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ABSTRACT: Tandem mass spectrometry (LC-MS/MS) is widely used to
identify unknown ions in untargeted metabolomics. Data-dependent acquisition
(DDA) chooses which ions to fragment based upon intensities observed in
MS1 survey scans and typically only fragments a small subset of the ions
present. Despite this inefficiency, relatively little work has addressed the
development of new DDA methods, partly due to the high overhead associated
with running the many extracts necessary to optimize approaches in busy MS
facilities. In this work, we first provide theoretical results that show how much
improvement is possible over current DDA strategies. We then describe an in
silico framework for fast and cost-efficient development of new DDA strategies
using a previously developed virtual metabolomics mass spectrometer
(ViMMS). Additional functionality is added to ViMMS to allow methods to
be used both in simulation and on real samples via an Instrument Application
Programming Interface (IAPI). We demonstrate this framework through the
development and optimization of two new DDA methods that introduce new advanced ion prioritization strategies. Upon
application of these developed methods to two complex metabolite mixtures, our results show that they are able to fragment more
unique ions than standard DDA strategies.

■ INTRODUCTION

Tandem mass spectrometry (LC-MS/MS) is increasingly used
in untargeted metabolomics to aid in the annotation of
unknown chemical ions. Measured fragment (MS2) spectra for
unknown ions can be used to aid annotation by direct
comparison against spectral databases, machine-learning
assisted comparison with structural databases (e.g., SIRIUS41

and CFM-ID2), or analysis with metabolome data-mining tools
such as molecular networking3 and MS2LDA substructure
discovery.4

Crucial to all of these approaches is the acquisition of MS2
data. A good MS2 acquisition strategy ought to produce
spectra of a high quality for as many of the ions present in the
sample as possible. There are two main approaches that are
used for MS2 acquisition in metabolomics: data-dependent
acquisition (DDA) and data-independent acquisition (DIA).
Recently work has been done to compare the two, but the
results are inconclusive.5

DDA selects particular ions observed in MS1 survey scans
for fragmentation and is used widely in metabolomics. In a
typical DDA scheme, the set of N ions to fragment is
determined based upon the most intense ions observed in the
latest MS1 survey scan. Optionally, a dynamic exclusion
window (DEW) can be included that avoids fragmenting the
same mass-to-charge ratio (m/z) multiple times in succession,

increasing the chance of fragmenting less-abundant ions. The
chosen ions are isolated and fragmented by the MS in a series
of MS2 scans, which are followed by the next MS1 survey scan,
such that the duty cycle consists of one MS1 scan followed by
up to N MS2 scans. A benefit of DDA is that the MS2 spectra
emerge from the MS ready to use, i.e., each spectrum has been
generated by fragmenting a small m/z isolation window
(typically of the order of 1 Da) and will therefore normally
contain fragments for a single chemical species. The
disadvantages of DDA are the limited number of ions that
can be fragmented within a single injection and the stochastic
nature of fragmentation. Due to small variations in scan times,
measured ion intensities can vary between runs, meaning ions
with similar intensities can be prioritized differently. As such, if
the same injection is run twice, different ions may be
fragmented. It is also possible in some circumstances that
multiple species can exist within one of the small isolation
windows, typically resulting in chimeric spectra.6
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DIA operates in a less-selective manner. Here, an MS1 scan
is followed by one or more MS2 scans that do not depend on
the MS1 scan. Each MS2 scan isolates a broader m/z range and
can fragment many chemical species simultaneously. In theory,
this means that all species in the data are fragmented and can
be reanalyzed later if a new species becomes of interest.
However, it is not necessarily guaranteed that spectra
generated will be of sufficient quality to identify, especially in
low-intensity species, although this is also the case with DDA.
The resulting data require substantial processing to produce
spectra assumed to come from a single chemical ion. This is
done in software such as MSDIAL7 where (among other
things) the chromatographic profile of precursor and product
ions are matched. Spectra deconvolved in this way can then be
used in the same manner as those produced by DDA.
There is no overall consensus as to which of these two

