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Introduction
Advanced and efficient next-generation sequencing (NGS) 
technologies are currently providing unprecedented resources 
and insight for numerous applications in biology and biomedi-
cine. These technologies are now regularly leveraged in unique 
and novel ways to characterize biological pathways,1 understand 
disease etiology,2,3 discover novel drug targets,1,4,5 and develop 
personalized treatment regimes.6–8 However, data from these 
experiments present many difficult technical and computational 
challenges. For example, due to the extremely large size of data 
sets generated from these experiments, the handling, storage, 
and analysis of multiple massive data files is now routine work 
in the laboratory.9 Furthermore, data from these experiments 
usually contain complex and high-dimensional artifacts that 
must be removed before the data can be properly analyzed. 
Identifying and removing low-quality sequencing reads is 
critical to the stability and accuracy of downstream analyses. 
For example, due to current limitations of NGS technologies, 
the fidelity of the sequencing “base calls” and confidence in 
sequencing read counts can be affected by several technical 
factors during the sample preparation, library preparation, 

and sequencing/imaging step.10–14 Failure to filter sequence 
duplications can negatively skew read abundance or expression 
measures or lead to false variant calling.15–18 Similarly, discrep-
ancies among overlapped reads containing erroneous residues 
can complicate the assembly process or might lead to incom-
plete contiguous sequence extensions in genome assembly.19

Proper and complete quality control (QC) procedures 
for preprocessing NGS reads typically comprise two essen-
tial components: (1) statistical evaluation of overall read 
quality or sequence composition, and (2) read cleaning, pro-
cessing, and filtering. In general, the former helps users to 
determine the characteristics of data such as the distribution 
of the GC base content in the reads, the range and distribu-
tion of base-quality scores, and the overall levels of sequence 
ambiguity or complexity (repetitiveness). These statistical 
measures help evaluate the overall quality of the sequencing 
data set and aids in the selection of parameters and cutoff 
values needed in the filtering step. The read cleaning, pro-
cessing, and filtering step includes removing “tag” sequences 
(adapters, primers, and barcodes) or low-quality parts of the 
read, apart from filtering entire sequences of low quality or 
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sequences that are too short after trimming. This step may 
also require the removal of multiple duplicated reads or reads 
from unexpected genomic contamination from the experi-
ment or library preparation.

There are many QC software packages available to fil-
ter or trim low-quality reads.20–23 However, these methods 
typically focus on only one or two of the QC steps and do 
not provide a complete QC workflow. Furthermore, data pre-
processing is often separated from the main analysis work-
flow and may require the application of multiple QC tools and 
steps for each sequencing read sample in the data set. Overall, 
read QC is often a complex, daunting task that often slows 
down the entire analysis workflow.

Here, we present PathoQC, a comprehensive and 
user-friendly command line QC software for experienced 
computational scientists, which is designed to perform com-
plete, high-quality preprocessing of sequencing reads in a 
single step. Our primary goal in developing PathoQC is to 
provide a flexible and simple user-friendly software module 
for QC preprocessing for most of DNA or RNA sequencing 
assays. PathoQC was originally released as a “plug-in” mod-
ule for the PathoScope 2.0 metagenomics framework,24 but 
it also functions as a stand-alone pipeline that can be eas-
ily integrated within other NGS analysis pipelines. At the 
heart of PathoQC lies the parallel processing module with 
paired-end (PE) reads support that integrates with three 
state-of-the-art QC modules, namely, FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc), Cut-
adapt,20 and Prinseq.21 PathoQC is designed to utilize the 
strengths of these approaches as well as provide integrative 
benefits not available when using each of the QC modules 
alone. In addition, the efficient parallel processing module 
of PathoQC decreases the amount of time necessary for QC 
and better utilizes the resources for cluster submission of 
workflows in which downstream analysis steps also require 
multiple central processing units (CPUs). Furthermore, 
PathoQC contains a couple of unique features such as han-
dling valid singleton reads in PE inputs and a trimming 
option for either a higher-quality single-nucleotide poly-
morphism (SNP) analysis or a better alignment rate. Next, 
we describe the PathoQC workflow and compare it to other 
QC approaches in terms of processed data quality and com-
putational time required for preprocessing. We illustrate the 
benefits by applying PathoQC to a metagenomics sequenc-
ing data set used for detecting pathogens that have previ-
ously been established to play a role in carcinogenesis. We 
explore effects of the QC processing steps on human RNA-
Seq reads, and our benchmarks demonstrate that PathoQC 
leads to more confident and sensitive variant calling than 
other QC methods.

