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SARS‑CoV‑2 and human retroelements: 
a case for molecular mimicry?
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Abstract 

Background:  The factors driving the late phase of COVID-19 are still poorly understood. However, autoimmunity is 
an evolving theme in COVID-19’s pathogenesis. Additionally, deregulation of human retroelements (RE) is found in 
many viral infections, and has also been reported in COVID-19.

Results:  Unexpectedly, coronaviruses (CoV) – including SARS-CoV-2 – harbour many RE-identical sequences (up 
to 35 base pairs), and some of these sequences are part of SARS-CoV-2 epitopes associated to COVID-19 sever-
ity. Furthermore, RE are expressed in healthy controls and human cells and become deregulated after SARS-CoV-2 
infection, showing mainly changes in long interspersed nuclear element (LINE1) expression, but also in endogenous 
retroviruses.

Conclusion:  CoV and human RE share coding sequences, which are targeted by antibodies in COVID-19 and thus 
could induce an autoimmune loop by molecular mimicry.

Keywords:  Coronaviruses, SARS-CoV-2, COVID-19 epitope signatures, Autoimmunity, Molecular mimicry, Human 
retroelements, Long interspersed nuclear elements (LINE), Endogenous retroviruses (ERV)
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Background
At the end of 2019, a severe acute respiratory syndrome 
(SARS)-like disease was noted in eastern China and a 
novel coronavirus (later designated SARS-CoV-2) rec-
ognized as the factor for the disease, COVID-19 [1]. By 
the spring of 2022, 447 million people have been infected 
globally, with 6 million casualties [2]. COVID-19 can 
be divided into an early viral replication phase and a 
late stage of organ failure [3, 4]. While the inhibition 
of SARS-CoV-2 replication has already been achieved 
[5–10], the factors driving the late phase of the disease 
are poorly understood [11, 12]. However, it has been 
reported that autoimmunity [13–27] and deregulation of 
human retroelements (RE) might contribute to the out-
come of COVID-19 patients [28–31].

The RE share a reverse transcriptase as a common 
denominator. Together with an endonuclease, they can 
move by “copy and paste.” Based on the presence of an 
envelope gene, they can be divided into long terminal 
repeat (LTR) positive and LTR negative retrotranspo-
sons. The former and endogenous retroviruses (ERV) 
belong to LTR positive elements. Long interspersed 
nuclear elements (LINE), short interspersed nuclear ele-
ments (SINE) and SVA elements (SINE-R, VNTR and 
Alu) belong to LTR negative elements [32–35]. The LINE 
contain at least two open reading frames (ORFs), ORF1, 
coding for a nucleic acid binding protein with chaperone 
activity (ORF1p) and ORF2, which codes for a reverse 
transcriptase/endonuclease (ORF2p) [35, 36]. Impor-
tantly, RE make up 50 – 70% of the human genome [37, 
38]. About 20% of the genome is made up from LINE 
sequences (c. 500,000 copies), of which more than 100 
LINE1 family members are still intact and about 68 active 
in humans. The LINE1 show strong interpersonal differ-
ences [39, 40] and an age-dependent expression pattern 
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[41–43]. By comparison, ERV make up about 8% of the 
human genome. Despite – similar to LINE – predomi-
nant inactivation, there are still hundreds of intact viral 
promoters and open reading frames from which the 
expression of ERV transcripts and proteins is possible 
[44–46]. The RE activation is known from many viral 
infections, such as HIV [47], dengue [48], influenza A 
[48], Zika virus [48], West Nile virus [48], measles [48], 
Epstein-Barr virus [49] and cytomegalovirus [50]. There-
fore, I looked for the relationship of coronaviruses (CoV) 
to human RE based on genome, transcriptome, epitope 
and peptide array data. Here, transcriptome analysis 
coincidentally revealed many RE-identical sequences 
and shared epitopes in the CoV family members inves-
tigated, such as SARS-CoV-2, MERS-CoV and HKU1. 
To the best of my knowledge, these findings have never 
been reported. Importantly, epitopes are shared between 
human LINE1- and SARS-CoV-2 proteins and antibod-
ies against some of these epitopes have been found to be 
correlated to COVID-19’s severity. In addition, RE are 

expressed in healthy controls and deregulated in COVID-
19 patients, as well as in SARS-CoV-2-infected human 
cells.

