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Focal neural perturbations reshape low-
dimensional trajectories of brain activity supporting
cognitive performance
Kartik K. Iyer 1✉, Kai Hwang2,3, Luke J. Hearne1, Eli Muller4, Mark D’Esposito3, James M. Shine 4 &

Luca Cocchi 1✉

The emergence of distributed patterns of neural activity supporting brain functions and

behavior can be understood by study of the brain’s low-dimensional topology. Functional

neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to

low-dimensional manifolds. In human participants, we tested whether these low-dimensional

constraints preserve working memory performance following local neuronal perturbations.

We combined multi-session functional magnetic resonance imaging, non-invasive tran-

scranial magnetic stimulation (TMS), and methods translated from the fields of complex

systems and computational biology to assess the functional link between changes

in local neural activity and the reshaping of task-related low dimensional trajectories of brain

activity. We show that specific reconfigurations of low-dimensional trajectories of brain

activity sustain effective working memory performance following TMS manipulation of local

activity on, but not off, the space traversed by these trajectories. We highlight an association

between the multi-scale changes in brain activity underpinning cognitive function.
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Cognitive functions are supported by the activity of large-
scale brain networks that adhere to a relatively low-
dimensional manifold1,2. The study of low-dimensional

brain dynamics allows us to capture whole-brain functional
interactions between remote neural populations underpinning
behavior3. Accordingly, recent functional neuroimaging work has
shown that trajectories of brain activity evolving on low-
dimensional manifolds scale with cognitive task complexity and
are sensitive to performance errors4. These trajectories reflect
how a system’s activity changes according to the velocity vector
field in state-space5,6. In essence, the vector field defines the rules
of the system’s behavior according to the constraints of a specific
task and inform the evolution of trajectories of brain activity onto
a low-dimensional sub-space (manifold)5,7. The term “manifold”
implies that the system’s dynamics can be relatively low-
dimensional and smooth. Thus, changes in cognitive demands
may alter the vector field and the trajectories of brain activity
occupying a sub-space in state-space2,7–9.

Findings from previous neuroimaging work suggest that a
reshaping of the trajectories of brain activity evolving on low-
dimensional manifolds may capture key functional adaptations to
offset perturbations of neural activity in specialized brain regions
supporting cognitive functions1,4. If, and to what degree, the
reshaping of low-dimensional trajectories is causally affected by
local neural perturbations remains unknown. Addressing this
question is critical to bridge the knowledge gap on the causal
relation between local and system-wide brain activity patterns
supporting cognitive functions10.

We addressed this knowledge gap by combining within-subject
multi-session neuroimaging (functional MRI, fMRI), a validated
working memory task (n-back), a non-invasive brain stimulation
approach known to induce changes to local neural activity
(transcranial magnetic stimulation, TMS11), and methods trans-
lated from the fields of complex systems and computational
biology12. Healthy participants performed the n-back task,
comprising two levels of difficulty (recalling picture items one or
two items back), while in the MRI scanner13. Following this
baseline fMRI session, targeted perturbations of spontaneous
neural activity were induced on a task-relevant brain region
(intraparietal sulcus, iPS; “Methods”) or a task-irrelevant region
(primary somatosensory cortex, S1). The iPS and the S1 TMS
sessions were counterbalanced across participants. Immediately
following TMS (continuous theta-burst stimulation, cTBS11),
participants performed the same task in the scanner again
(“Methods”). We defined session (baseline, S1, iPS), task (low
versus high cognitive load), and behaviorally specific (correct
versus incorrect performances) low-dimensional trajectories
using data reduction and a state-of-the-art embedding technique
(potential of heat diffusion for affinity-based transition embed-
ding method, PHATE12). Here, we show that targeted perturba-
tions of neural activity on a task-relevant brain region (iPS) rather
than a region not engaged by the task (S1) caused a specific
reshaping of low-dimensional trajectories of brain activity that
relates to changes in task performance.