Methods
PathoQc workflow details. PathoQC integrates the three 

core software programs for QC analysis, namely, FASTQC, 

Cutadapt, and Prinseq. PathoQC utilizes the individual streng-
ths of these programs to provide high-quality read preprocess-
ing. For example, the Prinseq stand-alone version provides 
QC options related to base quality, sequence complexity, GC 
content, and sequence artifacts, but it does not detect and trim 
tag sequences. In contrast, Cutadapt has been successfully used 
to trim multiple tag sequences in numerous sequence librar-
ies25–28 but does not have other features avai lable in Prinseq. 
Furthermore, we use FASTQC to choose appropriate pro-
cessing parameters to minimize user input if desired. By com-
bining the strengths of these tools together and introducing 
novel features such as parallel computation and better handl-
ing of PE reads, PathoQC provides the most sophisticated QC 
workflow available (Fig. 1 for workflow). Note that PathoQC  
only takes care of the preprocessing step before alignments.

PathoQC consists of four steps. In Step 1, the user pro-
vides the sequencing read data set in FASTQ29 or FASTA 
(http://www.ncbi.nlm.nih.gov/blast/fasta.shtml) format. Unless 
the user specifies input parameters in a run option, FASTQC 
would extract Phred offset, read length, a minimum base 
quality to trim, and primers/adapters among overrepre-
sented sequences. In Step 2, PathoQC applies the FASTQC 

Step 1: User inputs sequencing reads (fastq) and primer
            and adapter sequences

Step 2: FastQC

Steps 3 & 4: Process sequencing reads 

Steps 5: Output quality controlled sequencing reads

Clean sequencing reads
(fastq)

Sequencing reads
(fastq)

Primers & Adapters

CTCGGCATTCCTGT...

GATCTATTATACTCC...

• Detect Phred offset

Cutadapt
Prinseq

• Search for sequence tags

• Trim sequence primers
  and adapters

• Trim low quality bases
• Remove short sequences
   low complexity and
   redundant reads

figure 1. PathoQC module workflow. PathoQC is a read quality control 
software module that performs several read quality control steps, 
including detecting and trimming adapters, trimming low-quality bases at 
both ends of reads, and filtering low-complexity and duplicate sequences. 
PathoQC is an automated, parallel workflow that seamlessly combines 
the strengths of the Cutadapt, Prinseq, and fastQC read preprocessing 
tools before any secondary analysis (eg, alignment or snP analysis).
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algorithm, produces the standard FASTQC visual output 
and results, and PathoQC also automatically collects the 
Phred offset, the minimum base quality, the range of read 
lengths, and overrepresented adapters or primers (if not 
provided in Step 1) for use in further preprocessing steps. In 
Step 3, PathoQC applies Cutadapt to remove overrepresented 
sequencing tags from the data. For all tag sequences provided 
by the user or from Step 2, Cutadapt performs an “end-space 
free alignment” in order of O(nk), where n is the total number 
of the characters in all reads and k is the sum of the length of 
the adapters.30 Cutadapt can also simultaneously search for 
multiple adapters in a single run of the program.20 Finally, it 
conducts a gapped alignment by considering homopolymer-
type artificial insertions and deletions (eg, pyrosequenc-
ing). In Step 4, Prinseq is used to trim low-quality bases 
and remove reads that are too short, of low complexity, or 
redundant. Depending on the platform generating the 
input reads (eg, Illumina), Prinseq trims lower-quality bases 
at the 5′ or 3′ ends of the reads31 or removes reads largely 
contaminated with homopolymer-length sequencing errors 
such as “AAAA” or “TTTTTTTT”32 (eg, pyrosequencing). 
Furthermore, the Prinseq software provides a large number 
of command line options for trimming sequence tags and 
filtering reads by their lengths, quality scores, GC contents, 
proportions of ambiguous base calls, sequence duplicates, 
and sequence complexities.21 These options can be specified 
from the PathoQC command line arguments. Table 1 sum-
marizes the options supported by PathoQC and compares 
these with other existing QC approaches. The following 
subsections detail other unique options and functionalities 
available in the PathoQC software.

