM). The final test volume was 1 ml. In a control
experiment, E-64 and CA-074 were added in 5 uM final concentra-
tion. The fluorescence of liberated AMC was continuously measured
for 0-20 min in a LS-3B Fluorescence Spectrometer (Perkin-Elmer,
Offenbach, Germany), excitation wavelength 370 nm and emission
wavelength 460 nm.

Enzyme activities were calculated using a standard curve estab-
lished with AMC. One unit of enzyme activity was defined as the
amount of enzyme releasing 1 pmol of AMC per minute at 25°C.
Specific activity was expressed in WEU mg-! protein.

pH optimum of cath B activity

To generate pH profiles for cath B activity, stock buffer solutions
of different pH values were prepared. Buffers used were 100 mm
sodium citrate (pH 3.5-4.0); 100 mM sodium acetate (pH 4.0-6.0);
100 mM sodium phosphate (pH 5.0-8.0) and 100 mM Tris
(pH 8.5-9.5), all containing 1.35 mM sodium EDTA. Aliquots of
the tissue homogenates with approximately 60 pg of protein were
measured with Z-Arg-Arg-AMC in the range of pH 3.5 up to 9.5
as described above.

Stability of cath B at pH 7.5

To test the stability of cath B at pH 7.5, samples (diluted aliquots
with approximately 60 pg of protein) were preincubated for
60 min in 100 mM phosphate buffer, pH 7.5, at 25°C. Residual cath
B activity was measured at pH values in the range 5.0-8.0 in 100
mM sodium phosphate buffer, including 1.35 mM sodium EDTA.
L-cysteine base was added to activate the enzyme (2.7 mM final
concentration) and the actual pH of reaction mixtures was
measured after the addition of tissue extract. Subsequently, cath B
assays were performed as described above. In control experiments,
5 uM E-64 was added to the sample before the activation buffer. In
addition, inhibitor CA-074, 5 um final concentration, was added to
each sample to test the specificity of the reaction (Buttle et al,
1992). Unspecific activities have been subtracted.

Statistical analysis

The results of cath B activity assays in the groups under study are
given as 5%, 50% (median) and 95% percentiles. To compare data
of tumour and lung tissue, we used the two-tailed Wilcoxon’s rank
test. The correlation between activities of native, acidic cath B and
cath B at pH 7.5 was calculated by linear regression analysis and
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Figure 1 pH dependence of native cath B activity. Native cath B activities at
indicated pH were measured with the specific substrate Z-Arg-Arg-AMC at
25°C using the standard assay (Barrett and Kirschke, 1981). Control of
specificity of cath B activity was performed with E-64 (data not shown) and
CA-074 (tumour tissue, O; normal tissue, +) as described in Materials and
methods. A and B show an average of cath B activity in six squamous cell
carcinomas (A, *) and two adenocarcinomas (B, *). Both histological types
were compared with their corresponding normal tissues (J). The data are
presented as relative cath B activities, where the highest activity at the pH
optimum was taken as 100%

the significance of the Spearman rank correlation coefficient was
evaluated by co-variance test. The calculation of survival proba-
bility was performed by the method developed by Kaplan and
Meier (1958). The significance of a relationship between survival
of patients and the levels of the biochemical parameters was based
on the log-rank test using various statistical packages (PC-
Statistik, Topsoft, Germany; SPSS, IL, USA; Statistica, StatSoft,
Germany). The discrimination levels were calculated by the
Critlevel program (Abel et al, 1984).

RESULTS

pH dependence of cath B activity in tissue
homogenates

The pH dependence of the cath B activity in extracts from lung
tumour tissue and normal lung is shown in Figure 1A for six cases
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Figure 2 Stability of cath B activity at pH 7.5. To test the stability of cath B
at physiological pH of 7.5, aliquots were incubated for 60 min in 100 mm
phosphate buffer, pH 7.5, at 256°C. Cath B activity was measured at the
indicated pH values with the specific substrate Z-Arg-Arg-AMC at 25°C.
Control of cath B specificity was performed using specific inhibitors E-64
(data not shown) and CA-074 (data not shown). Higher cath B fraction,
active at pH 7.5, was found in 63 tumour homogenates. A and B show an
average of two squamous cell carcinomas (®) and two adenocarcinomas
(@), both compared with their normal tissues (l). Data are presented as
relative cath B activities, where the highest activity (pH optimum) was
taken as 100%

