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Abstract: In this study, three different sliding bearing alloy samples were investigated in terms
of their performance on attenuation characteristics and behavioral attitudes under 0.015–15 MeV
gamma-ray exposure. Accordingly, different types of advanced calculation methods were utilized
to calculate the radiation shielding parameters. Next, several gamma-ray shielding parameters and
exposure rates in addition to fast neutron removal cross-section were determined. Furthermore,
exposure and energy absorption buildup factors were determined by using G-P fitting method. Mass
attenuation coefficients (MAC) values were recorded as 2.5246, 2.5703, and 2.5827 (cm2/g) for Alloy1,
Alloy2, and Alloy3 samples at 15 MeV photon energy, respectively. At 40 mfp, the highest EBF values
were reported as 1,376,274, 1,003,593, and 969,373 for Alloy1, Alloy2, and Alloy3 samples. The results
of this extended investigation showed that the Alloy3 sample with the highest Pb reinforcement
amount has superior shielding capability among the investigated samples. It can be concluded from
the results that substitution of Pb with Bi in the recent alloy structure has a monotonic effect on
different types of shielding parameters. Therefore, it can also be concluded that Pb is a remarkable
tool for the improvement of the shielding properties of studied alloy structures.

Keywords: alloys; MicroShield-7.01; gamma-ray; EBF; EABF; dose rate

1. Introduction

The extraction of new or man-made radioactivity and ionizing radiations triggered
revolutions in science and technology around the globe. This upheaval altered our per-
ception of the cosmos and impacted human quality of life. Nowadays, several artificial
radiation sources are used at various institutions located across the globe for a variety of
peaceful purposes. In most cases, ionizing radiation is used in diagnostic and therapeutic
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procedures in medicine [1]. In radiation medicine, radioisotopes generating gamma and
radiopharmaceuticals are combined with a gamma camera to diagnose illness.

Additionally, oncology and therapeutic nuclear medicine are two therapeutic proce-
dures that use ionizing radiation from a variety of radioactive isotopes and generators
to treat cancer. Nuclear energy is also well-known for its usage in electricity production
through nuclear reactors [2]. Ionizing radiation is used in research reactors to produce
radioisotopes and characterize materials. Similarly, as seen by the expanding number
of such facilities, the utilization of electron beams and gamma radiation for waste and
water treatment has been recognized [3,4]. Regrettably, ionizing radiation has the potential
to change the chemical composition’s physical and biological properties and to destroy
non-biological components of living tissues. As a consequence, radiation protection has
become an inherent part of all ionizing radiation quality assurance and control methods. A
radiation shield is a shielding structure that is often used in all types of radiation facilities to
protect people and their surroundings from the damaging effects of ionizing radiation [5–7].
While classic shielding materials such as concrete, lead, and depleted uranium continue to
be employed, the increasing usage of ionizing radiation, environmental concerns, toxicity,
endurance, space constraints, and cost constraints have motivated the quest for more ac-
ceptable shielding materials. Among them, several specific alloys used in next-generation
shields have been thoroughly examined for their gamma-ray and neutron attenuation capa-
bilities [8–10]. The term “alloy material” refers to a substance composed of many distinct
kinds of metals. However, it may also be a mixture of a metal and a non-metallic element.

In recent years, alloys have gained increasing attention as other possible shielding
materials. Alloys are metallic substances composed of multiple elements. By creating alloys,
the properties of the original metals are enhanced including characteristics, such as strength,
heat resistance, and shielding ability. Alloys can be classified based on their size, application,
or base metal. A multitude of alloys with different base metals has been investigated for
their radiation shielding ability. These include nickel, lead, tungsten, copper, iron, and
more. Many of these base metals have shown great ability at attenuating radiation, making
them viable materials for protection against the adverse effects of ionizing radiation [11–16].
Due to their excellent heat resistance properties, alloys are used predominantly in a wide
range of applications, from aircraft and automobiles to electronics and batteries. Metal
atom vibration due to the interaction with the radiation could lead to a reduction in
the ductility of the material. As a result, the breaking of the ionic and covalent bonds
takes place between the atoms in the materials. This can lead to a change in the material
crystal structure, which results in permanent damage to the shielding equipment/materials.
Materials used for the purpose of radiation shielding in a reactor environment must have
high radiation absorption capacity, a combination of strength and metallurgical stability,
and have high resistivity against temperature and chemical corrosion [17–19]. Radiation
sensitivity presented a risk to the operators’ and patients’ health. As a result, shielding
is recommended to limit exposure to ionizing radiation. The usual materials used for
nuclear shielding are thought to be mostly lead (Pb) and lead-based compounds. However,
international organizations, such as the International Atomic Energy Agency and the World
Health Organization, have spurred academics on to develop new generation shields in
their place during the past several years [20,21]. Several research investigations have
explored the effect of different types and amounts of additives used in alloys for X-ray
and gamma radiation shielding [22,23]. As Jamila S. Alzahrani et al. [22] investigated how
four compositions of Al-alloys doped with different weights of Pb are synthesized and
studied for their physical features and nuclear radiation shielding characteristics. Their
study recommended that the production of alloys doped with heavy metal is demonstrated
to be a successful technique to increase the shielding ability against ionizing radiation.