Parallel computation. PathoQC supports parallel 
computation with multiple threads across a compute node 
with multiple cores. To accomplish this, PathoQC uses two 
standard Python modules, multiprocessing and Queue.33 In 
its parallel implementation, PathoQC calculates the read file 
size and evenly distributes the reads to multiple CPUs or 
threads (as specified by the user). The PathoQC pipeline is 

applied automatically to each subset and the processed reads 
are merged into one FASTQ file, for further processing. Nei-
ther Cutadapt nor Prinseq support parallel computation, but 
most downstream alignment and analysis steps utilize mul-
tiple threads. This means that the computational resources 
on the cluster, cloud, or local machine are left unutilized 
while the QC pipeline processes each sample individually on 
a single CPU. In contrast, PathoQC allows users to match 
CPU usage for the QC steps with downstream analysis 
needs, thereby providing more optimal usage of computa-
tional resources.

Pe reads. PE sequencing is now a standard and very 
common sequencing approach. Most QC workflows com-
pletely separate a read pair from valid PE read set if one 
read is filtered by QC processing. In contrast, PathoQC will 
collect all high-quality “singleton” reads and merge them 
to a valid PE read FASTQ file format so that we can align 
them to a reference genome in a single run. This option can 
increase the overall mapping efficiency for PE reads. For 
instance, in gene fusion or structure variation study, keeping 
more discordant pairs may help in identifying chromosomal 
breakpoints.

Additional Qc features. In addition to the QC features 
provided by the three core QC software packages, PathoQC 
provides users four additional features: 1) PathoQC provides 
a read summary report containing information, such as the 
range of the processed read lengths; 2) PathoQC supports Disk 
Operating System (DOS)-format FASTQ files; 3) PathoQC 
can automatically detect adapters or primers and, moreover, 
it determines a minimum base-quality cutoff adaptively for 
input reads; 4) in PCR deduplication, it retains the one with 
the highest base-quality reads among the identical products; 
and 5) PathoQC can retain low-quality bases (instead of trim-
ming them) if the length of good-quality bases is longer than 
a minimum length that the user specifies. The final option 
can help increase the mapping specificity when an alignment 
program allow reads to be soft clipped by a Smith–Waterman 
local scoring scheme.34

Table 1. Comparison of features for nGs quality control methods.

QC fEATURES PATHoQC QCTooLkIT QC-CHAIN CUTADAPT PRINSEQ

Parallel computation X X X

Phred offset detection X X X

tag sequence removal X X X X

Poly-a/t tail trimming X X X

PCR duplication filtering X X X

Low complexity filtering X X

Homopolymer removal X X X

GC content filtering X X X

N/X content filtering X X

retain singleton pairs X

http://www.la-press.com
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results and discussion
We compared the performance of PathoQC with that of four 
stand-alone QC software approaches, namely, Cutadapt, Prin-
seq, NGS QCToolkit v2.322 (hereafter QCToolkit), and QC-
Chain.23 These programs were chosen for comparison because 
they provide nearly complete QC preprocessing options simi-
lar to PathoQC. A comparison of the features provided by the 
five software packages is given in Table 1.

