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Non-equilibrium processes which convert chemical energy into mechanical motion enable the motility
of organisms. Bundles of inextensible filaments driven by energy transduction of molecular motors
form essential components of micron-scale motility engines like cilia and flagella. The mimicry of
cilia-like motion in recent experiments on synthetic active filaments supports the idea that generic
physical mechanisms may be sufficient to generate such motion. Here we show, theoretically, that the
competition between the destabilising effect of hydrodynamic interactions induced by force-free and
torque-free chemomechanically active flows, and the stabilising effect of nonlinear elasticity, provides a
generic route to spontaneous oscillations in active filaments. These oscillations, reminiscent of
prokaryotic and eukaryotic flagellar motion, are obtained without having to invoke structural
complexity or biochemical regulation. This minimality implies that biomimetic oscillations, previously
observed only in complex bundles of active filaments, can be replicated in simple chains of generic
chemomechanically active beads.

P
rokaryotic bacteria1 as well as eukaryotic sperm cells2,3 employ rhythmic flagellar beating for locomotion in
viscous fluids. Bacterial flagella rotate rigidly in corkscrew fashion4,5, while spermatic flagella behave more
like flexible oars6 with their beating mostly confined to a plane7–9. Oscillatory motility in clamped flagella can

arise spontaneously and, with an unlimited supply of energy, can persist indefinitely without any external or
internal regulatory pacemaker mechanism3,10. Autonomous motility as well as spontaneous beating due to
hydrodynamic instabilities has been recently reproduced in vitro11,12, where a biomimetic active motor-
microtubule assemblage has been shown to exhibit remarkable cilialike beating motion with hydrodynamic
interactions (HI) playing a crucial role in synchronised oscillations11. Previous models13–24 analysing the mech-
anism behind flagellar beating have, in general, ignored the role of HI.

Here we study a minimal active filament model25 which, once clamped at one end, exhibits a variety of
spontaneous beating phenomena in a three dimensional fluid. Our model filament consists of chemomechani-
cally active beads (CABs) which convert chemical energy to mechanical work in viscous fluids. These CABs are
connected through potentials that restricts extensibility and enforces semiflexibility and self-avoidance of the
filament. The conversion of chemical energy to mechanical work within the fluid produces flows which do not
add net linear or angular momentum to it and, thus, must be represented at low Reynolds numbers by force-free
and torque-free singularities8,26–30. We model the activity of the beads by a stresslet singularity which produce a
flow decaying as 1/r2. This stresslet contribution arises from chemomechanical activity, for instance the meta-
chronal waves of ciliated organisms11, or from phoretic flows in synthetic catalytic nanorods31–34. For self-
propelled particles, additional dipolar contributions generating flows decaying as 1/r3 are present, but are
neglected here as they are subdominant to stresslet contributions. The equation of motion for the active filament25

incorporating the effects of nonlinear elastic deformations, active processes and HI is
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where rn is the location of the n-th bead, fn is the total elastic force on
the n-th bead, and sn~s0 tntn{I=3ð Þ is stresslet tensor directed
along the the local unit tangent tn. Here s0 . 0 sets the scale of
(extensile) activity. The monopolar Oseen tensor O and the dipolar
stresslet tensor D respectively propagate the elastic and active con-
tributions to the flow (details of model in Supplementary Text).
Noise, of both chemomechanical and thermal origin, can be added
to these equations, but are not considered here. We impose clamped
boundary conditions at one end and solve the equation of motion
through direct summation of the hydrodynamic Green’s functions.
For a filament of length L and bending modulus k the dynamics is
characterised by the dimensionless activity number A~Ls0=k 25.

Results
Spontaneous oscillations. We briefly recall the mechanism behind
hydrodynamic instabilities in active filaments25. Extensile activity in
a straight filament produces flows with dipolar symmetry that point
tangentially outward at the filament ends and normally inward at the
filament midpoint. A spontaneous transverse perturbation breaks
flow symmetry about the filament midpoint resulting in a net flow
in the direction of the perturbation. The destabilising effect of the
hydrodynamic flow is countered by the stabilising effect of linear
elasticity for activity numbers AvAc1 but leads to a linear

instability for AwAc1. This instability produces filament defor-
mations which are ultimately contained by the non-linear elasticity
producing autonomously motile conformations25. Here, the addi-
tional constraint imposed by the clamp transforms the autono-
mously motile states into ones with spontaneous oscillations. We
perform numerical simulations of the active filament model to
show that the interplay of hydrodynamic instabilities, non-linear
elasticity, and the constraint imposed by the clamp leads to
spontaneously oscillating states.

