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Background
Nowadays, X-ray CT (computed tomography) is still one of the most important medical 
imaging technologies. Compared to other imaging methods, like ultrasonic imaging or 
magnetic resonance imaging, CT imaging has its own advantages to provide patients’ 
anatomical structure. CT images are of higher quality than the ultrasonic images. Com-
pared to the magnetic resonance imaging, CT imaging is of faster imaging speed and CT 
images have a bit higher spatial resolution.

Abstract 

Background:  In order to reduce the radiation dose of CT (computed tomography), 
compressed sensing theory has been a hot topic since it provides the possibility of a 
high quality recovery from the sparse sampling data. Recently, the algorithm based on 
DL (dictionary learning) was developed to deal with the sparse CT reconstruction prob-
lem. However, the existing DL algorithm focuses on the minimization problem with the 
L2-norm regularization term, which leads to reconstruction quality deteriorating while 
the sampling rate declines further. Therefore, it is essential to improve the DL method 
to meet the demand of more dose reduction.

Methods:  In this paper, we replaced the L2-norm regularization term with the L1-norm 
one. It is expected that the proposed L1-DL method could alleviate the over-smoothing 
effect of the L2-minimization and reserve more image details. The proposed algorithm 
solves the L1-minimization problem by a weighting strategy, solving the new weighted 
L2-minimization problem based on IRLS (iteratively reweighted least squares).

Results:  Through the numerical simulation, the proposed algorithm is compared 
with the existing DL method (adaptive dictionary based statistical iterative reconstruc-
tion, ADSIR) and other two typical compressed sensing algorithms. It is revealed that 
the proposed algorithm is more accurate than the other algorithms especially when 
further reducing the sampling rate or increasing the noise.

Conclusion:  The proposed L1-DL algorithm can utilize more prior information of 
image sparsity than ADSIR. By transforming the L2-norm regularization term of ADSIR 
with the L1-norm one and solving the L1-minimization problem by IRLS strategy, L1-DL 
could reconstruct the image more exactly.
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However, high quality CT images are now based on a noticeable X-ray radiation dose 
to the patient, which may result in a non-negligible lifetime risk of genetic or cancerous 
diseases [1]. This fact has become a major concern for clinical applications of CT scans. 
Therefore, this article focuses on reducing the radiation dose in CT and generating the 
clinically qualified image.

In order to reduce the radiation dose, one direct way is to lower mAs levels in CT data 
acquisition protocols. However, this approach will result in insufficient numbers of X-ray 
photons received by the detectors and hence increase the quantum noise level. This is 
a great challenge for these advanced methods which have taken the noise models into 
account. For example, PWLS (penalized weighted least-squares) based methods [2] can 
only deal with the noise-contaminated sinogram data to some extent. As a consequence, 
the radiation dose cannot be reduced evidently by this approach if the reconstructed 
images need to be qualified for clinical diagnosis. Another way to reduce imaging dose is 
to decrease the number of X-ray projections operated by fewer sampling angles. Yet, this 
will lead to serious streaking artifacts in the image reconstructed by the analytic-based 
algorithms like FBP (filtered backprojection algorithm) [3], since the analytic-based 
algorithms require that the number of projections should follow the Shannon/Nyquist 
sampling theorem [4].

To solve the under-sampled reconstruction problem, algebraic algorithms transform 
the problem to a series of linear equations and the reconstructed image is acquired by 
the iterative method. SART (simultaneous algebraic reconstruction technique) [5] is one 
of the typical algebraic iterative methods. But the images reconstructed by traditional 
algebraic algorithms do not satisfy the clinical image quality demand. Researchers are 
trying to improve the performance of the iterative reconstruction algorithms by intro-
ducing prior information of the reconstructed images to the reconstruction process.

Recently, the compressed sensing theory [6, 7] has been applied to the CT reconstruc-
tion problem. The reconstruction problem of the compressed sensing algorithm can be 
written as a constrained optimization

where (Aµ− ĝ)2 is the data fidelity term, A is the projection matrix modeling the for-
ward projection, μ is the image vector to be reconstructed, ĝ is the projection vector, 
R(μ) is the regularization term including the prior information, λ is the regularization 
parameter adjusting the relative penalties on the regularization term and the data fidel-
ity term. The regularization term is modeled by the prior information. One commonly 
used regularization term is the TV (total variation) norm, which is the sum of the abso-
lute coefficients of the DGT (discrete gradient transform) of the reconstructed image. 
TV-based algorithm is usually used to solve the CT reconstruction problem since that 
most CT images are piecewise constant. So the TV norm is small enough to reflect the 
image sparsity. Algorithms like ASD-POCS (adaptive steepest descent projection onto 
convex sets) [8] and GPBB (gradient projection Barzilai Borwein) [9] are typical TV-
based reconstruction algorithms. Besides the TV norm, the recent coming DL (diction-
ary learning) methods can generate the regularization term, which divide the CT image 
into many overlapped patches and calculate the sparse representations of the patches 

(1)arg min
µ

(Aµ− ĝ)2 + �R(µ)
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under the basis of an over-complete dictionary. While the TV-based methods take the 
image as a whole to measure the image sparsity, the DL methods have advantages over 
TV since they extract the sparse prior information from each overlapped image patch, 
which utilizes more sparse information than TV. Reference [10] combines the SIR (sta-
tistical iterative reconstruction) model with DL regularization term to deal with the low-
dose reconstruction problem.

