
Surgical Neurology International • 2020 • 11(31)  |  1

is is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others 
to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
©2020 Published by Scientific Scholar on behalf of Surgical Neurology International

Case Report

Keyhole clipping of a low-lying basilar apex aneurysm 
without posterior clinoidectomy utilizing endoscopic 
indocyanine green video angiography
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ABSTRACT
Background: Basilar apex (BX) aneurysms are surgically challenging due to their anatomic location, need to 
traverse neurovascular structures, and proximity to multiple perforator arteries. Surgical approaches often 
require extensive bone resection and neurovascular manipulation. Visualization of low-lying BX aneurysms 
is typically obscured by the posterior clinoid and upper clivus and poses a unique challenge. Subtemporal or 
anterolateral approaches with a posterior clinoidectomy are often required to achieve adequate exposure, though 
these maneuvers can add invasiveness, risk, and morbidity to the procedure. Endoscopes and, more recently, 
fluoroscopic angiography capable endoscopes offer the possibility of providing improved visualization with less 
exposure allowing for minimally invasive clipping.

Case Description: We present the case of a 42-year-old female with incidentally found 5 mm middle cerebral 
artery and 5 mm BX aneurysms. She underwent a minimally invasive supraorbital keyhole craniotomy for 
the clipping of both aneurysms. While the posterior clinoid obstructed the necessary visualization for the BX 
aneurysm, use of endoscopy and endoscopic fluoroscopic angiography allowed for safe and successful clipping 
without the need for a posterior clinoidectomy.

Conclusion: This represents the first reported case of a BX aneurysm clipping through a minimally invasive 
keyhole craniotomy using endoscopic indocyanine green video angiography. Use of endoscopic indocyanine 
green angiography, combined with keyhole endoscopic approaches, allows for safe minimally invasive clipping of 
challenging posterior circulation aneurysms.
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BACKGROUND

Basilar apex (BX) aneurysms are anatomically situated in one of the most challenging areas for 
a neurosurgeon to access. While the array of endovascular tools used to treat various aneurysms 
and the proportion of aneurysms treated through such procedures increases, there continues to 
be a certain subset of patients with BX aneurysms who could benefit from clipping.[18,19] In these 
patients, it is critical to reduce morbidity while maintaining or improving on the established 
success of traditional surgical clipping. Intraoperative fluoroscopic indocyanine green video 
angiography (ICG-VA) is a well described and widely used method to evaluate the vasculature 
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and aneurysm before and after clip placement. Its use, 
however, has traditionally been limited to a microscope ICG-
VA (mICG-VA) which requires surgical exposure of the field 
of interest to accommodate the view from a microscope. 
Recent advances in endoscopic technology have allowed 
for the use of intraoperative ICG-VA with an endoscope 
ICG-VA (eICG-VA). Thus far, the application of eICG-VA 
in neurovascular surgery has been limited to an adjunctive 
role, providing a final-look confirmatory view to ensure clip 
placement is satisfactory. As a result, the full potential of the 
technology has not yet been explored, particularly its role in 
reducing the invasiveness of surgical clipping. We describe 
and review the technical nuances of the first reported case 
of a BX aneurysm clipping through a minimally invasive 
keyhole craniotomy using eICG-VA which obviated the need 
for a posterior clinoidectomy.

CASE REPORT

A 42-year-old female presenting with headaches was found to 
have a 5 mm laterally projecting right middle cerebral artery 
(MCA) bifurcation aneurysm and a 5 mm BX aneurysm 
[Figure 1]. Given the patient’s young age, surgical treatment 
was offered as an alternative to endovascular treatment. 
After discussion of the risks and benefits, the patient opted 
for a minimally invasive supraorbital keyhole craniotomy for 
clipping of both aneurysms.