Results
The CoV genomes harbour a large number of RE-iden-
tical sequences. Several of these sequences represent 
shared RE-SARS-CoV-2 epitopes. Importantly, anti-
bodies against some of these epitopes are correlated to 
the severity of COVID-19. In addition, RE are widely 
expressed in healthy controls and deregulated in COVID-
19 patients, as well as in SARS-CoV-2-infected human 
cells.

Sequence identity between retroelements 
and coronaviruses
A sequence identity (≥12 bp, range 12 – 35 bp, Fig.  1A) 
of human RE sequences to CoV genomes from SARS-
CoV-2, SARS-CoV-1, MERS-CoV, NL63, 229E, OC43, 
HKU1, bat CoV RA13591, bat CoV RATG13 and bat CoV 

Fig. 1  Sequence alignments of retroelements to CoV genomes by LAST. A. Length distribution of alignment results by LAST. B. Longest aligning 
RE-CoV sequences (LAST)
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RSSHC014 was found by sequence alignment of human 
RE sequences and different CoV genomes (Figs. 1 and 2, 
Table  1). Very high counts of RE-identical sequences in 
CoV were seen at ≥12, ≥ 15 and ≥ 18 bp (Table 1).

A cut-off ≥18 bp (correlating to potential epitopes of at 
least 6 aa) was chosen for downstream analysis for sensi-
tivity and epitope size reasons. A 6 aa cut-off corresponds 
well to a known immuno-relevant linear epitope length 
of 4 – 12 aa, as about 50% of them have a length ≤ 8 aa 
(about 25% ≤ 6 aa, and only a few of 4 aa) [51]. At this 

cut-off point, the majority of RE-identical sequences are 
seen in HKU1 (332), followed by NL63 (206) and SARS-
CoV-2 (191) (Fig.  2A and B, Table  1). SARS-CoV-2 and 
RE sequence data were further explored by “LAST” in 
order to allow single nucleotide polymorphisms to be 
included, thereby alignments to RE sequences up to 35 bp 
were seen (Supplementary Table 2). In the RE-CoV data, 
LINE1 represent the majority of all shared sequences, 
while alignment to ERV sequences is a relevant minor-
ity and includes the 35 bp hits (Fig.  1B, Supplementary 

Fig. 2  Sequence alignments of CoV genomes to retroelements by nucmer (cut-off ≥18 bp). A. Proportion of LINE1 (L1) and endogenous retrovirus 
sequences, showing a dominance of L1 sequences in all virus genomes (nucmer) analysed. B. Dot plot of shared RE sequences in CoV genomes, 
showing the highest RE-identical sequences in HKU1, followed by NL63 and SARS-CoV-2 (nucmer). Each dot represents an ≥18 bp retroelement 
sequence also found in the respective CoV genome

Table 1  Number of retroelement-identical sequences in CoV genomes dependent on sequence length (12 – 27 bp, based on 100% 
sequence identity (alignment by nucmer). Underlines indicate the highest score at the respective cut-off

CoV Genbank ID RE-identical sequences (nucmer)

≥ 12 bp ≥ 15 bp ≥ 18 bp ≥ 21 bp ≥ 24 bp ≥ 27 bp

229E NC_002645.1 16,992 4663 155 8 5 4

NL63 NC_005831.2 17,751 5758 206 4 0 0

OC43 AY391777.1 19,428 5709 162 3 0 0

HKU1 NC_006577.2 19,112 6843 332 13 0 0

MERS-CoV NC_019843.3 18,435 4252 106 3 1 0

SARS-CoV-1 AY291315.1 18,446 4731 122 2 1 0

SARS-CoV-2 NC_045512.2 18,917 5358 191 11 3 2

RsSHC014 KC881005.1 18,425 4651 114 5 1 0

Ra13591 MG916904.1 17,971 4644 142 2 0 0

RaTG13 MN996532.2 18,950 5327 167 4 0 0
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Tables 1 and 2). In conclusion, genome analysis revealed 
the presence of many short RE-identical sequences in 
CoV genomes, including SARS-CoV-2.