Although the compressed sensing algorithms behave well in the low-dose CT recon-
struction problem, some low-contrast details of the reconstructed image are lost, 
especially when the sampling rate decreases further. In order to reserve more image 
information and satisfy the need of further radiation reduction, the TV-based algorithm 
developed a weighted TV regularization to help preserve the edge of the image [11]. 
When it comes to the DL-based algorithm, it is common that the regularization term 
is L2-norm error. Usually, algorithms based on L2-norm error minimization may lead to 
over-smoothing of the image, causing loss of detail. One way to alleviate this problem 
is to develop algorithms to minimize the L1-norm error. In this work, we develop a DL 
reconstruction algorithm with the L1-norm regularization term while the L1-minimiza-
iton problem is approximated by iteratively solving the weighted L2-minimization prob-
lem, known as IRLS (iteratively reweighted least squares) [12, 13]. The proposed L1-DL 
(L1 dictionary learning) algorithm is compared with ADSIR (adaptive dictionary based 
statistical iterative reconstruction), SART and GPBB to demonstrate the improvement of 
image quality based on the L1-norm regularization term.

The rest of the paper is organized as follows. In ‘‘Methods’’ section, firstly, the back-
grounds of ADSIR and IRLS are reviewed. Then the L1-DL algorithm and its corre-
sponding optimizing methods are described. After that, the workflow of the algorithm 
is provided. In section Simulation, a series of experiments are performed to demonstrate 
the proposed algorithm’s superiority. Finally, the section Conclusion with corresponding 
discussions and further analysis is provided.

Methods
Review of ADSIR

The previous work developed a DL based approach for low-dose X-ray CT with the sta-
tistical reconstruction model [10]. The related algorithm is reviewed in details as follows.

SIR model

Let I and N be integers and R be the real space. By assuming a monochromatic source, 
measured data follow the Poisson distributionphantoms with full display

where b = (b1, b2, . . . , bI )
T ∈ R

I×1 is the entrance X-ray intensity, 
y = (y1, y2, . . . , yI )

T ∈ R
I×1 is the exit X-ray intensity, g = (g1, g2, . . . , gI )

T ∈ R
I×1 

is the integral of the linear attenuation coefficient with gi = [Aµ]i =
∑N 2

j=1 aijµj, 
A = {aij} ∈ R

I×N 2 is the system matrix, the reconstructed image µ = (µ1,µ2, . . . ,µN 2)T 
is a linear attenuation coefficient distribution, which transforms the initial image of 
N × N pixels to a vector µ ∈ R

N 2×1, γi represents the read-out noise.
The objective function of the SIR model is as

(2)yi ∼ Poisson{bie−gi + γi}, i = 1, . . . , I
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where 
∑I

i=1 (ωi/2)([Aµ]i − ĝi)
2 is the data fidelity term, ĝ = (ĝ1, ĝ2, . . . , ĝI )

T ∈ R
I×1 is 

the measured data of g calculated by ĝi = ln(bi/(yi − γi)), ωi = (yi − γi)2/yi is the statisti-
cal weight.

In the SIR model, the statistical weight reflects the confidence of the projection meas-
urement along each path. The projection data through denser paths would have lower 
SNR (signal to noise ratios). Compared to the SART which minimizes a least square 
function, SIR deals with a statistically weighted least square function. However, this 
development is insufficient for the low-dose CT reconstruction that it is essential to 
introduce the regularization constraint.

DL model

Let N0 and K be integers. The DL regularization term is represented as

where Es = {esnj} ∈ R
N 2
o×N 2 is an operator to extract patches with N0 × N0 pixels from the 

image, the image patches are overlapping. With a sliding distance of one pixel, the total 
number of the patches is S = (N − N0 + 1) × (N − N0 + 1). D = (d1,d2, . . . ,dK ) ∈ R

N 2
0×K  

is the training dictionary, whose column dk ∈ R
N 2
0×1 is called an atom with the same size 

of a patch. Usually, the dictionary is redundant or over-complete (N0
2 ≪ K). αs ∈ R

K×1 has 
few nonzero components as a sparse representation of the patch by the dictionary basis 
D. νs is the regularization parameter different from λ.