of squamous cell carcinoma and in Figure 1B for two cases of
adenocarcinoma. In all cases under study, the maximum activity
was observed between pH 6.0 and 6.5. This finding is in accor-
dance with values reported for the purified enzyme (Barrett and
Kirschke, 1981; Willenbrock and Brocklehurst, 1985; Koga et al,
1991). However, curves obtained from the extracts show a three-
phasic profile with the major peak at pH 6.0-6.5 and with shoul-
ders in the acidic (pH 4.5-5.5) and in the neutral to basic range
(pH 7.5-8.0). Interestingly, the last is more pronounced in adeno-
carcinoma. The addition of inhibitors, E-64 or CA-074,
completely inhibited the activity below pH 6.5, but there was still
some activity above this point. This indicates that the activity
measured below pH 6.5 was only caused by cath B, while above
pH 6.5 small amounts of a non-cysteine protease activity were also
measured. These unspecific activities have been subtracted before
performing statistical analyses. There was no qualitative differ-
ence in the pH dependence of the cath B activity between tumour
and normal tissue.
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Stability of cath B activity at pH 7.5

We found considerable amounts of cath B activity after preincuba-
tion of the samples at pH 7.5 for 60 min at 25°C, indicating
stability of cath B in tissue homogenates at physiological pH. This
treatment led to a complete change of pH dependency of cath B
activity. The results of two squamous cell carcinomas and two
adenocarcinomas together with their normal counterparts are
shown in Figure 2A and 2B respectively. Surprisingly, activity in
the pH range of 5.0-5.5 remains at the absolute level (82—-100%)
as in the untreated control (i.e. acidic shoulder). In the pH range
5.5-7.4, the activity was markedly reduced in both types of tissue
from 82-100% to 26-42%. At pH 7.5, there was still 20-34%
residual cath B activity detectable. All activities were sensitive to
E-64 and CA-074. No difference in the profile of pH optimum was
observed between tumour and normal tissues. Also, there was no
significant difference between squamous cell carcinoma and
adenocarcinoma in this respect.

Cath B activity in matched pairs of tumour and normal
lung tissue

Cath B activity was measured in 91 matched pairs of tumour and
normal lung tissue homogenates using two different conditions.
Measurement was done at pH 6.0 following the standard protocol
yielding native, acidic cath B activity and, after preincubation at
pH 7.5 for 60 min, with a slightly modified procedure yielding a
cath B fraction active at pH 7.5. The results are listed in Table 1. In
comparison with the normal counterpart, we found a 5.4-fold
increase (P < 0.001) of native, acidic cath B and a 2.3-fold increase
(P <0.001) of the cath B fraction active at pH 7.5 in tumour
tissues. In 89 out of the 91 tumour homogenates, there was a higher

native, acidic cath B activity than in the corresponding lung
homogenates. In 63 out of the 91 specimens, the cath B fraction at
pH 7.5 was increased. Nevertheless, native, acidic cath B activity
was always higher than the cath B fraction at pH 7.5. The increase
in native, acidic cath B activity in tumour tissue was 6.1-fold
(P <0.001) and in normal tissue 2.6-fold (P < 0.001) compared
with the cath B fraction at pH 7.5. Therefore, the increase in
tumour-associated cath B activity is mainly related to acidic cath
B, active at pH 6.0, rather than to cath B active at pH 7.5.

Correlation of cath B activity with clinical and
histopathological parameters

To establish a potential clinical relevance of the native, acidic as
well as the cath B fraction at pH 7.5, we compared the results of
activity measurement with classical clinical factors of prognostic
significance (Table 1). With regard to histological cell type, we
only found minor differences in the cath B activities. However,
squamous cell carcinomas showed the highest tumour—lung ratio in
both cath B fractions. Poorly differentiated carcinomas had non-
significantly higher cath B activities than moderately or well-
differentiated tumours. No correlation was found between cath B
activities and TNM stages (data not shown). Furthermore, we
found only a non-significant difference of both activities between
male and female patients. To evaluate the influence of patients’ age
on cath B activities, we subdivided the study population into four
classes owing to the extremely wide range from 15 to 81 years.
Class I (< 35 years), class II (35-55 years), class III (5665 years)
and class IV (> 65 years) consisted of 5, 24, 39 and 23 patients
respectively. There was no significant correlation of both cath B
activities with age. Also, no significant association with age could
be demonstrated when considering only the 62 male patients.