Additionally, providing this mixture enables the creation and enhancement of certain
material characteristics. A critical material attribute worth researching is the ability of the
material to protect nuclear radiation for healthcare, commercial, and personal purposes.
The absolute composition of an alloy material may be altered to satisfy the needs of
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certain applications. Consequently, some extra materials may be included into the alloy
composition to alter its qualities. The literature notion prompted us to conduct this work
in order to ascertain the gamma-ray and other dosage attenuation properties of certain
alloy shields. Accordingly, amorphous alloys containing Bi and Pb were studied for their
potential use as nuclear shielding against ionizing radiation. We effectively evaluated the
gamma shielding properties of the examined alloys using the MicroShield-7.01 [24–26] and
Phy-X/PSD [27] platforms. Additionally, we used theoretical simulations to determine the
alloys’ neutron radiation shielding properties. Recent analysis findings will improve the
understanding of alloy shields’ behavioral responses to gamma-ray exposure.

2. Materials and Methods

In a present study, the alloy samples under investigation were produced by melting the
mixture of raw materials, namely, aluminum, tin, bismuth, and lead (99.996 wt%). Copper
and silicon were introduced into the alloys in terms of aluminum-10 wt% copper and
aluminum-20 wt% silicon master alloys, respectively [28]. The MicroShield-7.01 software
package is employed to calculate the radiation shielding parameters [29]. MicroShield uses
built-in properties of individual materials to calculate the exposure rate with and without
buildup factor. It is generally utilized for shielding design and source strength assessment
from radiation measurements and is approved by the US NRC for different shielding studies.
In this study, three different alloy samples were investigated in terms of their performance
in gamma-ray shielding utilizations, as shown in Table 1. In particular, how Pb and Bi
affect the attenuation properties of different alloys with nominal compositions (weight
percentage) Al82Sn15Si2.2Cu0.8 Al81.46Sn13.1Bi2.44Si2.2Cu0.8 and Al81.02Sn13.17Pb2.81Si2.2Cu0.8
were extensively reported; successfully investigated by Wang et al. [28] In their study.

Table 1. Elemental compositions (wt%) and density of alloys.

Code Al Sn Bi Si Pb Cu g/cm3

ASSC 82 15 2.2 0.8 3.43
ASBSC 81.46 13.1 2.44 2.2 0.8 3.52
ASSPC 81.03 13.17 2.2 2.8 0.8 3.59

The total photon interaction cross-section (σt) of the samples was calculated with the
help of the µm according to the following equation [30,31]:

σt =
Mµm

NA
(1)

where M = ∑i Aini is the molecular weight of the sample, Ai is the atomic weight of the
i-th element, ni is the number of the formula units of a molecule, and NA is the Avogadro’s
number. Effective atomic cross-section, σa, was calculated using the following equation [32]:

σa =
σt

∑i ni
(2)

Total electronic cross-section, σe, was calculated by:

σe =
1

NA
∑

i

fi Ai
Zi

(µm)i (3)

where fi indicates the fractional abundance of the element i and Zi is the atomic number
of the constituent element. The effective atomic numbers (Zeff) are related to σa and σe
through the following equation [32,33]:

Ze f f =
σa

σe
(4)
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As a single element has atomic number Z, the compound materials have an equivalent
atomic number (Zeq) which describes the properties of glass systems. Because the gamma-
rays’ partial interaction process with material depends on the energy, thus Zeq is an energy-
dependent parameter. Using the WinXCom program [34], the total mass attenuation
coefficient of selected glass samples and incoherent Compton scattering for elements from
Z = 11 to 29 was obtained in the energy range 0.015–15 MeV. The Zeq was calculated by
matching the ratio of incoherent Compton scattering to the µm of selected glass samples
with the identical ratio of a single element of the same energy. The following formula was
used to interpolate the Zeq [35,36].