Results
We began by defining the low-dimensional trajectories of brain
activity associated with the working memory task, across the
three experimental sessions (“Methods”). We estimated trial-
locked fMRI responses by using a mixture of basis functions that
capture both the amplitude and the temporal characteristics of
the hemodynamic response (“Methods”). Next, we projected the
estimated responses from low (1-back) and high (2-back) work-
ing memory load trials into a low-dimensional embedding space
and calculated the trajectories of brain activity from the top three

dimensions (Fig. 1a). In line with previous work1,4, our initial
analyses showed that the session-specific trajectories were pri-
marily captured by the first three dimensions (PHATE1,
PHATE2, PHATE3) (Supplementary Table 1 and Supplementary
Fig. 1). These low-dimensional trajectories were estimated using a
recently developed embedding technique (PHATE), which tracks
both local and global nonlinear structures in the data, offering
superior state-space embedding over standard dimensional
reduction techniques like t-SNE and UMAP12.

Effects of session and cognitive load on low-dimensional brain
dynamics. By adopting meta-analytic data from the NeuroSynth
repository14, we confirmed that our low-dimensional embeddings
mapped onto higher order spatial maps linked to cognitive
functions including working memory and numerical cognition
(Supplementary Fig. 2). Additional analysis provided preliminary
support for our initial prediction, wherein TMS-induced pertur-
bation on iPS caused an increase in fMRI signal in PHATE1
(sessions by PHATE dimensions interaction, repeated measures
ANOVA: F(4,144)= 8, p= 7.5 × 10−6; see Supplementary Fig. 3a
for further post-hoc test results) but a decrease in the task-related
variance explained by this dimension (Supplementary Table 1).
The variance captured by PHATE dimensions identifies the
dominant low-dimensional signal in state-space, reflecting the
global dynamics of brain activity present across experimental
sessions and task conditions. Our findings suggest that PHATE1
plays a key role in supporting task-related low-dimensional
activity (83% average variance across load conditions, for baseline
and S1; 72% for iPS). The detected shift in task-related variance
towards PHATE2 following perturbation of iPS (Supplementary
Table 1) is likely to reflect an adaptive response in the system’s
brain dynamics. As reported in our previous work13, these dif-
ferences cannot be explained by group-level changes in behavioral
performances (accuracy or reaction time) across the three
experimental sessions (baseline, S1, and iPS).

Using the first three PHATE dimensions, we derived within-
session group-level embedding spaces across successful (“cor-
rect”) 1-back and 2-back working memory trials (Fig. 1b). Within
these group embedding spaces, low-dimensional trajectories
between 1-back and 2-back trials expanded (the overall length
of the trajectory increased): ~1.3× for the baseline session and
~1.5× for the S1 session. For the iPS session, the expansion of
low-dimensional trajectories of activity as a function of increased
working memory load was more prominent and statistically
significant (~7.3×, pFDR= 3 × 10−16, iPS correct 2-back > iPS
correct 1-back) (Fig. 1b). At the scale of interacting brain network
communities (Fig. 1b), the iPS-related low-dimensional expan-
sion mapped onto increased involvement of brain regions in the
task-relevant associative network community (Supplementary
Fig. 3b). To further quantify this low-dimensional expansion, we
examined the difference (total summed Euclidean distance)
between the within-session group trajectory and the trajectories
of each participant. This analysis revealed a linear scaling of
trajectories as a function of increased working memory load for
participants during the baseline and the S1 experimental sessions
(Fig. 1c). This scaling was absent in the iPS session (Fig. 1c),
suggesting that TMS-induced perturbation of iPS caused a change
in how the system accommodates increased cognitive load.

To further examine the functional significance of the low-
dimensional reconfigurations as a function of increased working
memory load, we investigated differences between correct and
incorrect trials in a shared embedding space. The ability to
successfully upscale working memory was linked to a generalized
expansion of the manifolds’ trajectories across participants (all
sessions collapsed: 2.6×, pFDR= 1.2 × 10−5, Fig. 2a). This
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expansion was noticeable for correct 2-back trials (correct versus
incorrect: 3.4×, pFDR= 1.2 × 10−5, Fig. 2a) and was most
prominent for 2-back correct trials in the iPS session (8.1×,
pFDR= 1.8 × 10−16, Fig. 2b) compared to correct trials in the
baseline and the S1 sessions (expansions for baseline and