Shared epitopes between SARS‑CoV‑2‑ and retroelement 
proteins
Subsequently, all RE-identical sequences ≥18 bp were 
compared to the coding regions of the genome of SARS-
CoV-2. Accordingly, 70 sequences showing identical aa 
sequences in CoV and RE were identified (Supplemen-
tary Table  1). These sequences were then compared to 
results from a peptide array, which investigated epitope 
signatures in COVID-19 patients (severe vs. mild) [52]. 
An overlap of human LINE1 proteins to SARS-CoV-2 
epitopes from the RNA-dependent RNA polymerase 
(RdRp), helicase and 2′-O-ribose methyltransferase was 
detected for epitopes targeted with > 2-fold elevated 
antibody levels in severe cases (Fig. 3). Importantly, anti-
bodies targeting an epitope of the SARS-CoV-2 RdRp 
polymerase, which is identical to an epitope of the LINE1 
ORF2p endonuclease domain, were 39-fold elevated in 

severely compared to only mildly affected COVID-19 
patients (Fig. 3A). The same is seen with antibodies tar-
geting the shared CoV-RE epitopes from the 2′-O-ribose 
methyltransferase (Fig.  3C) and helicase (Fig.  3D). 
The latter is also a known B cell epitope, aa “PARA-
RVECFDKFKV” (the known B cell epitope is depicted in 
bold) [53]. Many other shared RE-CoV peptides (similar 
to those displayed in Fig. 3B) were not targeted by anti-
bodies in severe vs. mild COVID-19 (Supplementary 
Table 2), but some are known as T cell epitopes, such as 
the one present in all three chains of the spike protein 
shown in Fig.  3B (aa VKQIYKTPPIKDF, the  known T 
cell epitope sequence is depicted in bold) [54].

Taken together, SARS-CoV-2 and RE share peptide 
sequences, of which some are epitopes correlated to 
COVID-19 severity.

Transcriptome analysis of retroelements 
in SARS‑CoV‑2‑infected cells
An RE analysis of COVID-19 patient data (bronchoal-
veolar lavage fluid, BALF), SARS-CoV-2 infected lung 

Fig. 3  A. Mapping of the shared RE-CoV epitope “FNKDFY” to the SARS-CoV-2 RdRp (epitope in red), orange box depicting IgG antibody levels of 
severe vs. mild COVID-19 disease, with anti-FNKDFY antibodies showing 39-fold elevation in severe COVID-19. B. Mapping of the shared RE-CoV 
epitope “VKQIYK” to the SARS-CoV-2 spike protein (epitope in red), there are no reported significantly elevated antibodies against this epitope in 
severe COVID-19. C. Mapping of the shared RE-CoV epitope “TYICGF” to the SARS-CoV-2 2′-O-ribose methyltransferase (epitope in red), orange 
box depicting reported antibody levels of severe vs. mild COVID-19 disease, with anti-TYICGF antibodies showing a 4.6-fold elevation in severe 
COVID-19. D. Mapping of the shared RE-CoV epitope “ECFDKFKV” to the SARS-CoV-2 helicase (epitope in red). anti-ECFDKFKV antibodies showed 
a 2-fold elevation in severe COVID-19 E. Structure of a human LINE1 element with the coding regions for ORF1p (depicted in orange) and ORF2p 
(depicted in green)
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epithelial cells and SARS-CoV-2 infected macrophages 
was performed to explore the presence of and changes 
in RE expression after SARS-CoV-2 infection. Infection 
resulted in a highly significant (adjusted p-value ≤0.05) 
and relevant (fold change ≥2) deregulation of human 
RE in all samples. Transcriptome data from COVID-
19 patients’ BALF compared to healthy controls shows 
an upregulation of 2035 and downregulation of 3144 
RE (Fig. 4A). Among the top deregulated RE are mainly 
LINE1 (Fig.  4D). SARS-CoV-2-infected epithelial lung 
cells (Calu-3) show 34 up- and 29 downregulated RE 
(Fig. 4E), while infected human macrophages have 8 up- 
and 24 downregulated RE. Among the top de-regulated 
RE for both are also mainly LINE1 (Fig. 4E, F).