The experiments were conducted with a three-fold pur-
pose. 1) Given three samples (two carcinoma cell line RNA 
samples and one metagenomic DNA sample), we evaluate 
each QC software’s performance (speed, memory usage, the 
number of filtered bases, etc); 2) in the first case study, we 
evaluate the consequence of each QC preprocessing strategy 
on species identification with those preprocessed samples; and 
3) in the second case study, six human RNA-Seq samples con-
taining External RNA Control Consortium (ERCC) spike-in 
control35 are used to explore the effects of QC software on 
gene expression and SNP analysis.

data set descriptions. The first data set consists of 
12.6 million, 50-base pair (bp) strand-specific, PE sequenc-
ing of RNA from HeLa cells36 (SRR094181, HeLa_siNT). In  
this data set, we observed two Illumina PCR Primer Index 
sequences, one from each of the sequencing read pairs. The 
second sample contains 13.6 million, 40-bp PE sequencing 
reads from a human prostate cancer cell line37 (SRR073726, 
CA-HPV-10). The third sample is from a metagenomics study 
containing 336K single-end DNA sequencing reads from a 
human abscess sample of unknown etiology38 (DRR001376, 
Iwaki-08). A summary of data set features is given in Table 2. 
The fourth sample (study ID: GSE 4971239) is described in 
the section on Case study II.

evaluation of PathoQc in cancer metagenomics. QC 
results. We applied each of the QC programs (PathoQC, 
QCToolkit, QC-Chain, Cutadapt, and Prinseq) on all three 
data sets using Linux desktop with 16-gigabyte random-access 
memory by utilizing four CPUs. We set the base-quality cutoff 
as 3–5, which corresponds to min(Qphred)–2 for each data set (In 
the section Case study I, we also repeat the same experiment 
under a higher base-quality cutoff). We set the minimum read 
length satisfying the base-quality cutoff as 30 bp for PE reads 
and as 35 bp for single-end reads. There are no fixed cutoff val-
ues for those parameters. It rather depends on which analysis 
is of user interest. In the metagenomic samples, we consider a 
higher mapping rate so that it can help increasing sensitivity in 
identifying prevalent nonhost organisms. Duplicated reads are  
filtered if the pipeline provided this option. The QC para-
meters used for all programs and data sets are given in Table 3.

Computational performance. Overall, QC-Chain prepro-
cessed data faster than the other two pipeline methods, com-
pleting the QC processing 1.8–3.6 times faster than PathoQC 
and 2.9–7.9 times faster than QC Tookit. PathoQC required 
less memory than the other programs, which needed 1.2–2.7 
(QCToolkit) and 6.0–8.9 (QC-Chain) times more memory 

than PathoQC. Both Cutadapt and Prinseq were capable 
of utilizing only a single CPU, while PathoQC – with four 
CPUs – was nearly 2.5–3.5 times faster than the sum of the 
two elapsed times, indicating that the data-processing speed is 
linearly scalable with respect to the number of CPUs.

Filtering results. The three complete QC software pack-
ages filtered some uninformative reads after trimming, 3%–4% 
of the raw reads for HeLa siNT, 2%–3% for CA-HPV-10, and 
9%–10% for Iwaki-08, respectively (Fig. 2A–C). QCToolkit 
does not filter duplicated reads. Only PathoQC and Prinseq 
remove identical sequence copies, including reverse comple-
mentary sequences. QC-Chain marked 30% and 60% of reads 
as duplicates in two PE read data sets, which is seven to eight 
times larger than the results with PathoQC.

Cutadapt was only able to trim input reads, showing 
similar results overall with that of QCToolkit for all three 
samples. On the other hand, the number of filtered reads after 
the trimming step was not distinguishable between PathoQC 
and Prinseq, except for the first sample, wherein Prinseq did 
not remove primers, so more reads were retained. In addition, 
PathoQC filtered out reads of low sequence complexity. Such 
sequences can produce a larger number of high-scoring but 
biologically insignificant results in database searches. This 
feature is very useful for metagenomic data, which will be dis-
cussed shortly. Particularly, in Iwaki-08, it removed 4.1% of 
the reads having lower sequence complexity.