S1 sessions showed in Supplementary Fig. 4). Accordingly,
correct responses in the most challenging working memory
condition following iPS stimulation relied on a larger expansion
of the low-dimensional trajectory compared to responses in the
baseline and the S1 sessions (Fig. 2c, d, F(2,48)= 229,

Fig. 1 Selective impact of local brain stimulation on the low-dimensional trajectories of brain activity across working memory loads and experimental
sessions. a Spatial maps for the top three PHATE dimensions during n-back working memory tasks (1-back= red, 2-back= blue; the size of the spheres
represents the relative weight of PHATE values; see “Methods”). Network communities adopted from Gordon et al.15 (“Methods”). The majority of nodes
load onto task-positive brain regions constituting the visual, cingulo-opercular, dorsal attention, and frontoparietal networks. b The state-space embedding
of trajectories of brain activity across working memory loads during ‘correct’ responses across baseline, S1 (task-irrelevant region targeted by TMS,
indicated as yellow in a), and iPS (task-relevant region targeted via TMS, indicated as green in a). The size of the nodes represent the relative weight of
PHATE values. The color of the trajectories indicates the engagement of brain regions belonging to specific network communities. Here, asterisks indicate
significant values (*pFDR < 0.001). c For each session, we calculated the difference between the within-session group trajectory and each participant’s
trajectory (total summed Euclidean distance) during 1-back and 2-back trials. The relationship between these load-related trajectory distances revealed a
load-induced scaling in the baseline and the S1 sessions, but not in the iPS session. Source data are provided as a Source data file.
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p= 2.8 × 10−35; post-hoc paired t-test: iPS > baseline pFDR= 1.1
× 10−11, iPS > S1 pFDR= 8.2 × 10−11). Altogether, these findings
suggest that a targeted perturbation of regional neural activity
supporting task performance (iPS) caused a significant reshaping
of the low-dimensional trajectories. These changes in low-
dimensional trajectories are in line with the suggestion that
whole-brain dynamics play a crucial role in maintaining
behavioral stability following external perturbations16.

Association between changes in low-dimensional trajectories of
brain activity and behavior. Based on our previous work1,4, we
predicted that successful task performance should reflect an

optimal engagement of the low-dimensional trajectories of brain
activity. Thus far, our results suggest that correct trials in the
2-back condition following a targeted perturbation of iPS activity
rely on a marked expansion of the low-dimensional trajectory.
This expansion was driven by an increased engagement of the
first dimension (PHATE1) when compared to the same trials in
the baseline and the S1 sessions (Supplementary Fig. 3a). Cru-
cially, the increase in the group trajectory’s length occurred in the
absence of significant behavioral changes across sessions (within-
subject ANOVAs, 1-back accuracy p= 0.51 and reaction time
p= 0.92, 2-back accuracy p= 0.59 and reaction time p= 0.68)
and was caused by a group-level suppression of task-evoked