schemes is best, and, where comparisons have been done, no
clear conclusion is possible.5 Although the development of
improved computational tools for spectral deconvolution has
allowed more applications of DIA, DDA remains a popular
choice due to the high spectral quality and the fact that little or
no processing is required before the spectra can be used.
Given its popularity, surprisingly little work has been done

to improve DDA performance for single injections in
metabolomics. Some work has looked into DDA for multiple
samples, specifically DsDA8 for multiple injections of different
samples and AcquireX9 for repeated injections of the same
sample, but these are not useful for single-injection DDA.
Here, we address the problem of improving DDA coverage for
a single injection, as a way of demonstrating how we can
rapidly develop more general methods in silico.
One of the main criticisms of the performance of DDA (with

respect to DIA) is its lower coverage: the proportion of ions
that are fragmented. We start by computing the theoretically
optimal performance for any particular injection, taking into
account the uneven elution distribution of the ions. The results
demonstrate that there is considerable room for improvement,
motivating the development of better DDA strategies. Second,
we describe how new strategies can be prototyped,
implemented, optimized, and validated using a virtual
metabolomics mass spectrometer (ViMMS),10 reducing the
traditional need for a large amount of costly machine time.
Recent novel additions to ViMMS mean that the same
acquisition controllers can be used both in simulation and on
real hardware. Finally, we describe two new DDA strategies
prototyped in this way and demonstrate, through validation on
two complex samples, their improvement over traditional DDA
approaches.

■ METHODS
Computing Theoretically Optimal DDA Performance.

Computing the theoretically optimal DDA performance allows
us to place an upper bound on the maximum number of
fragmentation events that could occur, i.e., how many of the
chemical ions present could a DDA method fragment at least
once. This is not straightforward to compute as the limiting
factor is often the coelution of too many ions in certain regions
of the chromatogram.
To compute optimal performance, we start by defining the

“true” set of chemical ions as the set of peaks picked from a
TopN.mzML file by a commonly used peak-picking algorithm,
such as those provided in MZmine211 or XCMS.12 Picked
peaks are represented by their bounding boxes (min and max

retention time (RT) and m/z values). An MS scan schedule is
created using the mean MS1 and MS2 scan times extracted
from the TopN mzML file and a fixed value of N (the number
of MS2 scans for each MS1 survey scan). This results in a list
of scans and their respective scan start times. We create a
bipartite graph where the two sets of nodes correspond to MS2
scans and peak bounding boxes from MS1, respectively. An
edge, representing a potential fragmentation event, can be
added between an MS2 scan and a bounding box if the MS2
scan time is within the RT limits of the bounding box, the MS1
scan preceding the MS2 scan also has an RT within the
bounding box, and the peak’s intensity in this MS1 scan
exceeds the minimum MS1 intensity for fragmentation.
Mirroring the standard acquisition process, we compute the

optimal schedule by calculating a maximum matching for this
graph using the Hopcroft−Karp algorithm (see Figure SI-3 in
Supporting Information S4 for more details).13,14 A matching
is a subset of edges within which no two edges share an end
point. A maximum matching is a matching such that there is no
other matching for the same graph that has more edges,
meaning that we fragment the most peak-bounding boxes
possible for the given graph. Computing the theoretically
optimal maximum matching in this manner requires a
knowledge of the entire run ahead of time, which will not be
possible in practice. Nevertheless, it provides a useful upper
bound on performance for evaluating new DDA schemes.

Sample Preparation and Chromatography and MS
Scan Settings. Sample Preparation. Two samples were used
for our experiments to validate the performance of novel
fragmentation strategies. Serum extract (QCA) was prepared
from metabolite extraction of fetal bovine serum (South
America origin (Gibco)) by dilution of 1/20 with water and
addition of chloroform and methanol in a ratio of 1:1:3 (v/v/
v). A beer sample (QCB) of Black Sheep Ale, 4.4%, was
obtained. Sample extraction was performed by the addition of
chloroform and methanol with a ratio 1:1:3 (v/v/v). A vortex
mixer was used to mix the extracted solution. Centrifugation
was performed to remove protein and other precipitates.
Finally, the supernatant was removed, and the aliquot was
stored at −80 °C.