Preoperative computed tomography angiography (CTA) 
evaluation of the patient’s aneurysms revealed aneurysms 
amenable for surgical clipping through a supraorbital keyhole 
approach (SOKA). The MCA bifurcation aneurysm was noted 
to be at the level of the lesser wing of the sphenoid bone and 
evaluation of the anatomical accessibility of the BX aneurysm 
was determined using the orbital roof-dorsum estimation 
line as previously described.[31] Briefly, the elevation of the 
orbital roof off the anterior skull base is determined in the 
coronal plane which is then translated on to the midsagittal 
plane; this point is then extended to the top of the posterior 
clinoid and continuing until it reaches the basilar artery (BA) 
determining the most superior exposure of the BA. Utilizing 
this line, it was estimated that the superior most exposure 
through the SOKA would be the neck of the aneurysm with 
further inferior exposure afforded by the superior extent of 
the craniotomy off the roof of the orbit [Figure 2].

Operation

The patient was positioned supine and the head was placed 
in three-point fixation. A right-sided approximately 5 cm 
eyebrow incision was made extending from the supraorbital 
notch to just lateral to the superior temporal line [Video 1]. 
A 2 cm × 1 cm craniotomy was made above the orbital rim. 
A curvilinear dural incision was made and the frontal lobe 

gently dissected off the anterior skull base without the use 
of fixed retractors. The opticocarotid cistern was opened 
to release cerebrospinal fluid (CSF) and facilitate brain 
relaxation. The Sylvian fissure was then dissected to expose 
the MCA bifurcation aneurysm. A right-angled clip was 
applied and placement was confirmed with mICG-VA using a 
0.5 mg/kg bolus of ICG [Figure 3]. Attention was then turned 
to the BX aneurysm. Arachnoid dissection around the optic 
nerve was performed to allow unencumbered access into 
the opticocarotid and carotidoculomotor triangles. Through 
the carotidoculomotor triangle, Liliequist’s membrane 
was opened until the aneurysm dome was identified. The 
aneurysm dome and neck were visible; however, the more 
proximal BA and perforator origins were obscured by 
the posterior clinoid. A 0 degree, 4 mm outer diameter, 
ICG capable endoscope (Storz; Tuttlingen, Germany) was 
introduced through the opticocarotid window (OCW) 
allowing complete visualization of the more proximal BA and 

Figure 1: Three-dimensional reconstruction of a computed 
tomography angiogram. (a) Posterior circulation demonstrating 
basilar apex aneurysm (arrowhead) (b) anterior circulation 
demonstrating right middle cerebral artery aneurysm (arrowhead).

a b

Figure 2: Orbital roof-dorsum estimation line. (a) Orbital height 
(red line) as measured by the line extending from the anterior skull 
base along the sagittal scout line (yellow line) to the intersection 
with the horizontal orthogonal line (blue solid) from the roof of the 
orbit to the sagittal scout line (b) orbital height line as determined 
on coronal section translated onto the coronal scout line in the 
sagittal plane with the orbital roof-dorsum estimation line (green 
line) extending from the superior point to the top of the posterior 
clinoid process. In this patient, this line estimates that the most 
conservative proximal exposure from a supraorbital approach is the 
neck of the aneurysm.
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perforator origins. Another bolus of ICG was administered 
and the aneurysm was inspected with eICG-VA. A posterior 
clinoidectomy was considered but ultimately deemed 
unnecessary given the improved visualization. Adenosine was 
available, if necessary, for intraoperative rupture. After careful 
dissection of the perforators off the aneurysm neck, a straight 
blade aneurysm clip was placed under a microscopic view. 
Postclipping inspection of the aneurysm utilizing eICG-VA 
demonstrated good exclusion of the aneurysm with no neck 
remnant and intact parent and perforator vessels [Figure 4].

Postoperative course

Postoperative CTA confirmed adequate placement of clips 
with no residual [Figure 5]. Patient recovered well and 
was discharged on a postoperative day 2 with no short- or 
long-term complications or neurologic deficits at 3-month 
follow-up.