Fig. 2 Reconfiguration of the low-dimensional trajectories of brain activity as a function of working memory load, task performances, and local neural
perturbations. a A shared (common) embedding space allows an across-session comparison of the state-space embedding of trajectories of brain activity
supporting “correct” and “incorrect” trials. A general expansion of the trajectories of activity (i.e., utilizing data from all experimental sessions) is required
to support “correct” trials in the 2-back condition (2.6 times greater than 1-back trials and 3.4 times greater than ‘incorrect’ trials in the same conditions).
b Analysis of ‘correct’ and ‘incorrect’ trials for the iPS session showed that a significant expansion of low-dimensional trajectories of brain activity following
a targeted neural perturbation (TMS on iPS; baseline and S1 shown in Supplementary Fig. 4a) supported successful 2-back performance (5.4 times greater
than 1-back trials and 8.1 times greater than “incorrect” trials). For panels (a and b), asterisks indicate significant (*pFDR < 0.001) and highly significant
values (**pFDR < 1 × 10−6). c The significant expansion of trajectories following TMS on iPS involved the three PHATE dimensions (‘correct’ trials in the
2-back condition, visualized in log space, same embedding space across experimental sessions). d At the participant-level (n= 17, examined over three
experimental sessions), comparison of the lengths of trajectories supporting distinct working memory loads (2-back minus 1-back, subtracting ‘incorrect’
trials; median represented by red line; within-session S.D. shown with vertical black lines) showed that “correct” trials following TMS on iPS were linked to
a greater expansion of the low-dimensional trajectories as a function of load compared to baseline and S1 trajectories. Comparisons of trajectory lengths
across sessions were tested with two-sided paired t-tests, with significance values corrected for multiple comparisons. Source data are provided as a
Source data file.
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neural activity in the iPS session compared to baseline (Supple-
mentary Fig. 3c, d). An important unresolved question is to what
extent the pronounced expansion of the trajectories of brain
activity occupying the manifold reflects an adaptive response
following local neural perturbation. To address this question, we
evaluated the link between the length of each participant’s correct
trial trajectories and their task performance in the 2-back con-
dition, across the three experimental sessions. We found opposite
gradients linking the length of individual trajectories and per-
formances in the baseline and the iPS sessions (Fig. 3a). In line
with this observation, results showed a difference in the
trajectories-behavior correlations between baseline and iPS
(pFDR= 0.0051). This difference was driven by a positive corre-
lation at baseline (r= 0.50) and a negative correlation for the iPS
session (r=−0.52, Fig. 3b). There was no significant difference in
the correlations between baseline and S1 sessions (pFDR= 0.51).
An expansion of the low-dimensional trajectory of brain activity
appears therefore necessary to support challenging working
memory trials. However, preserving performance following tar-
geted perturbation on a task-relevant brain region appears con-
tingent on constraining the expansion of low-dimensional
trajectories within a specific bandwidth, with excessive engage-
ment hindering cognitive behavior.

By demonstrating a causal link between task-related activity in
local neural circuits and low-dimensional brain dynamics, our
findings advance knowledge on across-scale functional interac-
tions supporting behavior. In the absence of significant behavioral
changes across sessions, the reconfiguration of low-dimensional
dynamics following neural stimulation of a task relevant region
likely reflects the ability of the brain to accommodate acute
perturbations. As the present work focuses on working memory
related patterns of activity, the generalizability of our findings to
other behavioral domains remains to be established. The current
results also support intuitions from prior studies by showing that
changes to cognitive capacity are linked to the functional
cooperation of specialized brain regions and networks17,18,19.
We note that the approach adopted herein did not assess changes
in functional connectivity between task-relevant regions. Future
studies are therefore required to evaluate the relationship between
the defined low-dimensional trajectories of brain activity and
measures of connectivity. Finally, our work motivates future
clinical studies assessing how system-wide reconfigurations in
low-dimensional brain dynamics may link to symptoms of
disorders. These research endeavors may provide important
information to orient the development of targeted brain
stimulation therapies for mental disorders characterized by

Fig. 3 Associations between individual low-dimensional trajectories of brain activity and working memory performance. a Analysis of the total length of
low-dimensional trajectories for correct 2-back trials (measured across PHATE1, PHATE2, and PHATE3 dimensions) revealed a gradient linking individual
trajectory length and behavioral accuracy across experimental sessions. Here each participant is tiered by overall task accuracy bands (% of correct 2-back
trials). b Linear relationship between participants’ trajectories and task accuracy for each session. In the baseline and the S1 session, longer trajectories link
to higher 2-back accuracy whereas following perturbation of iPS, longer trajectories corresponded with lower task accuracy. Source data are provided as a
Source data file.
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complex deregulation of both local and brain-wide patterns of
brain activity20–24.

Methods
We collected fMRI data in 17 participants (6 males and 11 females; age range
between 18 and 35 years) to complete a working memory (n-back) task during
three MRI sessions (totaling 51 experimental sessions): (i) a baseline session (before
any brain stimulation), (ii) following TMS on iPS, and (iii) following TMS on S113.
The iPS and S1 sessions were counterbalanced across participants. Trial-locked
hemodynamic responses from the n-back working memory task were then pro-
jected into a low-dimensional embedding space to characterize the spatiotemporal
trajectories of fMRI signals as a function of working memory load. These trajec-
tories were also used to examine within-subject changes in low-dimensional brain
dynamics across the three fMRI sessions.