Numerical simulations of Eq. (1) reveal two distinct oscillatory
states (Figs. 1a, 1b, Supplementary Fig. S3a, Supplementary Videos
1 and 2). The first of these, seen in the rangeAc1vAvAc2, is a state
in which the filament rotates rigidly in a corkscrew-like motion about
the axis of the clamp. This rotational corkscrew motion is remin-
iscent of prokaryotic flagellar beating4,5. We show this motion in
Fig. 1a over one time period of oscillation together with the projec-
tion of the filament on the plane perpendicular to the clamp axis. A
section of the three-dimensional flow in a plane containing the clamp
axis is shown in Figs. 2a and 2b. The net flow points in the direction
opposite to the filament curvature and the entire flow pattern co-
rotates with the filament. In the second state, seen for AwAc2, the
filament beats periodically in a two-dimensional plane containing
the axis of the clamp, with waves propagating from the clamp to the

Figure 1 | Biomimetic oscillations of the clamped filament plotted at different times over an oscillation period T. In (a) we see rigid aplanar corkscrew

rotation forA~25 while in (b) we see flexible planar beating forA~50. The colour of the beads as well as the trace of the tip correspond to individual

instantaneous monomer speeds. The colourbars are normalised by the maximum speed.

Figure 2 | Flow fields of rigid aplanar corkscrew rotation at two different instants of the oscillation cycle. The colour indicates the signed magnitude of

the velocity field perpendicular to the plane normalised by its maximum.
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tip. This flexible beating is reminiscent of eukaryotic flagellar
motion2,3,7,9,10. We show this motion in Fig. 1b over one time period
of oscillation together with the projection of the filament on the plane
perpendicular to the clamp axis. The projection is now a line, show-
ing that motion is confined to a plane. A section of the three-dimen-
sional flow in the plane of beating is shown in Figs. 3a and 3b. Two
distinct types of filament conformations of opposite symmetry are
now observed, corresponding to different parity of the conformation
with respect to the perpendicular bisector of the line joining the two
end points. In the even conformation (Fig. 3a), the flow points in the
direction opposite to the curvature as in the corkscrew state.
However, in the odd conformation (Fig. 3b), the flow has a centre
of vorticity at the point of inflection of the filament. This centre of
vorticity moves up the filament and is shed at the tip at the end of
every half cycle. The critical activities scale as Ac1~L{1:2 and
Ac2~L{1:1, obtained from a Bayesian parameter estimation of data
shown in Fig. S3b. The critical values depend only on the ratio s0/k,
and not on s0 and k individually, as is clearly seen in Fig. 4a.

Time period and amplitude scaling. The physical parameters
determining the time period T of the oscillatory states are the

active stresslet s0, the bending modulus k, the fluid viscosity g and
the filament length L. Remarkably, variations of T in this four-
dimensional parameter space collapse, when scaled by the active
relaxation rate Cs 5 s0/gL3, to a one-dimensional scaling curve of
the form L{af A=Lb

� �
. We show the data collapse at fixed L and

varying relative activity s0/k in Fig. 4a while the scaling with system
size is shown in Supplementary Fig. S2a. Our best estimates for the
exponents, obtained from Bayesian regression, are a 5 1.3 and b 5

21.2 (Supplementary Fig. S2a). Qualitatively, at fixed relative
activity the oscillation frequency decreases with increasing L, while
at a constant L the oscillation frequency increases with increasing
relative activity. This is in agreement with a simple dimensional
estimate of the time period T , gL3/s0. For active beads with a
stresslet of s0 , 6 3 10–18 Nm in a filament of length L ,100 mm,
our estimate of the time period gives a value of 170 s, which agrees in
order of magnitude with experiment11. The amplitude of oscillation r
obeys a similar scaling relation with a 5 –1.46, b 5 –1.2 (Fig. 4b,
main panel). At fixed relative activity, r increases with increasing L,
while at fixed L, it increases and then saturates at large relative
activity. The amplitude in the planar beating state is marginally
smaller than in the corkscrew rotating state (Fig. 4b, inset).

Figure 3 | Flow fields of flexible planar beating at two instants of the oscillation cycle. The colour indicates the magnitude of the velocity in the plane

normalised by its maximum.