Table 2. Description of nGs read data sets used in the study.

sample  
Details

sample name HeLa sint Ca-HPV-10 Iwaki-08

accession srr094181 srr073726 Drr001376

source total rna total rna Dna

Before QC read type Paired-end Paired-end single-end

read length 50 bp 40 bp 125bp

# of reads 12.6m 13.6m 336K

PathoQC Bases filtered 7.6% 9.41% 18.4%

memory (GB) 1.0 0.9 0.2

time (min:sec) 18:11 14:48 0:25

QCtoolkit Bases filtered 3.9% 3.2% 9.8%

memory(GB) 1.3 1.1 0.8

time (min:sec) 41:14 24:23 0:55

QC-Chain Bases filtered 34.3% 63.7% 18.2%

memory(GB) 8.9 8.0 1.8

time (min:sec) 8:08 8:20 0:07

Cutadapt Bases filtered 4.0% 3.2% 9.1%

memory (GB) 0.1 0.1 0.1

time (min:sec) 16:51 12.55 0:07

Prinseq Bases filtered 11.4% 17.5% 18.5%

memory (GB) 3.7 3.4 0.7

time (min:sec) 34:14 35:07 0:51

Notes: The details include the percentage of the filtered reads, peak memory, 
and elapsed time for the five QC methods.

http://www.la-press.com
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4,242 nonhost reads after PathoQC, 7,112 reads after 
QCTookit, 1,109 reads after QC-Chain, 7,107 reads after 
Cutadapt, and 3,557 reads after Prinseq. In the reads prepro-
cessed by PathoQC, PathoScope ranked human papilloma-
virus 18 (HPV18) as the most prevalent microbe, assigning 
79% of the nonhost reads (160 × coverage) to this pathogen. 
The Prinseq QC reads resulted in 75% assigned to HPV18 
(127 × coverage), QCToolkit and Cutadapt assigned 59% 
of the reads to HPV18 (200 × coverage), and QC-Chain 
assigned HPV18 as the second most abundant pathogen, with 
only 16% of the reads (9.1 × coverage) assigned to HPV18. 
We also used SAMTools34 to generate contiguous aligned 
sequences (contigs) for the reads assigned to HPV18. The N50 
for all QC programs was 833 bp, except for QC-Chain, which 
had an N50 of 307 bp. Thermoanaerobacter wiegelii Rt8.B1 was 
also highly ranked by PathoScope with 28% of the reads from 
QCToolkit and Cutadapt. This species was not identified in 
the data processed by the other tools (the estimated proportion 
in the QC-Chain was negligible, 0.7%). Upon closer inspec-
tion and reference-guided assembly with SAMTools men-
tioned above, we observed that all contigs corresponding to 
this species consisting of consecutive As or Ts, suggesting that 
it is a false-positive result. In the Iwaki-8 data set, we observed 
improved PathoScope results for the PathoQC, Cutadapt, and 
Prinseq data, with 72%–73% of the reads sequenced from a 
pathogen infecting the sample being from Francisella tular-
ensis subsp. holarctica FSC200. The other methods performed 
well overall but assigned fewer reads to this species.

For the PE RNA-Seq reads from HeLa cell line, QC-
Chain removed all paired reads (30%) due to the presence of 
one read in the pair with low complexity. For the prostate can-
cer cell line, QC-Chain removed almost 60% of reads in its 
duplicate-filtering step, whereas PathoQC filtered only 7.7% 
of reads because it considers both reads in the pair simulta-
neously. This demonstrates one of the most important novel 
features of the PathoQC approach.