ADSIR

By introducing the DL regularization term to the SIR model, the objective function of 
ADSIR is as

Since μ, αs and D are all unknown, the algorithm is iterated by the alternating minimi-
zation scheme, which divides the primary problem into two recursive steps—update 
of the dictionary model and update of the image. During each iteration process, keep 
the image μ unchanged firstly when the dictionary model is updated. And the objective 
function (5) becomes

which is the dictionary learning and sparse representation problem. The objective func-
tion (5) can be transformed to

(3)
arg min

µ

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2

(4)R(µ) =
S

∑

s=1

||Esµ−Dαs||22 +
S

∑

s=1

νs||αs||0

(5)min
µ,α,D

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2 + �

(

S
∑

s=1

||Esµ−Dαs||22 +
S

∑

s=1

νs||αs||0

)

(6)min
α,D

S
∑

s=1

||Esµ−Dαs||22 +
S

∑

s=1

νs||αs||0
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where the sparse level LS0 is set as a fixed number, usually from 5 to 10. Then the L0-norm 
problem as (5) is transformed to the OMP question, which has no need to determine the 
value of νs. The dictionary D is updated by the classic K-SVD (K Singular Value Decom-
position) algorithm [14]. Then, the sparse representation αs is updated by using the OMP 
(orthogonal matching pursuit) [15] algorithm based on recent dictionary. Once the dic-
tionary model has been updated in the current iteration process, the image μ should be 
updated with αs and D invariable. In other words, the problem transforms to the form as

which consists of the data fidelity term 
∑I

i=1 ωi([Aµ]i − ĝi)
2/2 and the regularization 

term ∑ Ss=1||Esμ − Dαs||2
2. Since the regularization term is already a separable quadratic 

function. By replacing the data fidelity term with a separable paraboloid surrogate [16], 
the optimization can be iteratively solved by

IRLS

Consider a sparse signal x with length N (sparse means the signal has few nonzero com-
ponents, that is ||x||0 ≪ N) is encoded by an M × N measurement matrix Φ with M < N, 
and the encoded signal is y = Φx with length M. Referred to [12, 13], the objective func-
tion with Lp-norm minimization to solve the sparse signal is as

IRLS can be used for solving (9) by replacing the Lp-norm with a weighted L2-norm

where the weights are computed from previous iteration result x(t−1). To make the L2-
norm approximate to the Lp-norm, the weights are calculated by

where a small ɛ > 0 is provided to ensure stability. Then the signal is iterated by

min
α,D

S
∑

s=1

||Esµ−Dαs||22

||αs||0 ≤ LS0

(7)min
µ

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2 + �

S
∑

s=1

||Esµ−Dαs||22

(8)

µt+1
j =






µt
j −

�I
i=1

�

aijωi

��

Aµ
t
�

i
− ĝi

��

+ 2�
�S

s=1

�N 2
0

n=1 e
s
nj

��

Esµ
t
�

n
− [Dαs]n

�

�I
i=1

�

aijωi
�N 2

k=1 aik

�

+ 2�
�S

s=1

�N 2
0

n=1 e
s
nj

�N 2

k=1 e
s
nk







+
j = 1, 2, . . . ,N 2

(9)min
x

||x||pp, subject to �x = y (0 < p ≤ 1)

(10)min
x

N
∑

i=1

wix
2
i , subject to �x = y

(11)wi =
∣

∣

∣(x
(t−1)
i )2 + ε

∣

∣

∣

p
2−1

(12)x
(t)
i = Qt�

T(�Qt�
T)−1y
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where Qt  =  diag(1/w1,  1/w2,  …,  1/wn) is the diagonal matrix with entries 
1/wi = |(x(t−1)

i )2 + ε|1−
p
2

L1‑DL

In the ADSIR model, the regularization term ∑ Ss=1||Esμ − Dαs||2
2 is the sum of the L2-

norm of the difference between the image patch and its sparse representation. The L2-
norm constraint tends to distribute the energy of ∑  Ss=1||Esμ − Dαs||2

2 to each image 
patch Esμ − Dαsuniformly. However, most CT images are piecewise constant, so that 
most image patches have small values of ||Esμ − Dαs||(equal or close to zero). A small 
part of the image patches have large values of ||Esμ − Dαs|| because they contain edge 
details and image information. In other word, the distribution of ||Esμ − Dαs||is sparse. 
So we propose the L1-DL method to make ||Esμ − Dαs|| converge to the sparse distribu-
tion by the L1-norm regularization term. The L1-DL utilizes more prior information of 
image sparsity (the sparse distribution of ||Esμ − Dαs||) than ADSIR.