Table 1 Specific activities of cathepsin B in pairs of lung tumour tissue and normal lung parenchyma

Native, acidic cath B, pH 6.0

Cath B, active at pH 7.5

(LEU mg-' protein) (LEU mg' protein)
Tumour Normal Tumour Normal
P-value n median median Tu/Lue P-value median median  Tu/Lu
(5%, 95%) (5%, 95%) median (5%, 95%) (5%, 95%) median
Normal lung tissue (total) 91 264 101
(63, 960) (28, 432)
Lung tumour tissue (total) <0.01 91 1423 54 < 0.01 232 2.3
(357, 4217) (30, 1460)
Squamous cell carcinoma < 0.01 35 1664 242 6.9 <0.01 232 94 25
(321, 4267) (63, 1058) (27, 1856) (29, 444)
Adenocarcinoma <0.01 25 1423 270 5.3 <0.01 292 125 23
(609, 3100) (64, 1142) (124, 698) (35, 497)
Large-cell carcinoma NS 4 2087 437 4.8 NS 204 175 1.2
(1568, 4217) (389, 594) (75,910) (90, 240)
Others <0.01 9 511 273 1.9 NS 125 70 1.8
(221, 5248) (56, 492) (15,3304) (30, 127)
Metastases to the lung < 0.01 18 1024 239 4.3 <0.05 171 95 1.8
(360, 3201) (96, 547) (41,822) (30, 200)
Well or moderately differentiated (G1 or G2)° 28 1247 223
(449, 3126) (22, 1262)
Poorly differentiated (G3) 62 1453 235
(357, 4217) (33, 1460)

The values are further subdivided according to histology and cell differentiation. 2Median value of the ratio of specific cath B activities in tumour tissue (Tu) vs
specific cath B activities in normal tissue (Lu). *Addition of subgroups is not equal to 91, because Gx categories could not be assessed. NS, not significant.
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Table 2 Association between cath B activities and probability of survival in
patients with non-small-cell lung cancer

n pH 6.0 pH7.5

Critlevel (LEU mg-" protein) <1081 vs <292 vs
> 1081 > 292

Non-small-cell lung cancer 53 0.21 NS 0.06 NS
Squamous cell carcinomas 33 0.10 NS 0.04S

Adenocarcinomas 20 0.80 NS 0.60 NS

NS, not significant; S, significant. The group non-small-cell lung cancer
consisted of 33 squamous cell carcinomas and 20 adenocarcinomas. Two
patients with squamous cell carcinoma and five patients with
adenocarcinoma could not be included in the survival analyses because their
death was not caused by the cancer.

Correlation of native, acidic cath B with cath B active at
pH7.5

In squamous cell carcinoma as well as in adenocarcinoma, native,
acidic cath B was positively correlated with the cath B fraction
active at pH 7.5 (n=35, r=0.65, P<0.001; n=25, r=0.47,
P < 0.05 respectively). A positive correlation was also found in the
corresponding normal lung parenchyma of squamous cell carci-
nomas and adenocarcinomas (n = 35, r = 0.92, P < 0.0001; n = 25,
r =0.85, P < 0.0001 respectively)

Association of cath B activity with survival probability

To compare both native, acidic cath B and cath B active at pH 7.5
with survival probability of patients, we performed univariate
Kaplan—Meier analyses (Table 2). In contrast to native, acidic cath
B, we found a prognostic significant influence of the cath B frac-
tion at pH 7.5 on 2 years’ survival only in patients with squamous
cell carcinoma (P = 0.04). There was no significant association of
both cath B activities and the survival probability of patients with
adenocarcinoma. Remarkably, 90% of the values of cath B active
at pH 7.5 in normal lung homogenates were below the value of 292
(LEU mg-! protein), which we used as the discrimination level for
survival analyses in tumour samples. Figure 3A and B shows the
Kaplan—Meier-plots concerning these data.

DISCUSSION

Cathepsin B is characterized as a cysteine protease, optimally
active against synthetic substrates at pH 6.0-6.5. Above pH 7.0,
the purified enzyme becomes rapidly inactivated in vitro (Turk et
al, 1994; Kirschke et al, 1995). Considering its possible role in
extralysosomal and extracellular proteolysis in tumour develop-
ment and progression, it was speculated that some molecular
forms of cath B are stable and active at physiological pH around
7.5 (Mort et al, 1980; Pagano et al, 1989; Sheahan et al, 1989;
Moin et al, 1992). Therefore, we analysed cath B activities in
tumour and normal tissue extracts from human lungs obtained at
surgery, at different pH values. As we found no qualitative differ-
ences in the pH activity profiles between tumour and normal
tissues, we conclude that a tumour-specific cath B molecular
form(s) with a pH optimum at neutral to alkaline pH is unlikely to
exist. However, besides the major peak at pH 6.0, there were
shoulders at pH 4.5-5.5 and at pH 7.0~7.5, indicating multiple
isoforms of cath B.
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Figure 3 Probability of overall survival of patients with squamous cell
carcinoma (A) and adenocarcinoma (B) in relation to tumour-associated cath
B activities determined at pH 7.5 (cath B fraction enzymatically active at