Higher phred quality cutoff. The cutoff can be chosen 
depending on the overall read quality, the read length, and 
the sequencing platform used. In the previous experiments,  
eg, we applied a less stringent base-quality cutoff so that 
it can keep as many bases in the reads as possible, which can 
increase the mapping specificity when the input read length 
is short.41

The same experiments were repeated with a higher read 
quality cutoff (20 in Phred score for the sample CA-HPV-10). 
The overall evidence score for the pathogen by PathoQC 
becomes higher. PathoQC filters out 9.44% of the reads and 
the identification result remains nearly the same as the pre-
vious result, reassigning 77.1% read proportion to HPV18 in 
the first place. Two other QC programs, NGSToolkit and 
QC-Chain, filtered 6.67% and 82.8% of the reads, respectively. 
With these refined reads, PathoQC identifies HPV18 at the 
first and second ranks from top, with 60.3% and 17.5% read 
proportions, respectively.

case study I. We also evaluated the downstream impact 
of the QC procedures on downstream applications. After pre-
processing the reads, we used the PathoScope 2.0 software40 
to align and profile microbial content in these samples. Spe-
cifically, we examined the impact of read QC on the ability to 
identify cancer-causing pathogens. We analyzed the two sam-
ples CA-HPV-10 and Iwaki-08 after preprocessing them by 
each of the QC programs. We used PathoScope (refer Table 3 
for parameters used) to align the two QC read samples against 
both the human reference genome and a reference genome 
library containing all viral and bacterial genome sequences. 
All reference sequences were obtained from the National 
Center for Biotechnology Information (NCBI) nucleotide 
collection (nt) database as of September 2013. The results are 
illustrated in Figure 2C.

PathoScope species identification. PathoScope removed 
potential human sequencing reads from these data, leaving 

Table 3. Parameters used in QC software and rna-seq analysis.

SAMPLE ID SRR094181

PathoQC -m 30 -q 3 -e 50 -d 14 -g 1 -p 4

Cutadapt –minimum-length 30 –q 3 –a adapter –paired-
output

Prinseq -min_len 30 -trim_qual left 3 -trim_qual_right 3 
-derep 14

QCtoolkit a -l 60 -s 3 -c 4 adapter.txt

QC-Chain -p t -d t -qP 3 0.6 -t 4 adapter.txt

SAMPLE ID SRR073726

PathoQC -m 30 -e 50 -d 14 -p 4

Cutadapt same as srr094181

Prinseq same as srr094181

QCtoolkit n a -s 0 -l 75 -c 4 4

QC-Chain -d t -t 4

SAMPLE ID DRR001376

PathoQC -m 35 -q 5 -e 60 -d 14 -p 4

Cutadapt -q 6 –minimum-length 35

Prinseq -min_len 35 -trim_qual_left 6 -trim_qual_right 6 
-derep 14

QCtoolkit n a -l 28 -s 5 -c 4

QC-Chain -d t -qP 5 0.28 -t 4

STUDY ID gSE49712

PathoQC -m 30 -e 50 -p 4 -v min

QCtoolkit n a -s 0 -l 75 -c 4 4

QC-Chain -d f -t 4

PRogRAMS SPECIES IDENTIfICATIoN AND RNA ANALYSIS

Pathoscope2 -m G,20,8 -k 100 -s 0.99 -t 30 -p 4

topHat2 -r 70 –mate-std-dec 90 -Gtf hg19_150_erCC.gtf

Htseq -s no -t exon -m union

Platypus –reffile $hg19ercc.fa –minBaseQual 20

–minMapQual 20 –filterReadsWith 
Unmappedmates 1
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case study II. It is of great interest to assess the impact 
of QC data preprocessing on differentially expressed (DE) 
transcriptome analysis or SNP identification. Numerous 
quantification algorithms have been developed to statistically 
capture real mRNA levels within the cells for discriminating 
among different phenotypes.39,42 Recently, a study has shown 
that trimming tends to increase the quality and reliability 
of the analysis while reducing the computational resource 
requirement.43 Depending on the read quality, some optimal 

parameters are suggested.41 The QC software is evaluated with 
an RNA-sequencing data set containing the ERCC spike-in 
control.35,44 The objectives in the following discussion are to 
observe how QC influences 1) RNA-Seq alignment sensitiv-
ity, 2) relative DE abundance measurement with ERCC, and 
3) SNP callings’ sensitivity and accuracy.