All participants provided informed consent and received financial compensation
for their time ($20 per hour for each experimental session). The procedures were
approved by the Committee for the Protection of Human Subjects at the University
of California, Berkeley.

Neuroimaging data acquisition. fMRI data were acquired using a Siemens 3T
Tim/Trio scanner at the Henry H. Wheeler, Jr. Brain Imaging Center at the
University of California, Berkeley, equipped with a 32-channel head coil with a
multiband echo-planar imaging sequence (acceleration factor= 4, TR= 1 s; TE=
33.2 ms; flip angle= 40°; voxel size: 2.5 mm3 isotropic voxels with 52 axial slices).
Structural MRI data were also acquired: TR= 2530 ms; TE= 1.64/3.5/5.36/7.22 ms;
flip angle= 7°; field of view= 256 × 256, 176 sagittal slices, 1 mm3 voxels; 2×
GRAPPA acceleration. For the iPS and the S1 sessions, fMRI data were collected
within 10 minutes of receiving TMS (cTBS).

Working memory task (n-back). Participants performed an n-back task while in
the scanner. The n-back task is a well-established paradigm to test working
memory25. Across the three neuroimaging sessions, participants were presented a
sequential set of pictures randomly selected from a set of 120 pictures of human
faces and buildings. The key experimental manipulation involved the modulation
of working memory load (2-back versus 1-back). For the 1-back trials, participants
were asked to decide whether the picture displayed matched the picture presented
in the previous trial, whereas for the 2-back task participants were asked to decide
whether the picture displayed was a match to the picture presented two trials back.
Each fMRI run comprised trials for each task condition (1- or 2-back). At the start
of each run, participants viewed a fixation cross for 3 s, followed by counter-
balanced n-back task blocks interleaved with a rest task block (fixation cross). Each
n-back task block started with a 2-s initiation cue, followed by 13 trials. Each trial
started with an image displayed at center of the screen for 0.5 s, followed by a
randomly jittered intertrial fixation that lasted 1.5–10 s. Two to four repetitions of
1-back or 2-back trials were used within each task block, with presentation
sequences randomized separately. For the first five participants, the task comprised
runs of 155 s (two 60-s n-back blocks interleaved with a 25-s rest block and 7 s of a
final fixation). The remaining 12 participants undertook slightly longer runs (236 s
per run), with each run consisting of three 60-s task blocks interleaved with two 30-
s rest blocks and a 10-s final fixation. Importantly, the total number of trials across
the three sessions for all participants was identical (78 trials for each n-back
condition).

Transcranial magnetic stimulation. A cTBS11 stimulation paradigm was applied
via a MagStim Super Rapid 2 stimulator using a figure eight double air film coil
(70 mm diameter). Typically, cTBS induces a suppression of neural activity in the
targeted brain region that outlasts the period of stimulation11,26. Prior to cTBS,
each participant’s TMS stimulation intensity was derived via electromyography.
The stimulation intensity was defined as 80% of the active motor threshold, which
was obtained by measuring the motor evoked potential (amplitude >50 uV for 5
out of 10 consecutive TMS pulses) at the first dorsal interosseous muscle. The cTBS
paradigm comprised a patterned stimulation of triplet pulses (50 Hz, 20 ms)
repeated every 200 ms. The whole stimulation totaled 600 pulses and lasted 40 s.
Two TMS cortical targets were stimulated (in a counterbalanced fashion) in each of
the 17 participants: the intraparietal sulcus (iPS) and the medial primary soma-
tosensory cortex (S1). The iPS target was defined based on a task-evoked method
(details in Hwang et al.13). TMS cortical targets were specified by selecting the peak
coordinates for each participant within bilateral iPS to guide whether participants
received right hemisphere (13 participants) or left hemisphere (4 participants)
stimulation. Note that the effects of the target TMS site (right or left hemisphere)
on the low-dimensional trajectories linked to the S1 and the iPS sessions did not
differ.