Figure 4 | Variation of the scaled timeperiod CsT of filament beating withA plotted for various values of k and s0 with L 5 188, and (b, main panel)
variation of the scaled amplitude L–1.46r withA plotted for various lengths L with k 5 1.6. In (a) we show the appearance of spontaneous oscillations in

the filament atA*12:5 corresponding to rigid corkscrew rotation, followed by a transition atA*45 to flexible planar beating. In (b, inset) we show the

increase in the unscaled amplitude with length.
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Linear Stability and Hopf Bifurcation. To better understand the
nature of the hydrodynamic instability and the transition to
spontaneous oscillation we performed a linear stability analysis35 of
the straight filament. In absence of activity, A~0, all eigenvalues of
the Jacobian are real and negative and the filament has an
overdamped relaxation to equilibrium. With increasing A, the two
largest real eigenvalue pairs approach, converge, and become
complex conjugate pairs. This corresponds to a transition from a
stable node to a stable focus where the response changes from
being overdamped to underdamped. The analysis reveals that the
balance between hydrodynamic flow and linear elasticity has a
non-monotonic variation. While the general trend is towards
slower relaxations with increasing A corresponding to the greater
relative strength of the hydrodynamic flow, this is reversed in a small
window of activity where the increasing activity produces faster
relaxations. This can be clearly seen in Fig. 5a and Fig. S1a, where
the rate of relaxation is given by the magnitude of the real part of
the largest eigenvalue. With further increase of A the complex
eigenvalues approach the imaginary axis monotonically, crossing
them at a critical value Ac1 (Fig. 5a, Supplementary Figs. S1a and
S1b, and Supplementary Video 3). Through this supercritical Hopf
bifurcation, the stable focus flows into the limit cycle corresponding
to the corkscrew rotation. The value ofAc1 obtained from the linear
stability analysis is in perfect agreement with that obtained from
numerical simulation. As with the time-period and amplitude, the
eigenvalues l of the Jacobian obey scaling relations lC{1

s ~L{af
A
�

Lb
� �

with a 5 1.2 and b 5 –1.2.

Importance of HI. To ascertain the importance of HI, we repeat the
stability analysis on a local limit of our model. Here, the long-ranged
contributions to the hydrodynamic flow from both elasticity and
activity are neglected and only their short-ranged effects are
retained (see Supplementary Text). We find that all eigenvalues
remain real and negative for activity numbers corresponding to an
order of magnitude greater than Ac1, reflecting the stability of the
quiescent state in the absence of HI (Fig. 5b).

Discussions
Our work shows that simple chains of CABs, for instance of syn-
thetic catalytic nanorods31–34, can show the spontaneous beating
obtained previously in more complex systems like self-assembled

motor-microtubule mixtures11 or externally actuated artificial
cilia36–39. We emphasise that an experimental realisation of our sys-
tem requires neither external actuation nor self-propulsion. The only
chemomechanical requirement is that the CABs produce force-free
and torque-free dipolar flows in the fluid. This makes them an
attractive candidate for biomedical applications like targetted drug
delivery. Our detailed prediction for the spatiotemporal dynamics of
the hydrodynamic flows can be experimentally verified using particle
imaging velocimetry40.

In summary, we have shown that a minimal filament model which
includes elasticity, chemomechanical activity and HI, exhibits spon-
taneous emergent biomimetic behaviour reminiscent of the rhyth-
mic oscillations of various prokaryotic and eukaryotic flagella1–7,9.
Our results lead us to conclude that hydrodynamic instabilities due
to internal active stresses are sufficient to induce spontaneous bio-
mimetic beating in a clamped chemomechanically active filament.

Methods
We calculate the RHS of Eq. (1) by a direct summation of the hydrodynamic Green’s
functions. Clamped boundary conditions are implemented at one end by fixing the
position of the first particle and allowing the second particle to move only along the
tangential direction. The equation of motion is integrated using a variable step
method as implemented in ODE15s in Matlab. The hydrodynamic flows fields are
obtained on a regularly spaced Eulerian grid by summing the individual contributions
from each of the N particles. The linear stability analysis is performed by first
numerically integrating the equations of motion to obtain the fixed point, then
numerically evaluating the 3 N 3 3 N Jacobian matrix at the fixed point, and finally
computing the eigenvalues of the Jacobian matrix numerically. Simulations are
carried out for different filament lengths L with bead numbers upto N 5 128. The
equilibrium bond length is taken to be b0 5 4. We choose k in the range 0.0 to 1.0 and
s0 in the range 0.0 to 0.5. The initial condition is a random transverse perturbation
applied to every particle. Random perturbations in the longitudinal direction relaxes
at a much faster time-scale due to the stretching potential. The total integration time is
typically 10Cs

–1, where Cs 5 s0/gL3 is the active relaxation rate, and g is the viscosity,
taken to be 1/6.
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