CONCLUSION

Aneurysms of the BX represent some of the most challenging 
aneurysms for the neurosurgeon. They are situated deep 
within the intracranial space and bound by neurovascular 
structures and critical perforators. While there has been 
a shift toward treating a majority of these aneurysms 
through endovascular techniques, there remains a subset 
of patients for whom surgical clipping continues to be the 
ideal treatment including those with wide-necked or small 
aneurysms, those who have failed endovascular treatment, 
and younger patients where a more definitive upfront 
treatment is desired.[18,19] As such, the continued development 
and tailoring of traditional surgical clipping techniques to 
minimize the invasiveness and morbidity and maximize 
optimal outcomes continues to be of interest.

Critical to the success of any aneurysm surgery is the ability 
to completely include the aneurysm neck with the surgical 

Figure 3: (a) Surgical exposure and treatment of the middle cerebral artery aneurysm (b) aneurysm clip placement (c) microscopic 
indocyanine green angiography demonstrating aneurysm occlusion and vessel patency. MCA: Middle cerebral artery, *: Aneurysm.

Figure 4: Basilar apex aneurysm (a) microscopic exposure through oculomotor carotid window obstructed by the posterior clinoid (dashed 
line) (b) endoscopic exposure (c) endoscopic indocyanine green angiography (d) aneurysm clip placement (e) endoscopic view of clip 
construct (f) endoscopic indocyanine green angiography demonstrating complete aneurysm obliteration with maintenance of perforating 
arteries. BA: Basilar artery, SCA: Superior cerebellar artery, PCA: Posterior cerebral artery, Perf: Perforator artery, *: Basilar apex aneurysm.
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clip while maintaining patency of the parent vessel and 
perforators. Intraoperative strategies to achieve this include 
electrophysiological monitoring, microDopplers, digital 
subtraction angiography (DSA), and ICG-VA.[10,24,35] While 
intraoperative DSA remains the gold standard for evaluating 
postclipping success, it adds significant intraoperative time 
and potential morbidity given its invasive nature.[4,15,20,32] 
Furthermore, the lack of widespread capability to perform 
intraoperative DSA precludes it from being more generally 
applicable to some practices. ICG-VA offers many distinct 
advantages due to its simple and non-invasive ability to 
directly visualize flow, or lack thereof, within the vasculature 
after clipping and showing superiority in visualizing 
small perforators when compared with DSA.[6] Since the 
conception of fluorescence microscopy by Feindel et al. in 
1967 and its first use in aneurysm surgery by Raabe et al. 
in 2005, it has become an indispensable tool in assessing 
proper clip placement. Prior studies have shown that the 
use of mICG-VA leads to clip modifications in up to 38% 
of cases.[6,8,27,29] Essential to ICG-VA is the need for a direct 
visual line of sight from the microscope to the area of interest 
and a large enough exposure to allow sufficient fluorescent 
light to bathe the field. As a result, mICG-VA is only as 
applicable as the surgical exposure the approach provides.

Classically, approaches to BX aneurysms were through 
subtemporal, pterional, or orbitozygomatic craniotomies. 
While the subtemporal approach offers a shorter working 
distance and a more exposed view of the proximal BA, which 
can be useful for low lying BX aneurysms, it is significantly 
limited by the inability to visualize contralateral perforators 
as well as the need for temporal lobe retraction.[17,33,37] 
The pterional and orbitozygomatic approaches provide 
visualization of bilateral perforators off the BX through 
either the OCW or carotid-oculomotor window (COW). 

These neurovascular “gateways” become optical bottlenecks 
for the microscope, limiting the field of view deep to them. 
Low-lying BX aneurysms are further obscured by the 
posterior clinoid process. This restricted window presents 
a challenge when utilizing mICG-VA. To overcome this, 
a host of adjuncts to these approaches has been utilized 
including orbital osteotomies, anterior clinoidectomy, ICA 
mobilization, and posterior communicating artery and 
tentorial transections. These techniques increase the working 
areas of the OCW and COW.[3,7,13,16,17,21,34,38] In addition, a 
posterior clinoidectomy can be performed for low riding 
BAs where the aneurysm lies within the shadow of the clivus 
and posterior clinoid process.[7,17,30,38] These techniques to 
increase exposure, however, come with risks of CSF fistulas, 
oculomotor and abducens nerve palsies, vascular injury, and 
intraoperative hemorrhage.[17,38]