Neuroimaging data processing. Preprocessing was done using FMRIPREP (v127).
Participant structural (T1) images were corrected for intensity nonuniformity, skull
stripped, segmented, and normalized to the ICBM152 Nonlinear Asymmetric
template version 2009c via nonlinear registration (ANTS v2.1.0). For fMRI data,
images were motion-corrected via FSL’s MCFLIRT routine and registered to T1

images using boundary-based registration. Following this step, functional data were
spatially smoothed using a 4 mm full-width-at-half-maximum Gaussian Kernel,
and a nuisance regression was performed (AFNI’s 3dDeconvolve) to remove linear
drifts, signals from six rigid-body motion parameters and their temporal deriva-
tives. The averaged signal from white matter and ventricles were also removed.
Motion confounds were minimized by removing all fMRI volumes (prior to
regression analyses) that exceeded framewise displacement greater than 0.2 mm.
Following these preprocessing steps, the mean time-series were extracted from 333
pre-defined cortical regions of interest using a common brain atlas28. The choice of
this atlas was based on our previous work1,4, which used the same atlas. Participant
behavioral responses were used to extract the “correct” and the “incorrect” mean
time-series for both 1-back and 2-back trials. Within each task run, stimuli onsets
were convolved with a canonical hemodynamic response function (HRF; SPM12,
spm_hrf.m function; TR= 1 s). The first 9 s following the onset of the stimuli were
modeled. The estimated BOLD responses across trials were concatenated to define
low-dimensional trajectories. Importantly, each event was convolved using a basis
set that consists of the canonical HRF plus its partial derivatives with respect to
delay and dispersion29. This informed basis set models for relatively small changes
in the latency and duration of the fMRI signal response, offering both flexibility
(while protecting from over-fitting) and efficiency30. We also performed a control
analysis wherein low-dimensional trajectories across sessions and conditions were
reconstructed from the stimuli onsets convolved with the canonical HRF only (i.e.,
without the informed basis set). Results showed that the inclusion of basis func-
tions, such as the temporal derivative, are required to fully account for changes in
low-dimensional dynamics across sessions and conditions. For each participant
and experimental session (baseline, S1, and iPS), 1-back and 2-back time-series
associated to ‘correct’ and ‘incorrect’ trials were extracted and concatenated. Across
trials, conditions, and sessions, discontinuities or temporal sharp edges in the
convolved stimuli time-series were evaluated using spectral kurtosis31. The stimuli
time-series contained less than 7% of sharp edges or discontinuities (baseline 1.1%,
S1 6.7%, iPS 5.8%). Within-session group time-series were also saved, with time-
series from all participants also concatenated into ‘correct’ or ‘incorrect’ trial
responses. We also combined the participants’ within-session data to obtain time-
series in a common embedding space. Finally, we estimated the magnitude of fMRI
signal within the iPS brain region—for each participant across both baseline and
iPS sessions by calculating the instantaneous signal power (analytic component of
the Hilbert transform). iPS fMRI signals were extracted from a 10 mm (radius)
sphere centered on a representative group median TMS coordinate (MNI in mm,
x= 44, y=−51, z= 49).

Low-dimensional trajectories of brain activity. To project task-evoked fMRI
responses into a low-dimensional embedding space, we employed a
dimensionality-reduction method (Potential of Heat diffusion for Affinity-based
Transition Embedding, PHATE12). Briefly, the PHATE method utilizes informa-
tion geometry and manifold learning to derive local and global structures that exist
within high-dimensional data. This approach generates a denoised and cleaned
low-dimensional representation. Based on our previous work1,4, we initially spe-
cified the dimensionality reduction of the mean stimuli time-series to five
dimensions. To encode local information, the PHATE method first computed
pairwise Euclidian distances across 333 brain regions28 for each trial condition
followed by the application of a kernel function (α-decay kernel= 35) to transform
these distances into a normalized affinity matrix. Next, a diffusion process encodes
global relationships present within the affinity matrix where the parameter t (Von
Neumann entropy) ascribes random walk probabilities between one data point and
the next. For this denoising step, we set tmean= 32 (t= 32 ± 0.89 S.D. across all
participants, experimental sessions, and working memory conditions). An
information-theoretic method, known as potential distance, is then used to mea-
sure the dissimilarity between random walk probabilities and compute an infor-
mational distance, where a nearest neighbor parameter (knn= 10, default value)
ensures that the overall distance is not dominated by a specific cluster of data
points. Lastly, a distance embedding (metric multidimensional scaling) squeezes
the variability of high dimensional potential distances into a low-dimensional
embedding space. Here the variability is maximally retained by the specified
number of dimensions, providing an informative embedding space. For robustness
testing we confirmed the estimation of low-dimensional trajectories with a range of
α-decay kernel values between 35 and 50 (increments of 5) and a nearest neighbor
knn values between 6 and 10 (increments of 2).