Data description. From a previous study GSE49712,39 six 
RNA-Seq samples (out of 10 technical replicates) were ran-
domly selected. The six samples were grouped into two condi-
tions with respect to ERCC spike-in control mix ratio. Each 
sample contained 60–111 million 101-bp PE RNA-Seqs from 
the Illumina platform (Fig. 4).

For each RNA-Seq sample, PathoQC, NGSToolkit, 
and QC-Chain were run under the same parameters used in 
Table 3, except that 1) all duplicated reads were retained for all 
methods and 2) setting “-v min” in PathoQC parameters trims 
low-quality bases at the 3′ ends of the Illumina reads.

Effect on gene expression analysis. Twenty-four PE reads 
(including 18 QC reads and 6 raw reads) were mapped to the 
human genome (hg19/GRCh37) using TopHat (v2.0.9)45 with 
the same parameters used in a previous study39 (Table 3).

From our experiment results, QC preprocessing would 
not improve the alignment accuracy in terms of how closely 
the relative ratio of two samples’ read counts mapped to the 
ERCC sequences are correlated to the ERCC mixing ratio 
in control. We observed that the difference in the mapping 
counts on ERCC reference between two conditions is nonneg-
ligible (1.01%–1.14% for samples SRR950078, SRR950082, 
and SRR950086 under the condition A vs 1.27%–1.92% for 
samples SRR950079, SRR950083, and SRR950087 under 
the condition B). Given the alignment files (BAM), HTSeq 
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v0.6.046 was used to generate the count matrix as shown in 
Table 3. Then, the count matrix was normalized with the mean 
value of the hit counts across the gene sets. Table 4 represents 
the correlation coefficients between the predicted ERCC mix 
ratio and an actual control ratio. The results varied depending 
on the sample sets (eg, in the first two groups of samples, QC 
process improved the correlation but not in the last sample).

Higher confident mappings. PathoQC increases the align-
ment rate. Taking into account the mapping accuracy, it relies 
on the number of properly paired alignments (or equivalently 
concordant pair alignments), meaning that both ends of the 
read were mapped and they were mapped within a reasonable 
fragment length from the library preparation. In Figure 4, 
the PathoQC alignment rate ranges from 76% to 86% of the 
total number of original reads, which is 5%–7% higher than 
the other methods (including the case of bypassing any QC, 
henceforth termed “WithoutQC”).

SNP analysis. PathoQC improves the overall genotype 
quality. For each alignment file, we run sam-stats (https://
code.google.com/p/ea-utils/) to compute both base quality 
and the percentage of reads containing at least one mismatch 
against a reference genome sequence (Fig. 5). As expected, 
both qualities improve after the implementation of any QC. 
In particular, PathoQC trims the consecutive lowest bases at 
the 3′ ends in the Illumina RNA-Seq so that it can achieve the 

best base quality compared to the other QC methods, which 
retain original reads but only filter out reads containing mostly 
low-quality bases.

PathoQC helps in discovering more SNP calls than the 
other methods. An assembly- and haplotype-based SNP caller 
(Platypus47) was run on 24 Binary Sequence Alignment/Map 
format (BAM) files with highly confident calling parameters 
(Table 3), meaning that it relies on all highly confident map-
pings and base calls. In SRR950078, for instance, a VCF 
(variant call format) file derived from PathoQC contains 
43,694 SNPs.

In Figure 6A, all three methods except PathoQC show 
more commonality (for instance, 40,345 SNPs shared by 
NGSToolkit and WithoutQC vs 39,090 SNPs shared by 
PathoQC and NGSToolkit). This indicates that PathoQC 
does not call approximately 1,000 of the SNPs that are called 
by all the others. Nonetheless, PathoQC discovers 2.5 times 
more unique SNPs than the other methods.