In conclusion, RE are expressed in COVID-19 patients 
and human cells and become deregulated after SARS-
CoV-2 infection, showing mainly changes in LINE1 
expression.

Discussion
The factors driving the late phase of COVID-19 are still 
not fully understood [11, 12]. However, there is evi-
dence that autoantibodies and autoreactive lymphocytes 
could contribute to the disease’s final outcome [13–27]. 
Therefore, the question of autoantibody formation in 

COVID-19 has to be asked. The employment of a com-
prehensive RE database revealed many RE-identical 
sequences in ten CoV family members investigated, such 
as in SARS-CoV-2, MERS-CoV and HKU1 (Figs. 1 and 2). 
Crucially, it was found that the LINE1 proteins ORF1p 
and ORF2p have peptides identical to SARS-CoV-2 
epitopes (Fig.  3), and that some of these epitopes are 
associated with COVID-19’s severity, as shown by cor-
relation to COVID-19 patients’ antibody titres (Fig.  3). 
In addition, RE are deregulated in COVID-19 patients 
(Fig.  4A), as well as SARS-CoV-2-infected human epi-
thelial lung cells and macrophages (Fig. 4B and C), which 
has occasionally been reported in the last few months 
for cell lines and patients [28–31]. Among the analysed 
REs, LINE1 are strongly represented in all results (Figs. 2, 
3 and 4, Supplementary Table 1 and 2). The LINE1 code 
for at least a nucleic acid binding protein with chaperone 
activity (ORF1p) and a reverse transcriptase/endonucle-
ase (ORF2p). Importantly, autoantibodies targeting the 
LINE1 ORF2p endonuclease domain have been reported 
in 41% of SARS-CoV-1 patients [55]. The RE are also tar-
geted by autoantibodies in several connective tissue dis-
eases, for example, antibodies against LINE1’s ORF1p 
or ERV HERV-K’s envelope protein have been described 
in patients with systemic lupus erythematosus, lupus 

Fig. 4  A. Heatmap of the most highly deregulated retroelements in bronchoalveolar lavage fluid (BALF) from COVID19 patients (red = upregulated, 
blue = downregulated). B. Heatmap of the most highly deregulated retroelements in SARS-CoV-2-infected epithelial lung cells (Calu-3). C. Heatmap 
of the most highly deregulated retroelements in SARS-CoV-2-infected macrophages. D. Top 10 up- and downregulated retroelements in COVID19 
BALF. E. Top 10 up- and downregulated retroelements in SARS-CoV-2-infected epithelial lung cells. F. Top 10 up- and downregulated retroelements 
in SARS-CoV-2-infected macrophages
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nephritis, rheumatoid arthritis, Sjogren’s syndrome and 
mixed connective tissue disease [56–65]. Relating to 
SARS, the autoantibodies’ target, LINE1 ORF2p, was 
prominently stained post-mortem in lung macrophages 
(residing in blood vessels), leading the authors to suspect 
a build-up of autoreactive CD4+ Th cells and, thus, an 
autoimmune loop in SARS [55]. Importantly, there is also 
increasing evidence for an autoimmune pathogenesis in 
severe COVID-19 [13–27, 66, 67]. One explanation for 
autoantibody formation is by molecular mimicry, i.e. 
shared epitopes between pathogens and hosts [68–72]. 
The evolution of mimicry epitopes in pathogens could 
be based on chance. However, although the RE-identical 
sequences in CoV observed are short (12 – 35 bp), the 
sequence lengths observed make formation by chance 
highly unlikely. Exemplarily, taking the genetic code 
(A, T, C, G) raised to a sequence of 18 bp (418) results 
in 68,719,476,736 possible bp combinations, thus, the 
chance of getting one identical sequence is 1:69 bil-
lion. Additionally, a myriad of 12 bp events (Table  1) 
occurring by chance is stochastically very unlikely 
(412 = 16,777,216) at more than 18,000 events. Moreover, 
an observed 35 bp hit such as ERVL_Xq21.31b (435) cor-
responds to 1.18 E21 possible bp combinations, thus, the 
chance of getting an identical sequence is 1:1.1 trilliard – 
without accounting for all the other matching sequences. 
Therefore, recombination activities more probably 
account for the phenomena observed. The exchange 
of genetic material by recombination in RNA viruses is 
generally associated with virulence, host range and host 
response [73]. It is known that recombination in CoV can 
take place during co-infections at a high frequency by 
homologous and non-homologous recombination [74–
76]. Mechanistically, an explanation could be the switch-
ing of the RdRp between multiple available RNA strands 
during replication [77]. This could have happened in a 
CoV host/ancestor with relevant LINE1 expression, as 
this is possible in some bat species. The black-bearded 
tomb bat (Taphozous melanopogon), for example, har-
bours two active LINE families [78] and shows relevant 
SARS-CoV-2 infection efficiency [79]. Moreover, lots of 
ERV families also reside in bats [80]. Therefore, serial 
acquisition of RE sequences, possibly taken from CoV 
in host animals (starting many million years ago) is a 
feasible scenario. Relating to the rather short sequence 
lengths observed, there might be an evolutionary func-
tional constraint working against the uptake of longer 
RE sequences, but a benefit for the virus by coating itself 
with host self-antigens (“self-peptide coat”). This would 
dampen the innate and adaptive immune response by 
the presentation of “viral but self-like” peptides. The 
consequence of this hypothesis is in line with the view 
of autoimmune disease as a breakdown of self-tolerance 