Improved exposure and visualization of deep-seated 
structures can alternatively be achieved using endoscopes. 
By advancing the ocular lens past visually obstructive 
proximal structures and through the OCW or COW, these 
gateways become pivot points for the camera rather than 
bottlenecks.[22] The closer wide-angled view of the aneurysm 
afforded by the use of the endoscope allows for a closer 
inspection of the aneurysm neck, perforators, parent vessels, 
and, ultimately, clip placement.[12,14,25,28,36] However, despite 
the superior visualization afforded by the endoscope, the 
use of endoscopes has still been limited by the microscopic 
exposure and field of view, as postclipping ICG assessment 
had only been available through the microscope. This 
meant that endoscopes could only be used as an adjunct 
rather than a true visualization tool that could help reduce 
the necessary surgical exposure since anything performed 
under endoscope outside the microscope field would not be 
confirmable through mICG-VA.

In 2013, Bruneau et al. described the first reported 
use of eICG-VA in aneurysm surgery for a patient 
with an unruptured anterior communicating artery 
aneurysm.[1] eICG-VA was used as an adjunct to the mICG-
VA. The development of fluoroscopy-enabled endoscopes 
has further improved the success of the surgical treatment 
of aneurysms offering superior angiographic evaluation 
over mICG-VA. As a confirmatory test, eICG-VA allows for 
a closer inspection of the vasculature and the ability to see 
around “dead angles” inaccessible to the microscope leading 
to reported clip readjustments after mICG-VA-assisted 
clipping in as high as 40% of cases.[1,2,5,9,11,23,26]

There have been relatively few studies on the use of eICG-
VA and most studies to date offer an evaluation of eICG-
VA as compared to mICG-VA. As such, surgical exposure 
was achieved to allow for mICG-VA evaluation and 
only then was eICG-VA deployed to further scrutinize 
clip placement.[1,2,5,9,11,23,26] This approach, however, does 

Figure 5: Three-dimensional reconstruction of a computed 
tomography angiogram demonstrating clipping of the right middle 
cerebral artery and basilar apex aneurysms.
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not maximize the potential of eICG-VA as it does not 
utilize the endoscope to minimize the exposure itself. 
Furthermore, there have been exceedingly few reports 
on the use of eICG-VA in the treatment of posterior 
circulation and BX aneurysms with only five reported cases 
of BX aneurysms – all treated through a subtemporal or 
pterional approach.[9,11]

In this report, we describe the first minimally invasive keyhole 
approach for the surgical clipping of a BX aneurysm using 
eICG-VA. As with any aneurysm clipping, but paramount in 
BX aneurysms, careful evaluation of preoperative imaging 
studies as well as a strong understanding of the anatomy 
is critical to the success of the surgery. Furthermore, 
knowing the individual strengths and limitations of both the 
microscope and the endoscope allows you to use them in a 
complementary fashion to reduce unnecessary exposure and 
morbidity while maintaining the quality of clip placement. In 
this case, we were able to estimate the amount of BX exposure 
we would achieve with a supraorbital approach.[31] This 
estimation was confirmed intraoperatively and, as predicted, 
visualization of the BA beyond the aneurysm neck was not 
adequate under the microscope. Using an endoscope allowed 
substantially increased visualization that obviated the need to 
perform a posterior clinoidectomy. This shortened the length 
of the procedure reduced the invasiveness and eliminated 
potential risks. Since that visualization could only be achieved 
with endoscopy, use of mICG-VA would be insufficient 
postclipping to confirm satisfactory placement. The 
availability of eICG-VA then gave us the ability to perform 
the clipping knowing that we could obtain an expanded 
angiographic assessment provided by the endoscope. Of note, 
obtaining proximal control in an endoscopic environment 
may be more challenging and therefore adenosine should be 
available.

While endovascular technology continues to evolve, 
there remains a subset of aneurysms that could benefit 
from definitive surgical clipping. The full use of surgical 
technology such as endoscopes and eICG-VA can allow 
for reduced invasiveness and morbidity while maintaining 
efficacy in treatment.
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