For all samples, the quality of the variant calls is exami-
ned by comparing them to the previously known SNP data-
base. Among SNPs uniquely called by PathoQC, the fraction 
of known SNPs (ie, the variants reported into NCBI dbSNP 
human build 142) is 0.55, which is more comparable to the 
known SNP rate (0.58–0.65) commonly shared by two meth-
ods than it is to the fraction of known SNPs unique to With-
outQC, 0.3 (Fig. 6B). It suggests that the SNP detected by 
our QC helps downstream analysis achieve a better quality of 
variant calls than the other methods.

It is interesting to note that TopHat2 only supports end-
to-end mapping and thus Illumina reads with potentially ran-
dom matches or mismatches at 3′ ends are not allowed to map. 
For this reason, PathoQC is designed to balance sensitivity 
and specificity of alignment by trimming 3′ ends with minor 
base-quality cutoff and by retaining a high quality of singleton 
reads. Therefore, PathoQC helps to achieve the highest map-
ping sensitivity and it consequently facilitates the discovery of 
more private SNPs in the RNA-Seq data.

conclusion
The objective of QCs in high-throughput sequencing reads is 
to monitor the quality of reads and to filter out sequencing 
artifacts, contamination, and unacceptable quality recurring in 
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Table 4. The correlation coefficient of the ERCC alignment ratio 
between two condition samples to the actual erCC rna spike-in 
control mixing ratio.

CoNDITIoN:A SRR950078 SRR950082 SRR950086

CoNDITIoN:b vS. SRR950079 vS. SRR950083 vS. SRR950087

WithoutQC 0.738 0.779 0.764

PathoQC 0.755 0.742 0.709

nGs toolkit 0.757 0.783 0.731

QC-Chain 0.757 0.783 0.730
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on six samples to evaluate the quality of snPs before and after QC (PathoQC). the known snPs among variant calls correspond to the one reported into 
nCBI dbsnP human build 142. the x-axis corresponds to the fraction of known variants out of the total number of snPs shared by both methods and the 
y-axis indicates the fraction of known variants among the total private snPs unique to each method. the ratio of commonly shared known snPs ranges 
from 0.58 to 0.65. the fraction of known mutations among snP calls unique to PathoQC is higher than the case of the fraction before QC, eg, 0.55 vs 0.3. 
this suggests that the snPs obtained from PathoQC are highly reliable.

each NGS platform. Depending on which sequencing platform 
is used, how sequencing libraries are prepared, which features 
are available to the NGS aligner that a user employs, what is 
the main application (eg, species identification, differentially 

expressed transcriptome analysis, or a high-sensitive SNP 
analysis, etc), it is highly desirable to prepare input reads to 
achieve the best result. For this reason, QC software that can 
provide rich customized options is preferable.
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PathoQC offers the most comprehensive QC features 
to improve the quality of downstream results from sequenc-
ing studies. PathoQC combines the strengths of three com-
monly used QC tools (FASTQC, Cutadapt, and Prinseq), 
along with several novel features, into a complete QC soft-
ware module. The PathoQC pipeline consists of three major 
steps: 1) FASTQC is utilized to evaluate the overall qual-
ity of the data set and to identify QC parameters such as 
the Phred offset and overrepresented sequence tags; 2) Cut-
adapt is used to remove sequence tags; and 3) Prinseq is used 
to remove low-quality bases/reads and reads that have low 
complexity. PathoQC uses an efficient, parallel implementa-
tion that increases processing speed and better utilizes server 
resources. The software module is constructed for easy inte-
gration into any bioinformatics workflow. Under multiple 
experimental conditions, we showed that the PathoQC pipe-
line achieves excellent scalability and high-quality results.

In metagenomic samples, experimental results showed 
that PathoQC provides several important QC features, 
including filtering duplicated and low sequence complexity 
reads, which improved the quality of the predicted pathogen 
identification compared to other QC methods. In ERCC 
RNA spike-in control mixture samples, PathoQC’s strat-
egy of handling RNA-Seq (eg, trimming and retaining 
singleton reads) improves an alignment’s quality in terms 
of both sensitivity and accuracy, as well as facilitating SNP 
identification.
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