[81, 82]. Based on the findings, autoantibodies target-
ing human RE could be a factor in CoV-induced disease, 
like COVID-19. However, this report has limitations, as 
the data basis for a more extensive analysis of anti-RE 
autoantibodies in COVID-19 still does not exist.

Conclusion
In conclusion, it was found that CoV – including SARS-
CoV-2 – harbour many RE-identical sequences, and 
that some of these sequences are part of SARS-CoV-2 
epitopes associated with COVID-19 severity.

Methods
Genome analysis
Genome sequences from SARS-CoV-2 (isolate 
NC045512.2 = Wuhan-Hu-1), SARS-CoV-1 (AY291315.1 =  
FFM1), MERS-CoV (NC_019843.3 = EMC2012), human path-
ogenic CoVs (NC-006577.2 = HKU1; AY391777.1 = OC43, 
NC-002645.1 = 229E; NC-005831.2 = NL63) and bat 
CoVs (MN996532.2 = RaTG13, KC881005.1 = RsSHC014; 
MG916904.1 = Ra1359) were downloaded from GenBank 
(https://​www.​ncbi.​nlm.​nih.​gov/​genba​nk/). Retro.hg38.v1 
(https://​github.​com/​mlben​dall/​teles​cope_​annot​ation_​db/​
tree/​master/​builds) was employed as an RE database. The 
database contains 28.513 RE and is made of “RepeatMasker” 
hits for 60 HERV families (RepeatMasker Open-4.0, http://​
www.​repea​tmask​er.​org/) and all LINE elements from “L1base 
v2” (https://​l1base.​chari​te.​de/) [83]. Alignment of the retro.
hg38.v1 database to CoV genomes was done by the genome 
sequence aligner “nucmer” [84] (4.0.0beta2) on galaxy.​org 
[85] and a local installation of “LAST” (v1250), a programme 
for genome scale sequence comparison [86]. The minimum 
sequence length cut-off (with 100% sequence identity) was 
stepwise chosen at 12, 15, 18, 21, 24, and ≥ 27, based on an 
immuno-relevant epitope size of about 4 – 12 amino acids (aa) 
(many epitopes are less than 8 aa, about 25% ≤ 6 aa, but only a 
few at 4 aa [51]). The nucmer “-b” and “-L” variables were used 
accordingly, and “Show-Coords” as well as “Mummerplot” 
from the “MUMmer 4” package [84] were employed to extract 
and plot data. Regarding  to “LAST,” firstly, an RE database 
was built (“lastdb -uNEAR -c RE_ db retro.hg38.v1.fa”) and 
then CoV genomes were compared to the RE database (“lastal 
-D100 RE_db CoV_genome.fa > RE_db_CoV.maf”).