Derived from the ADSIR algorithm, the objective function of the L1-DL method is 
generated by replacing the L2-norm of the regularization term with the L1-norm, which 
is

To make this optimization problem solvable, the patch-based weighted L2-norm sim-
ilar to IRLS is introduced. Since the DL theory takes the sparse representation of the 
image patch as the sparse constraint, the weights are calculated by the information of 
each image patch, which is

where N0
2 is the dimension of Esμ(t−1) and D(t−1)αs

(−1), the script (t − 1) means the cor-
responding terms are previous iteration results, a small ɛ > 0 is to ensure stability. The 
weights is not computed from each component of the vector Esμ − Dαs. We firstly calcu-
late the average absolute value of the components of the vector Esμ − Dαs, and then take 
the reciprocal value of it as the weight of this patch. This strategy is different from the 
IRLS algorithm, which is in order to fit the nature of DL method that the image patch is 
treated as the basic unit.

By introducing the weights, the optimization problem becomes

The iteration is also operated by the alternating minimization scheme. When updating 
the dictionary model, the objective function (15) becomes

(13)min
µ,α,D

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2 + �

(

S
∑

s=1

||Esµ−Dαs||1 +
S

∑

s=1

νs||αs||0

)

(14)ws = 1

�









1

N 2
0

N 2
0

�

i=1

|[Esµ
(t−1)]i − [D(t−1)

α
(t−1)
s ]i|



+ ε





(15)min
µ,α,D

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2 + �

(

S
∑

s=1

wi||Esµ−Dαs||22 +
S

∑

s=1

νs||αs||0

)

(16)

S
∑

s=1

wi||Esµ−Dαs||22 +
S

∑

s=1

νs||αs||0.
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By the transformation Esµ
′ = √

wsEsµ,α
′
s =

√
wsαs and the equation 

||αs||0 = ||√wsαs||0, (16) can be transformed to

which is as the same form as (6), so that the dictionary model can be updated by K-SVD 
and OMP.

When updating the image, the objective function (15) becomes

Similar to (8), the formula to update the image is

The convergence of L1-DL is much more difficult to prove, and is considered beyond 
the scope of this paper. However, our experimental results to be reported below seem 
suggesting the convergence of our proposed algorithms.

Above all, the workflow of the developed algorithm is exhibited in Algorithm I. In 
addition, the ordered subsets convex (OSC) algorithm [17] is utilized to accelerate the 
convergence. 

ALGORITHM I. Workflow of the developed algorithm

Initialize (0) (0) (0), , , 1s and t =μ D α , set s =w 1

While the stopping criterion is not satisfied, do

1. Implement the OSC algorithm for acceleration;

2. Extract patches from the intermediate image ( 1)t−μ ; 

3. Transform the dictionary optimizing model (16) to the 

regular one as (17);

4. Update the dictionary ( )tD by K-SVD algorithm;

5. Update the sparse coding ( )t
sα by OMP algorithm;

6. Update the image ( )tμ by (19), 1t t= + ; 

7. Update the weight sw by (14);

Output the final image.

The exiting condition is as follows:

( )
( ) ( 1) 2

( ) ( )
1( )

1

( ) ( 1)
( ) ( 1) ( ) ( ) 2

22( )
1

| | ˆ,
2

| | , || ||

t t I
tt i

it ii

t t S
t t t t

s s st
s

g

w

ωδ δ ε δ
δ

η η ε η
η

−

=

−
−

=

− < = −  
 − < = −


∑

∑

Aμ

E μ D α

Both conditions must be met at the same time, then the 
iteration process stops.

(17)
S

∑

s=1

||Esµ
′ −Dα

′
s||22 +

S
∑

s=1

νs||α′
s||0

(18)min
µ

I
∑

i=1

ωi

2

(

[Aµ]i − ĝi
)2 + �

S
∑

s=1

ws||Esµ−Dαs||22.

(19)

µt+1
j =






µt
j −

�I
i=1

�

aijωi

��

Aµ
t
�

i
− ĝi

��

+ 2�
�S

s=1 ws
�N 2

0

n=1 e
s
nj

��

Esµ
t
�

n
− [Dαs]n

�

�I
i=1

�

aijωi
�N 2

k=1 aik

�

+ 2�
�S

s=1 ws
�N 2

0

n=1 e
s
nj

�N 2

k=1 e
s
nk







+

j = 1, 2, . . . ,N 2
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Simulation results

To verify the effectiveness of the proposed L1-DL algorithm on low-dose CT reconstruc-
tion, several simulation experiments are designed. All the simulations are performed in 
MATLAB on a dual-core PC with 3.10 GHz Intel Core i5-2400. The proposed algorithm is 
compared with SART, GPBB and ADSIR. The scanning geometry is the fan-beam geometry 
shown in Fig. 1. The size of the phantom is r = 20 cm, the radius of the scanning circle (or 
the distance from the radiation source to the central point of the phantom) is R = 40 cm. 
For each projection view, 512 detector elements were equi-angularly distributed with the 
field angle being 36.87°. The distance from the radiation source to the detector elements 
is 75.895 cm. During the simulation, the scanning circle covers 360° around the imaging 
phantom, and the size of the reconstructed image is 256 × 256 pixels. The phantoms under 
simulations are respectively the Shepp–Logan phantom, and the human head slice from 
clinic, which are shown in Fig. 2 with full and part display window. The biomedical images 
are often observed by a proper window width to find more details. The number of different 
densities in the Shepp–Logan phantom is 6, and we set the density of water as 0.2.