Liquid Chromatography. Chromatographic separation with
HILIC was performed for all samples using a Thermo
Scientific UltiMate 3000 RSLC liquid chromatography system.
A SeQuant ZIC-pHILIC column was used for a gradient
elution with (A) 20 mM ammonium carbonate and (B)
acetonitrile. We injected 10 μL of each sample into the column
with initial conditions of 80% (B), maintaining a linear
gradient from 80% to 20% (B) over 15 min, and finally a wash
of 5% (B) for 2 min, before reequilibration at 80% (B) for 9
min. This used a constant flow rate of 300 μL/min and a
constant column oven temperature of 40 °C.

Mass Spectrometry. A Thermo Orbitrap Fusion tribrid-
series mass spectrometer was used to generate mass spectra
data. Full-scan spectra were acquired in positive mode at a
fixed resolution of 120 000 and a mass range of 70−1000 m/z.
Fragmentation spectra were acquired using the orbitrap mass
analyzer at a resolution of 7 500. Precursor ions were isolated
using 0.7 m/z width and fragmented with a fixed higher-energy
collisional dissociation (HCD) collision energy of 25%. The
ACG was set as 200 000 for MS1 scans and 30 000 for MS2
scans.
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■ IN SILICO DDA STRATEGY PROTOTYPING AND
OPTIMIZATION

Developing DDA Fragmentation Strategies. In our
previous work, we introduced ViMMS,10 a simulator that could
be used to evaluate different fragmentation strategies in silico.
Fragmentation strategies are implemented as controllers in
ViMMS. During simulation, controllers react to incoming
scans and determine the next actions to perform by sending
commands to the MS. Using the TopN controller as an
example, the possible acquisition commands would be whether
to perform a survey (MS1) scan or to generate fragmentation
(MS2) scans.
Here we have extended ViMMS by creating a bridging code

that allows controllers developed in ViMMS to be used directly
on an actual MS. This bridge takes the form of a vendor-
specific MS class in Python. Because of instrument availability,
we currently support the Thermo Scientific Orbitrap Tribrid
instruments through their Instrument Application Program-
ming Interface (IAPI);15 however, the flexible design of our
framework does not preclude supporting other vendors who
offer real-time instrument control through an API.
Developing new methods in a simulation allows us to

optimize them without having to rely upon costly MS time.
Therefore, we propose the novel controller prototyping,
optimizing, and validating pipeline shown in Figure 1. Full-
scan (mzML) data is used to seed the virtual MS.10 The
fragmentation controller under development is implemented in
the ViMMS framework in the Python programming language.
It runs in the simulated environment using the virtual MS. The
performance of the controller is evaluated, and the best
performing parameters are returned. For validation on the
actual instrument, the optimized parameters from the
simulation are used. The results from this validation experi-
ment are reported as the final evaluation results. The same
controller code (yellow boxes in Figure 1) works with both the
simulated and the actual MS.
Performance Evaluation. We define two measures of

performance to evaluate the effectiveness of different
fragmentation strategies:

• Coverage is the number of picked peaks that contain a
fragmentation event. In the absence of ground truth, we use
peaks picked from full-scan data acquisition.
• Eff iciency is defined as the ratio of the number of picked

peaks that are fragmented to the number of MS2 scans, i.e.,
how many picked peaks are, on average, targeted by one MS2
scan. A perfect value of 1.0 indicates that each fragmentation
event targets one unique picked peak.
To pick peaks we use mzMine2,11 with parameters provided

in Supporting Information Table SI-1. Peaks are exported in
the form of bounding boxes (m/z and RT min and max). To
ensure that the results are not biased to one peak-picking
algorithm, we also evaluated the methods using XCMS 3.6.112

and Peakonly16 (see Supporting Information S3). MS2
fragmentation events are checked to see which peak bounding
boxes they fall into (if any). The RT range of the bounding box
is defined by the first and last MS1 scans that comprise the
chromatographic peak.