pH 7.5). The Critlevel program (Abel et al, 1984) calculated discriminative
values of 1081 (LEU mg-! protein) for native, pH 6.0 and 292 (LEU mg-'
protein) for pH 7.5. Ninety per cent of the activity values of pH 7.5-active
cath B in lung homogenates were below the cut-off value of 292 (LEU mg-'
protein)

Incubating homogenates of tumour tissue and normal lung at pH
7.5 for 60 min, a marked change in the pH profile of cath B was
observed (Figure 2A and B): the activity at pH about 5.0 remained
constant, while the activity at pH 6.0-6.5 decreased considerably,
and there was still activity at pH 7.5. These differential stability of
cath B activities at various pH may be explained either by the exis-
tence of natural mutants of cath B being more or less stable at
physiological pH and/or by the binding of cath B to the endo-
genous protease inhibitors.

Polgar and Csoma (1987) and Koga et al (1991) reported on a
broad substrate specificity of cath B being dependent on pH. It was
found that dipeptidyl-carboxypeptidase activity has its optimum at
intralysosomal pH of 4.7-4.8, while the optimum for endopepti-
dase activity was at pH 6.0. Larger protein substrates were also
hydrolyzed by normal and tumour cath B at pH 7.5 (Lah et al,
1989; Buck et al, 1992). It was speculated that the endo- vs
exopeptidase activity of cath B was regulated by a pH-dependent
conformational change in the active site of cath B. Different
isoforms (charged forms) of cath B may therefore not be the only
ones responsible for the change in substrate specificity. This is
further supported by the findings of Deval et al (1990) who
demonstrated two different purified isoforms of cath B with very
similar pH optimum profiles, and that one single isolated isoform
of cath B may display a pH profile with ‘shoulders’ in the acidic
and in the slightly alkaline range. Hasnain et al (1992) found that
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the double mutant of rat cath B (S115A, Q255 term) appeared as a
single major form after isoelectrical focusing with a pH profile
similar to that reported in this study.

On the other hand, native biosynthetic variants of cath B may be
present, differing in glycosylation, phosphorylation and/or
COOH-terminal processing, and they may have different pH
stability. Hasnain et al (1992) clearly demonstrated that a highly
glycosylated cath B variant had a three times lower activity
(k. /K ) than a minor glycosylated cath B variant. Thus, one can
also hyphothesize on the existence of different cath B configura-
tional isomeres (i.e. charged forms). Finally, the differential pH
stability may also be explained by the formation of complexes of
cath B with endogenous protease inhibitors, which may stabilize
cath B at physiological pH. For example, cath B—o,,-macroglob-
ulin complex, if present, would exhibit the activity against small
peptide substrates (Starkey et al, 1973), while possible complexes
with kininogens may also stabilize and release cath B during the
pretreatment and the activity measurement (Machleidt et al, 1988).

The fraction of cath B stable and active at physiological pH 7.5
prompted us to test the hypothesis that this pH 7.5-active cath B
fraction is relatively more abundant in tumour compared with
normal lung tissue. We determined the activity of the cath B frac-
tion at pH 7.5 in comparison with native, acidic cath B at pH 6.0 in
91 pairs of lung tumour and normal lung tissue.