Some details about the proposed algorithm (like the setting of some variables) are 
explained as follows. The image patches are overlapping with a sliding distance of one 
pixel, and the patches are with N0 × N0 pixels. The dictionary is consisted of K atoms. 
When updating the dictionary by K-SVD algorithm, the sparsity level is LD0. The sparsity 
level of the sparse representation αs is set as LS0. The iterative stopping criterions are ɛ1 
and ɛ2. The values of all the corresponding variables are provided in Table 1. In the image 
processing field, K = 4 × N0 × N0 is a conventional choice to ensure the redundancy of 
the dictionary. The patch size also influences the quality of the image. If the patch size is 
too small, it could not effectively catch features in an image. On the other hand, a larger 

Fig. 1  The scanning geometry
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patch size may lead to an over-smoothed image and corresponds to a larger number of 
atoms in a dictionary, which would increase the computational cost. For image process-
ing, N0 =  8 is a proper value with considering both image quality and computational 
cost [18]. The sparsity level LD0 and LS0 are empirically determined according to the com-
plexity of the image to be reconstructed.

In addition, all the experiments are simulated by photon number counting method. 
To perform the OSC algorithm, the transmission data can be calculated with 
yi = bie

−ĝi = e−ĝi by setting the entrance X-ray intensity bi as the number of photons. 
L1-DL and ADSIR set the initial guess of the image as a random matrix while GPBB 
and SART set all the values of the elements of the initial matrix as 1. OSC is utilized to 

Fig. 2  The simulation phantoms. The first to third rows refer to the Shepp–Logan phantom (a, b), and the 
human head slice (c, d), the first column refers to the phantoms with full display windows and the second 
column refers to the phantoms with proper window widths

Table 1  Summary of the parameter selections

No. Variable Meaning Value

1 N0 Scale of the patch 8

2 K Number of atoms in the dictionary 256

3 LD
0 Sparsity level for dictionary learning 5

4 LS
0 Sparsity level for sparse representation 5

5 ɛ1 Stopping criterion about the projection 0.001

6 ɛ2 Stopping criterion about the sparse representation 0.001
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accelerate the convergence of L1-DL and ADSIR, with 10 subsets. The number of itera-
tions of OSC is 30. GPBB and SART are not accelerated by OSC. GPBB and SART stop 
the iteration when the number of iterations reaches 1000. ADSIR stops when the condi-
tions below are met at the same time:

Reconstruction of different sparse levels

In this simulation, the forward simulation and inverse reconstruction are all performed 
in 2D. During the simulation, the scanning circle covers 360° range around the phan-
tom. The scanning step of tomographic angels of the Shepp–Logan phantom is set as 
3°(120 views) and 6°(60 views) respectively. The scanning step of tomographic angels of 
the human head slice slice is set to 2°(180 views) and 4°(90 views) respectively.

We choose the SART, GPBB, and ADSIR algorithms to be the comparisons besides 
our proposed L1-DL algorithm. The regularization parameter of GPBB is chosen by 
tests (from 0.1 to 2, the length of step is 0.1). We choose the best one to perform GPBB. 
When it comes to the DL methods, a proper selection of the regularization parameter 
λ is a vital problem. A bigger λ weakens the effect of the data fidelity term, generating 
a loss of some fine details in the image while a smaller λ weakens the effect of the reg-
ularization term as the sparse constraint, resulting in more noise and streak artifacts 
in the reconstructed image. In this article, the regularization parameter of ADSIR is 
determined by a similar model as Ref. [19] creates. The model firstly reconstructs the 
image by setting λ as infinite, then calculates the difference between the forward pro-
jection and the scanning data. After that, the proper value of λ can be calculated by a 
fitting function based on the difference. In the proposed method (L1-DL), the weights 
introduced to the algorithm would influence the regularization parameter. To elimi-
nate this effect, we multiply the weights with a constant which is the average value of 
(1/N 2

0 )
∑N 2

0
i=1 |[Esµ

(t−1)]i − [D(t−1)
α
(t−1)
s ]i|. The weights are calculated by

With this modification, we select the regularization parameter of L1-DL as the same as 
the one of ADSIR. The regularization parameters of different phantom simulations are 
shown in Table 2. The rationality and influence of the regularization parameter selection 
will be discussed later.
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Table 2  Selections of the regularization parameters with different sampling rates