Epitope‑specific antibody data in COVID‑19 patients
The SARS-CoV-2 epitope-specific antibody data (IgG) in 
severely vs. mildly affected COVID-19 patients are from 
Schwarz et al. [52] “Peptide microarray data – severe vs. 
mild – IgG,” with the peptides: 1060 (NSP12, QTVK-
PGNFNKDFYDF, LogFC 5.3, p-value 2.4E-04, FDR-adj. 
p-value 2.8E-02), 1243 (NSP16, ENDSKEGFFTYICGF, 
LogFC 2.2, p-value 4.0E-02, FDR-adj. p-value 5.2E-
01), 1227 (NSP13, IPARARVECFDKFKV, LogFC − 0.9, 

https://www.ncbi.nlm.nih.gov/genbank/
https://github.com/mlbendall/telescope_annotation_db/tree/master/builds
https://github.com/mlbendall/telescope_annotation_db/tree/master/builds
http://www.repeatmasker.org/
http://www.repeatmasker.org/
https://l1base.charite.de/
http://galaxy.org
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p-value 3.2E-01, FDR-adj. p-value 5.3E-01) and 1690 
(Spike, AQVKQIYKTPPIKDF, LogFC 0.2, p-value 8.3E-
01, FDR-adj. p-value 8.5E-01). “L1base v2” was used 
for comparison with coding LINE1 sequences (https://​
l1base.​chari​te.​de/) [83]. Known SARS-CoV-2 B- and 
T-cell epitopes are from Phan et al. [53] and Griffoni et al. 
[54]. The PDB data for the SARS-CoV-2 RdRp (PDB ID: 
7BW4), helicase (PDB ID: 7NNG), 2′-O-ribose methyl-
transferase (PDB ID: 7JYY) and -spike protein (PDB ID: 
7LSS) were downloaded from https://​www.​rcsb.​org and 
epitopes displayed by “UCSF Chimera v1.15” (for Mac 
OS) [87].

Transcriptome analysis
Total RNA sequencing data from SARS-CoV-2-in-
fected macrophages (BioProject ID PRJNA637580, 
Sequence Read Archive (SRA) ID mock: SRR11934391, 
SRR11934392, SRR11934393, infected: SRR11934394, 
SRR11934395, SRR11934396) [88], Calu-3 adrenocar-
cinomic lung epithelial cells (PRJNA615032, mock: 
SRR11517744, SRR11517745, SRR11517746, infected: 
SRR11517747, SRR11517748, SRR11517749) [89] and 
bronchoalveolar lavage (BALF) samples from inten-
sive care COVID-19 patients (PRJNA605983SRA, SRA: 
SRR11092056, SRR11092057, SRR11092058, SRR11 
092059, SRR11092060, SRR11092061, SRR11092062, 
SRR11092063, SRR11092064) [90] compared to 
healthy controls (PRJNA316136, SRA: SRR3286988, 
SRR3286989, SRR3286990, SRR3286991, SRR5515942, 
SRR5515943, SRR5515944) [91] were downloaded from 
SRA (https://​www.​ncbi.​nlm.​nih.​gov/​sra), quality con-
trolled by FastQC (Babraham Institute, Cambridge, 
UK, http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​
cts/​fastqc/) and Illumina adapters trimmed by Trim-
momatic [92]. Salmon [93] and DESeq2 [94] were 
employed for differential RE analysis, with standard 
parameters after indexing the retro.hg38.v1 database 
(“salmon index -t retro.hg38.v1.fa -i retro.hg38.v1_
index -k 31”). Heatmaps were done by iDEP v0.92 [95] 
and graphs by GraphPad Prism software version 8.0 for 
OS X (GraphPad Software Inc., USA).
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