To generate a whole-brain representation of low-dimensional dynamics we
projected PHATE1, PHATE2, and PHATE3 values into the Gordon-333 brain
parcellation28; for baseline, S1 and iPS sessions. Further, to facilitate the functional
interpretation of low-dimensional dynamics we adopted a “connector hub”
assignment15. Here, the 333 brain regions were clustered into four non-overlapping
communities defined as the control-processing hub, cross-control hub, control-
default hub, and a non-hub community. Regarding the three hub community
assignments: (i) visual, auditory, and somatosensory brain regions constituted
control-processing hubs; here defined as Sensory network community; (ii) cingulo-
opercular, dorsal attention, frontoparietal, and salience regions constituted cross-
control hubs; here defined as the Associative network community; and (iii) default
mode and retrosplenial-temporal regions formed the control-default hubs; here
defined as the Default network community. The non-hub network community
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included ventral attention regions and the remaining brain parcels. Low-
dimensional trajectories defined by the first three PHATE dimensions were plotted
and visualized using this network community description, allowing us to appreciate
brain regions engaged in state-space (Figs. 1, 2 and Supplementary Fig. 2).

To confirm the functional relevance of the inferred low-dimensional
trajectories (Fig. 2a, b), we related the high-dimensional projections of the first
three PHATE dimensions to spatial maps linked to NeuroSynth terms.
NeuroSynth feature terms were derived from a set of 50 topics (https://
neurosynth.org/analyses/topics/v5-topics-50/). Using a similar approach to
Marguiles et al.32, we selected the top 24 terms (z-statistic greater than 3.1). Terms
with lower z-statistics were excluded. We first calculated a representative whole-
brain mask (average across the three PHATE dimensions and experimental
sessions) of correct responses from 2-back trials. Next, we calculated the
functional correlates between regions in the representative PHATE mask and each
NeuroSynth feature term. The resulting associations were binned from 0 to 100 in
steps of 5%. Here, regions in higher percentile bands had greater association to the
PHATE derived map. All feature terms were ordered according to the weighted
mean for visualization purposes (Supplementary Fig. 2).

Statistical analysis. Within-subjects ANOVA and paired t-tests (two-sided) were
used to compare the length of the low-dimensional trajectories as a function of
working memory load (1-back versus 2-back) and performance (“correct” versus
“incorrect” trials). To assess bivariate associations, the Pearson’s correlation coef-
ficient was used. The D1 method33 was used to compare dependent correlations
(length of low-dimensional trajectories with overall 2-back accuracy) across ses-
sions. Multiple comparisons were corrected for by the Benjamini–Hochberg pro-
cedure to control false discovery rate (FDR).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated and evaluated are available on the following GitHub repository:
https://github.com/kneuro/trajectories_perturbations. The GitHub repository has the
following https://doi.org/10.5281/zenodo.5568470. The repository contains all data
required to reproduce the results. The raw and preprocessed fMRI data are available from
the authors upon reasonable request. The web interface to the NeuroSynth database is
available here: www.neurosynth.org. Source data are provided with this paper.

Code availability
Custom MATLAB scripts used to analyze data are available at https://github.com/
kneuro/trajectories_perturbations. The Github repository containing the python code
used to query the NeuroSynth database, located at: https://github.com/neurosynth/
neurosynth.
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