Shepp–Logan Head slice

120 veiws 60 views 180 views 90 views

DL methods 3.831 × 103 3.823 × 103 380.7 380.1

GPBB 0.2 0.4 0.2 0.5
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The reconstruction results of the simulations by using these four algorithms are shown 
in Figs.  3, 4 (Shepp–Logan phantom) and Figs.  5, 6 (human head slice). The negative 
values in reconstructed image during the iterative process are set to be zero. The results 
indicate the density of the phantoms. The images of human head slice are displayed by 
transforming the density to the CT attenuation value. The CT value is calculated by

where μwater is the linear attenuation coefficient of water.
By taking the original phantom as a gold standard to provide a numeric quantifica-

tion of the results, the RMSE (root mean square error) of the reconstructed images is 
introduced to measure the difference between the reconstructed image and the original 
image in L2-norm. This criterion is defined as:

(21)CT value =
µ− µwater

µwater
× 1000

(22)
RMSE =

√

√

√

√

∑

i,j

(

µij − µtruth
ij

)2

N 2

Fig. 3  The reconstruction results of the Shepp–Logan phantom. a–d The image reconstructed by L1-DL, 
ADSIR, GPBB and SART respectively with 120 scanning views data; e–h the difference between the recon-
structed image (a–d) and the original image (OI); i–l the image reconstructed by L1-DL, ADSIR, GPBB and 
SART respectively with 60 scanning views data; m–p the difference between the reconstructed image (i–l) 
and the original image (OI)
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where μijtruth means the gray-value of the original image. The unit of RMSE can be HU by 
transform the linear attenuation coefficient to CT value according to Eq. (21). It is easy 
to demonstrate that the smaller the value of RMSE is, the better quality of the image is. 
The quantitative results are shown in Table 3.

In Figs. 3 and 5, all the reconstructed images of the same phantom are shown in the 
same proper display window. In Fig.  3, the results of SART are the worst among the 
four algorithms. Even with 120 sampling views, the result is ruined by the streak arti-
facts, which deteriorates seriously when the sampling rate decline to half. The reason 
for the bad results of SART is that this algorithm is a simple iterative algorithm that has 
no regularization term to utilize the prior information about the reconstructed image. 
Compared to SART, GPBB and ADSIR perform better with help of the regularization 
term utilizing the sparse constraint. Figure 3f,  n contain some edge structures, which 
proves the over-smoothing effect of ADSIR. When projection views reduce to 60, the 
image reconstructed by ADSIR is influenced by some artifacts. L1-DL and GPBB per-
form well in the 120 views situation. The RMSE of these two methods are 1.647HU 
and 2.658HU respectively, which are both tiny. And Fig. 3e, g reveal that the difference 
is hard to recognize. When the sampling views reduce, tiny edge structures emerge 
in Fig.  3o and the RMSE of GPBB increases to 11.04. Figure  4 display the horizontal 
intensity profiles through the center of reconstructed images compared to the original 
image. It is shown that the effects of the reduction of the sampling views are arranged 
as: SART  >  ADSIR  >  GPBB  >  L1-DL. In Table  3, the RMSE of L1-DL under 60 views 
situation is much bigger than the RMSEs of ADSIR and SART with 120 views situation, 
which certifies that the proposed algorithm can adapt to further radiation dose reduc-
tion Table 4.

When it comes to the human head slice in Figs. 5 and 6, the results are similar to the 
Shepp–Logan phantom. But the original image of the human head slice is more complex 

Fig. 4  The horizontal intensity profiles through the center of the original and reconstructed images of the 
Shepp–Logan phantom. a L1-DL; b ADSIR; c GPBB; d SART
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than the Shepp–Logan phantom, and is close to the real reconstruction process of the 
biomedical images. Although the RMSE of the proposed algorithm is a little bigger than 
GPBB in 180 views situation, L1-DL is better than GPBB when the number of views 
reduces to 90. In 90 views situation, the image of GPBB, displayed as Fig. 5k, has some 
artifacts and the spatial resolution is worse than L1-DL by checking the enlarged region 
of the images. In addition, the RMSEs of the proposed algorithm is much better than the 
ones of ADSIR. Considering the proposed algorithm is modified based on the recon-
struction model of ADSIR, the improvement of image quality is obvious.

Robustness to the noise

In the practical applications, the measurements of the radiation projections are usu-
ally polluted by noise, which demands that the algorithm should be robust to the 
noise. To evaluate the tolerance to noise of the proposed algorithm and other three 
ones, we choose to add some Poisson noise to the projection data for test. The scan-
ning step of tomographic angels of the Shepp–Logan phantom is set to 6°(60 views) and 

Fig. 5  The reconstruction results of the human head slice. a–d The image reconstructed by L1-DL, ADSIR, 
GPBB and SART respectively with 180 scanning views data; e–h the difference between the reconstructed 
image (a–d) and the original image (OI); i–l the image reconstructed by L1-DL, ADSIR, GPBB and SART 
respectively with 90 scanning views data; m–p the difference between the reconstructed image (i–l) and the 
original image (OI)
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the simulation numbers of photons emitting from the X-ray source to each detector 
are 2 million and 1 million. The detected numbers of photons are polluted by Poisson 
noise. The scanning step of the human head slice is set to 2°(180 views) and 4°(90 views) 
respectively. The simulation number of photons is 2 million.