Zeq =
Z1(logR2 − logR) + Z2(logR− logR1)

logR2 − logR1
(5)

where Z1 and Z2 are the elements’ atomic numbers identical to the ratios R1 and R2,
respectively. R is the ratio of incoherent Compton scattering to the mass attenuation
coefficient of the glass samples at a particular energy.

The G-P fitting parameters for the elements were taken from the report by the Ameri-
can Nuclear Society [37]. The G-P fitting parameters for the glass samples were logarithmi-
cally interpolated utilizing the same equation as follows [38]:

C =
C1

(
logZ2 − logZeq

)
+ C2

(
logZeq − logZ1

)
logZ2 − logZ1

(6)

where the two constants C1 and C2 correspond to Z1 and Z2, respectively. The fitting of
G-P parameters was utilized to compute the EBF of glass samples as follows:

B(E, X) = 1 +
b− 1
K− 1

(Kx − 1) f or K 6= 1 (7)

B(K, X) = 1 + (b− 1)x f or K = 1 (8)

where

K(E, x) = cxa + d
tanh

(
x

XK
− 2

)
− tanh(−2)

1− tanh(−2)
f or x ≤ 40 (9)

where E is the photon energy incident on the material, XK is the G-P fitting parameters,
and x is the penetration depth in mfp. The variance of parameter K with x gives the dose
photon multiplication and a variation in the shape of the spectrum.

3. Results and Discussions

The impact of bismuth and lead on radiation shielding on Al–Sn-based alloys has been
studied. Their results showed that Bi reinforcement significantly increased the volume
hardness of the Sn-rich phase by the consolidation of the solution, but Pb has only a small
effect. Following recommendations of the IAEA and WHO, the importance of alternative
shielding materials, which can be used in ionizing radiation facilities, is increasing day
by day [9,10,39]. Therefore, this study was planned as a continuation to investigate the
relationship between these interesting results and radiation attenuation of alloy samples,
such as ASSC, ASBSC, and ASSPC.

As a first step, linear attenuation coefficients (LAC) of alloy samples were determined
in 0.015–15 MeV photon energy range. The term LAC (µ) is known as an important
shielding parameter for any type of candidate material that might be utilized in radiation
facilities. This density-dependent parameter is a useful term to evaluate the performance of
shielding material on attenuation of primary gamma rays. Figure 1 shows the variation of
LAC values of ASSC, ASBSC, and ASSPC samples against photon energy. As clearly seen
from Figure 1, variation of LAC values was directly affected by three basic interaction types,
namely, photoelectric effect, Compton scattering, and pair production in different energy
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zones [40–43]. This situation is the nature of radiation interaction with matter depending
on energy. In the low-energy region, LAC values are dramatically decreased due to the
dominancy of the photoelectric effect. In the mid-energy region, Compton scattering was
the dominant process that affected LAC values’ variation trend from sharp to smooth.
However, the highest LAC values were reported for the ASSPC sample, which has the
highest Pb concentration in its composition. To make it more straightforward, LAC values
are listed as 8.668, 9.044, and 9.275 (cm−1) for ASSC, ASBSC, and ASSPC samples at 15
MeV photon energy, respectively. Mass attenuation coefficients (MAC) are defined as the
density-independent material coefficient. MAC can be obtained for specific photon energy
via dividing LAC values by sample density. The same trend is also evident for the variation
of MAC versus photon energy (E) for studied alloy samples. The energy (gamma photon
incident) and alloy structure (chemical composition) have modified the variation of MAC
values. The gap of the MAC with energy is characteristic in three different zones. In the
low energy area where the photoelectric effect is a dominant mechanism in the interaction,
the MAC values decrease quickly as gamma energies rise. This decrease was slower at
higher energies. The dominance of Compton scattering also showed a smooth decrease
in the second region [44,45]. However, a decrease against increasing gamma-ray energy
was also reported for MAC values similar to LAC. The highest MAC values for the ASSPC
sample were recorded at all incident photon energies. For example, MAC values were
recorded as 25,246, 25,703, and 25,827 (cm2/g) for ASSC, ASBSC, and ASSPC samples at
15 MeV photon energy, respectively. The effect of high atomic number can explain this
in the material composition in that ASSPC sample has the maximum Pb additive in its
structure. The gamma shielding capability of shielding materials should also be tested in
terms of the half-value layer (HVL) transmission factor.
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Figure 1. Linear attenuation coefficient (µ) for the 3 types of alloys. Figure 1. Linear attenuation coefficient (µ) for the 3 types of alloys.