Our results clearly demonstrate that the cath B fraction at pH 7.5
is about twofold higher in lung tumour tissue compared with the
adjacent normal lung. However, the increase in native, acidic cath
B in lung tumour tissue considerably exceeded that of cath B at
pH 7.5 by a factor of 2.4. The high increase in native, acidic cath B
is in accordance with our previous results (Ebert et al, 1994; Werle
et al, 1995; Ledakis et al, 1996) as well as with those reported by
Krepela et al (1990) and Sedo et al (1991). However, Krepela et al
(1995) later on reported that the about twofold and 2.7-fold
increase in cath B activity levels in matched pairs of 40 squamous
cell carcinoma and nine adenocarcinoma, respectively, was not
statistically significant. This inconsistency may be caused by the
variations in the levels of the endogenous cath B inhibitors in the
tissue homogenates. Our previous study in lung tumour homo-
genates (Knoch et al, 1994) provided evidence that cystatins
cannot neutralize completely the cath B activities, owing to lower
affinity of the cystatins for cath B compared with other cysteine
cathepsins. The cath B activity, as determined in our experimental
system, should be considered as apparent, as the absolute amount
of active cath B fraction cannot be estimated, mostly as a result of
the dynamic balance between the cath B and the inhibitors on the
one hand and on the other hand between cystatins and other
cysteine cathepsins; also, the extent of the possible activation of
cath B precursor and the possible competition between endogenous
protease inhibitors and the synthetic substrate during the enzymatic
reaction (Machleidt et al, 1988). It should be mentioned that our
activity measurement was performed with a substrate concentra-
tion of 5 uM following the protocol of Barrett and Kirschke (1981)
that is far below optimal conditions. Determination of Voo Will
increase activity values combined with minor influences by
cysteine protease inhibitors. However, the linearity of the v
(initial)/time was assured, and therefore the substrate was not used
up during the short reaction time. Furthermore, the size of study
did not allow such an exhaustive measurement.

Our results on cath B activity at physiological pH in 91 matched
pairs of lung tumours can only be compared with one such study in
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matched pairs of colorectal tumours (Sheahan et al, 1989), who
found that the tumour cath B activity at pH 8.0 was more stable
than in adjacent colon tissue.

In our study, neither the acidic cath B activity nor the minor
fraction of alkaline-stable cath B activity at pH 7.5 correlated with
clinical and histopathological parameters associated with tumour
progression. The association of native, acidic cath B activity in
tumours was found initially, as we demonstrated that the fraction
of cath B active at pH 6.0 was close to being prognostic for the
survival of patients after 6 months of follow-up (Ebert et al, 1994).
After prolonged observation up to 24 months, this cath B activity
was no longer of prognostic value for the total patient population,
but was only for squamous cell carcinoma patients. However, in
this subpopulation, the prognostic significance for the cath B frac-
tion active at pH 7.5 was even better, while in the subpopulation of
patients with adenocarcinoma, cath B activity at neither pH was of
prognostic value.

This may seem to be in contrast to the reports by Inoue et al
(1994) on the prognostic significance of tumour-associated cath B
protein in adenocarcinoma, because in that study the protein was
determined by immunohistochemistry in tumour cells, while in the
tissue homogenates the total cath B in tumour cells, stromal cells
and adjacent inflammatory cells is measured. On the other hand,
the immunohistochemistry cannot distinguish between the native
cath B and its precursor form and between cath B complexed to
some of the cysteine protease inhibitors, and only the active frac-
tion of cath B in the tissue homogenates is measured.

Our results support the hypothesis that there is a difference
between squamous cell carcinoma and adenocarcinoma in the
progression of tumours. These differences may be associated with
the observed differences in the proteolytic systems of these histo-
logically different tumours. For example, Krepela et al (1995)
demonstrated that the number of the highly acidic cath B pl forms
(pl,,, 4.82-4.33) was significantly higher in squamous cell carci-
noma and adenocarcinoma than in the corresponding lung tissue.
In addition, these authors also observed inter-tumoral differences
between plI profiles of cath B. Sukoh et al (19944, b) also demon-
strated differences in the immunohistochemical expression of cath
B in squamous cell carcinoma compared with adenocarcinoma of
the lung. These authors suggested that the role of cath B in squa-
mous cell carcinoma might be slightly different from that in
adenocarcinoma. This is further supported by the findings of
Pederson et al (1994a, b) who clearly demonstrated that the
components of the plasminogen activator system (uPa, uPA
receptor and PAI-1) are of prognostic significance in lung carci-
noma. The median levels of uPA receptor and the combination of
uPA receptor and PAI-1 were correlated with prognosis in squa-
mous cell carcinomas, while only PAI-1 was significant for
the prognosis of patients with adenocarcinomas. These factors
were independent of other prognostic parameters. On the contrary,
in patients with large-cell carcinoma, none of the factors of the
plasminogen activator-plasmin system correlated with survival
probability.

As concluded from this and other studies, the proteolytic system
comprising the cysteine proteases, in particular cath B, seems to be
of importance for the progression of certain histological types of
lung cancer. In order possibly to interfere with these proteolytic
events and the progression of malignant tumours, the role of this
enzyme has to be understood in more detail, not only in tumour but
also in the surrounding tissues.
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