The reconstructed images of the simulations are shown in Figs.  7, 8, 9, 10 and the 
RMSEs are provided in Table  5. Compared to the results with no noise polluted in 
Figs. 3, 4, 5 and 6, the image quality of SART degrades fast with the noise level increasing 

Fig. 6  The vertical intensity profiles through the center of the original and reconstructed images of the 
human head slice. a L1-DL; b ADSIR; c GPBB; d SART

Table 3  RMSEs (HU) of reconstructed images of different sampling rates

Phantom L1-DL ADSIR GPBB SART

Shepp–Logan

 120 views 1.647 22.62 2.658 34.73

 60 views 2.867 31.72 11.04 94.62

Head slice

 180 views 6.228 15.50 4.282 17.87

 90 views 10.28 25.55 14.78 41.42

Table 4  Selections of the regularization parameters with different noise levels

Shepp–Logan Head slice

60 views 2 million 
photons

60 views 1 million 
photons

180 views 2 million 
photons

90 views 2 million 
photons

DL methods 4.841 × 103 8.141 × 103 1.451 × 103 1.725 × 103

GPBB 0.4 0.5 0.5 0.6
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Fig. 7  The reconstruction results of the Shepp–Logan phantom. a–d The image reconstructed by L1-DL, 
ADSIR, GPBB and SART respectively with 60 scanning views data simulated by 2 million photons; e–h the dif-
ference between the reconstructed image (a–d) and the original image (OI); i–l the image reconstructed by 
L1-DL, ADSIR, GPBB and SART respectively with 60 scanning views data simulated by 1 million photons; m–p 
the difference between the reconstructed image (i–l) and the original image (OI)

Fig. 8  The horizontal intensity profiles through the center of the original and reconstructed images of the 
Shepp–Logan phantom with Poisson noise polluted projection data. a L1-DL; b ADSIR; c GPBB; d SART
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while GPBB, L1-DL and ADSIR are more robust to the noise. In the Shepp–Logan exper-
iments, L1-DL is better than GPBB and ADSIR comparing the RMSEs. The difference 
between the reconstructed image and original image shown in Fig. 7 indicates the image 
quality is arranged as: L1-DL > GPBB > ADSIR > SART. In the head slice simulations, the 
RMSE of SART is a bit smaller than ADSIR, but the image reconstructed by SART are 
ruined by noise and artifacts. When it comes to L1-DL and GPBB, the RMSE of GPBB is 
better than L1-DL in 180 views situation, and the RMSE of these two methods are same 
in 90 views situation. The results (Fig. 9i–l) of the 90 views simulation with noise indi-
cate that all the four algorithms lose the structure in the yellow rectangle region. L1-DL 
is still better than ADSIR and has a bit higher spatial resolution than GPBB.

Convergence rate

To explain the convergence rate of L1-DL compared to ADSIR, the RMSEs of the 
images reconstructed by these two algorithms are shown as functions of the number of 

Fig. 9  The reconstruction results of the human head slice. a–d The image reconstructed by L1-DL, ADSIR, 
GPBB and SART respectively with 180 scanning views data simulated by 2 million photons; e–h the difference 
between the reconstructed image (a–d) and the original image (OI); (i–l) the image reconstructed by L1-DL, 
ADSIR, GPBB and SART respectively with 90 scanning views data simulated by 2 million photons; m–p the 
difference between the reconstructed image (i–l) and the original image (OI)
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iterations in Fig.  11. The projection data are simulated on the human head slice with 
180 scanning views, which is not polluted by noise. L1-DL stops at the 72th iteration 
while ADSIR stops at the 49th iteration. Since the iterative process of L1-DL only has 
one additional step, which is updating the weight function, it takes almost the same time 
as ADSIR to perform one iteration. The times consumed by one iteration of ADSIR and 
L1-DL are 89 and 92 s respectively. By checking the first 20 iterations, it can be found 
that the RMSE decreasing rate of ADSIR is only a bit faster than L1-DL at first. So it is 
claimed that L1-DL needs more iterations than ADSIR for convergence because of the 
better reconstructed result, but the convergence rate of the two algorithms are almost 
the same. However, it takes several tens of minutes for both ADSIR and L1-DL to reach 
the stopping points, so that some accelerating methods and high computation efficiency 
are the expectations for the real time imaging.