The term HVL (also known as X1/2) is significant in radiation shielding research
since it allows for the quantification of the material thickness required to halve the initial
gamma-ray intensity. This is because radiation studies necessitate that shielding needs be
determined in advance depending on the kind and energy of the radiation used. Therefore,
the quantity of the HVL required for each kind of prospective shielding material should
be determined in terms of a more complete understanding of the gamma ray attenuation
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capabilities during the incoming gamma ray’s contact with the attenuator specimen. Vari-
ation of HVL (cm) values of investigated glasses as a function of incident photon energy
(MeV) is shown in Figure 2. As indicated in the Materials and Methods section, the linear
attenuation coefficients and HVL quantities have an inverse relationship. As a result, it
is reasonable to anticipate that the minimum HVL values would be found in the sample
with the maximum linear attenuation coefficient values. Fortunately, our results indicated
that the ASSPC sample with the highest alloy density and linear attenuation coefficients
has the minimum HVL values. For example, HVLs were reported to be 0.033, 0.032, and
0.031 cm for ASSC, ASBSC, and ASSPC samples at 1 MeV photon energy, respectively. The
term mean free path (MFP, λ) is the route taken by a photon through a substance without
colliding. Therefore, it can be said that a lower distance in MFP values is a clear indicator
for superior attenuation properties. Figure 3 depicts the variation of MFP (cm) values of
investigated glasses as a function of incident photon energy (MeV). As mentioned above
for previous attenuation properties, the ASSPC sample with the highest alloy density was
also reported with its minimum MFP values. For instance, MFP values (cm) were reported
as 0.048, 0.046, and 0.045 for ASSC, ASBSC, and ASSPC samples at 1 MeV photon energy,
respectively.
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Figure 3 illustrates the MFP values for the alloy samples examined. MFP values are
often different than HVL values. Additionally, the lower MFP values for the ASSPC sample
were claimed to be the lowest among the examined glasses. The effective atomic number
(Zeff) is a helpful means for determining the suitability of a material for gamma applications.
It is connected to the partial photon mitigation phase.

Figure 4 illustrates the variation of the effective atomic number (Zeff) values of in-
vestigated alloys as a function of incident photon energy (MeV). From Figure 4, one can
observe that the sample ASSPC has the maximum values of Zeff, while ASSC sample has
the minimum values of Zeff. This is because with the increasing amount of Bi and Pb ions
(Z = 83 and 82) and decreasing amount of Al ions (Z = 13), Zeff will be increased. We found
that the maximum Zeff for the ASSPC sample was registered at 30 keV with a value of
37.58. Furthermore, the Zeff discontinuity at 0.1 MeV could be attributable to Bi and Pb
k-absorption edges. On the other hand, equivalent atomic numbers (Zeq) for the three
types of alloys were determined to calculate exposure buildup factor (EBF) and energy
absorption buildup factor (EABF) using the geometry progressive (G-P) fitting method.
The variation of Zeq is shown in Figure 5. As can be seen from the figure, a sharp increment
was observed in the low-energy region. Next, a sharp decrease was reported until 2 MeV
photon energy. Zeq values were observed as a maximum at 1 MeV photon energy. The
numerical values of Zeq can be listed as 2900, 3380, and 3426 for ASSC, ASBSC, and ASSPC
samples at 1 MeV, respectively.
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Nevertheless, the greatest Zeq values were observed for all photon energy for the AS-
SPC sample. The buildup factor is a correction factor for the impact of dispersed radiation
that takes into account any secondary particles in the medium. The accumulation variables
must be considered to account for the accumulation of secondary ionizing radiation. Thus,
the accumulation factor is a multiplier that compensates for the response to non-confronted
photons, including the contribution of scattered photons. Therefore, the buildup factor is a
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multiplier that compensates for the response to non-confronted photons and incorporates
the contribution of scattered photons. The term “buildup factor” has two sub-definitions:
exposure buildup factor (EBF) and energy absorption buildup factor (EABF). Between 0.5
and 40 mfp, the EBF and EABF values of three different alloys were found using the G-P
fitting technique.

The fluctuation of EBF values as a function of energy (MeV) for various mfp values
is shown in Figure 6A–C. These graphs demonstrate that the various penetration depths
up to 40 mfp are composed of three distinct EBF vs. photon energy zones. These areas are
essentially connected to photon–matter interactions. The first area revealed peaks due to
the photoelectric phenomena occurring near the binding energy of the high atomic number
elements. Subsequently, the Compton phenomena region saw almost consistent EBF values.
Finally, the third zone is important for pair creation since the EBF increased somewhat due
to absorption processes [18]. Among the investigated alloys, the Alloy3 sample showed the
lowest EBF values. A numerical demonstration can be seen for 40 mfp penetration depths.
At 40 mfp, the highest EBF values were reported as 1,376,274, 1,003,593, and 969,373 for
ASSC, ASBSC, and ASSPC samples. This is a remarkable indicator of gamma-ray shielding
capabilities of materials. Therefore, the ASSPC sample with the lowest EBF values can be
underlined as the best sample among the investigated alloy specimens. A similar trend
was also reported for EABF values, as shown in Figure 7A–C. At 40 mfp, the highest EBF
values were reported as 2,413,043, 1,949,277, and 9,69,373 for ASSC, ASBSC, and ASSPC
samples, respectively. It can be said that Alloy3 showed a strong consistency in shielding
properties against gamma-rays in terms of EBF and EABF parameters. Another important
shielding parameter, namely, exposure rate (ER), was also determined with and without
buildup factor for ten different material thicknesses, such as 0.14, 0.23, 0.29, 0.31, 0.41, 0.47,
0.55, 0.78, 0.88, and 14.43 cm. Figure 8A–C shows the dependence of the exposure rate with
buildup factor on the thickness of three different alloys, respectively. The dose point for
measuring the exposure rate is directly behind the alloy, traced in a logarithmic scale, in
order to widen the curve and maximize the difference between the values. As the energy
rises, the rise in the exposure rate is seen as a general trend. Once again, ASSPC has the
lowest exposure rate in all energies, while ASSC has the highest. For example, ERs of ASSC,
ASBSC, and ASSPC samples with buildup were reported as 0.000002083, 0.000002075, and
0.00000207 for 1.43 cm at 15 MeV photon energy, respectively.
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A similar situation was also reported for ERs without buildup factor, as shown in
Figure 9A–C. Dependence of the exposure rate without buildup factor on the thickness of
three shields. ERs of ASSC, ASBSC, and ASSPC samples without buildup were reported
as 0.000002012, 0.000002001, and 0.000001995 for 1.43 cm at 15 MeV photon energy, re-
spectively. A clear demonstration of exposure rate with/without buildup factor versus
energy for 1.43 cm thickness can be seen in Figures 10 and 11, respectively. Although the
differences were reported with relative differences for ERs with/without buildup factor, the
lowest values were recorded for ASSPC sample at all photon energies. Finally, Figure 12
shows the mass removal cross sections (ΣR) of alloy samples that were theoretically de-
termined against fast neutrons. This parameter is a useful indicator for the attenuation
properties of shielding materials against fast neutrons. The highest ΣR value was reported
for ASSPC even though the numerical differences between the samples were not high. The
contribution of Bi in the ASSPC sample is minimum. Therefore, elemental mass fraction,
and accordingly, contribution of highest Z element (Bi = 83) is minimum. Therefore, it can
be considered as an expected situation between the investigated alloy samples.
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4. Conclusions

The word alloy refers to a material type that is well-known in the field of radiation
equipment. Due to their improved material characteristics, alloys may be used directly for
radiation shielding and beam collimation. The purpose of this research is to determine the
relationship between dose rates and nuclear radiation shielding qualities in many alloy
samples. At a variety of energy levels, the mass attenuation coefficients were determined.
The mass attenuation coefficient values rose as the amount of Pb reinforcement increased in
the samples: ASSC < ASBSC < ASSPC. HVL and MFP values are the lowest in the ASSPC
sample. The findings indicate that substituting Pb for Bi in a recent alloy structure has
a monotonic influence on several kinds of shielding properties. As a result, it can also
be inferred that Pb is an exceptional tool for enhancing the shielding capabilities of the
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examined alloy structures. However, further research is required to identify other forms of
additive materials that may be utilized in place of harmful Pb in alloy shields.
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