Table 5  RMSEs (HU) of reconstructed images of different noise levels

Phantom L1-DL ADSIR GPBB SART

Shepp–Logan

 60 views, 2 million photons 10.87 31.3715 14.78 139.4

 60 views, 1 million photons 11.68 34.84 15.43 139.9

Head slice

 180 views, 2 million photons 13.46 24.81 9.582 22.86

 90 views, 2 million photons 16.83 30.54 16.83 44.49

Fig. 10  The vertical intensity profiles through the center of the original and reconstructed images of the 
human head slice with Poisson noise polluted projection data. a L1-DL; b ADSIR; c GPBB; d SART
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Regularization parameter investigation

In this part, the rationality and influence of the regularization parameter are discussed 
in detail. To verify that the selections of this parameter in former text are rational and 
explore the influence to the results by other parameter values, the images are recon-
structed by different regularization parameters. The phantom under simulation is the 
human head slice in Fig. 2. The projection data are 180 views with no noise, 180 views 
with noise simulated by 2 million photons. To each projection model, the regularization 
parameters are chosen as the one calculated by the fitting function (cited as λ), the one 
multiplied by 0.2 (cited as 0.2λ) and the one multiplied by 5 (cited as 5λ). The results of 
ADSIR are shown in Figs. 11 and 12. The RMSEs of the results are shown in Table 6.

From the data in Table 6, we can see the images reconstructed by a bigger regulari-
zation parameter (5λ) will have larger RMSEs, which means the reconstructed images 
are influenced by the smoothing effect and fewer image details are reserved. When this 
parameter is set smaller (0.2λ), the RMSEs might be a little smaller than the ones recon-
structed by the proper regularization parameter, such as the data as italics in Table  6 
shows. However, the images in Figs. 11 and 12 (the second column) are ruined by noise 
or streak artifacts in different extents. Therefore, it is important to select the proper 
value of the regularization parameter for the DL-based methods and the simulations in 
this section prove that the selections in this article are rational.

Discussion
The simulation results indicate that the proposed L1-DL algorithm is a useful and robust 
method for the sparse CT reconstruction. L1-DL utilizes more prior information of 
image sparsity than ADSIR benefited by the L1-norm DL regularization term. L1-DL is 
an improved method of ADSIR, and the simulation results demonstrate the image qual-
ity improvement of L1-DL than ADSIR.

Fig. 11  The RMSE as function of the number of iterations depending on the iterative image reconstructed by 
L1-DL and ADSIR
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Table 6  RMSEs (HU) of reconstructed images of different regularization parameters

Noise level RMSE (HU)

λ 0.2λ 5λ

None 16.18 10.25 25.18

2 million photons 24.81 17.85 27.11

Fig. 12  The reconstruction results of the human head slice by ADSIR with different regularization parameter. 
a–c The image reconstructed by 180 scanning views data with no noise; d–f the difference between the 
reconstructed image (a–c) and the original image (OI); g–i the image reconstructed by 180 scanning views 
data simulated by 2 million photons; j–l the difference between the reconstructed image (g–i) and the origi-
nal image (OI). The first to third columns refer to the results with λ, 0.2λ and 5λ respectively
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By comparing the simulation results, another comparison algorithm, GPBB, is a little 
better than L1-DL in some situations when comparing the RMSEs. However, GPBB is 
not good at reserving the edge details and structures, especially when the sampling rate 
reduces further. It is claimed that L1-DL has a higher spatial resolution than GPBB.

In the simulation to explain the convergence rate of L1-DL, L1-DL stops at the 72th 
iteration while ADSIR stops at the 49th iteration and the time of one iteration is about 
90 s. So it consumes about 108 and 74 min for the reconstruction of L1-DL and ADSIR. 
When it comes to the reconstruction processes of GPBB and SART with the same pro-
jection data, the time of one iteration of these two algorithm is about 1 s. Since GPBB 
and SART stops when the iteration number reaches 1000, the reconstruction time 
is about 17 min. In addition, the iteration process of GPBB and SART can be acceler-
ated by GPU, so that the time can be reduced to less than a minute. Accelerating L1-DL, 
ADSIR and other DL-based methods is an important factor for the practical application 
of the DL-based methods.

Conclusion
In this work, we propose to replace the L2-norm regularization term with the L1-norm 
one to improve image quality reconstructed by the DL-based method. The new objective 
function is optimized by the adaptive weighted L2-norm strategy, which is similar to the 
IRLS algorithm. By involving this modification, the proposed L1-DL algorithm behaves 
better than the existing DL-based method (ADSIR), and other two comparing algo-
rithms. Experimental results show that the proposed algorithm can satisfy the demand 
of further radiation reduction in CT scanning since it needs fewer scanning data for 
high-quality recovery. In addition, the proposed algorithm retains the robust character-
istic to the projection noise as a DL-based algorithm. Our future work will focus on two 
aspects. One of them is accelerating the DL-based methods to make the real time imag-
ing with low-dose radiation possible. The other is looking for some possible strategies to 
utilize more prior information and further improve the image reconstruction result. For 
example, by utilizing a proper way to distinguish structural information and noise in the 
image, the DL regularization term can be designed based on the distinguishing results, 
which is a promising method to preserve more structural information and improve the 
image quality.
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