Validation on Actual Instrument. For each serum (QCA)
and beer (QCB) extract, we ran six injections: one full-scan
(for evaluating coverage and efficiency), one TopN (using the
controller optimized as part of the development of ViMMS10),
and four injections for the new fragmentation strategies. To
compute coverage and efficiency, peaks were picked from the
mzML files for the full-scan data of the two samples. The IAPI
bridge was used to let ViMMS controllers communicate with
Thermo Orbitrap instruments, making it possible for the same
controller codes to run unchanged in both the simulator and
an actual mass spectrometer. Because of licensing constraints,
we are unable to provide the source code of the IAPI bridge.
Note that the ViMMS framework is designed to be easily
ported between different instruments, including another
Thermo instrument, or even other manufacturers such as,
e.g., Waters, as long as a bridge could be developed to allow
communications with the instrument in real time.

SmartROI: A Flexible Fragmentation Strategy That
Targets Regions of Interest in Real Time. SmartROI. Our
first proposed new controller is motivated by the observation
that a large number of MS2 scans in the TopN controller
targeted ions that were not subsequently picked as peaks. The

Figure 1. Flow diagram demonstrating the process of developing and optimizing a new fragmentation strategy. (A) Developing, testing, and
optimizing the fragmentation strategy in silico. (B) Validating the developed fragmentation strategy using the simulated optimal parameters on the
actual instrument.
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SmartROI controller keeps track of regions of interest (ROIs)
in real time and only fragments peaks within ROIs. Creation of
ROIs is the first step in many peak-picking methods, and
therefore, fragmentation events outside ROIs are almost
certainly wasted.17

SmartROI can be considered a variant on a TopN strategy in
which the object being prioritized for fragmentation is the ROI
instead of individual detected ions. As MS1 survey scans
appear from the MS, and the set of ROIs is updated according
to the ROI algorithm.17 ROIs that are not extended by the data
from the MS1 scan are considered inactive and discarded. The
remaining active ROIs are prioritized based upon intensity but
only if they are available for fragmentation, determination of
which is based on the following rules:

1. They must have an intensity in the most recent survey
scan of greater than or equal to the minimum intensity
for fragmentation.

2. If they have not been fragmented before, they are
available.

3. If they have been fragmented before, then they are
available if either of the following conditions are met:
(a) Their intensity is higher by a factor α than when it

was previously fragmented.
(b) Their intensity has dropped by a factor β from its

highest value since it was last fragmented.
Any ROI that does not meet these conditions is not available
for fragmentation and will be ignored.
This strategy can be seen in Figure 2. The upper plot shows

a chromatogram (x-axis is retention time, and y-axis is
intensity) and a possible set of fragmentation events using a
standard TopN strategy. The dashed gray line shows the
minimum intensity for fragmentation. Note that, in reality,
fragmentation events would depend upon the other ions
eluting at the same retention time, but it is easier to understand
the approaches when considered in isolation. When the
intensity falls below the minimum intensity, fragmentation
ceases, starting again when it rises above the threshold. In the
lower plot of Figure 2, the same chromatogram is shown for
SmartROI. The first fragmentation event mirrors that in the
TopN. The second is slightly earlier, being triggered when the
intensity has increased by α%. This behavior is to ensure that
we only fragment an ROI again if it has substantially increased
in intensity. The SmartROI scheme then cannot fragment until
the intensity has dropped by β% from the highest point since

the previous fragmentation. However, the intensity is below
the minimum intensity and so fragmentation does not occur
until it has risen. The purpose of the β% drop is to ensure that
we do not miss multiple peaks within the same ROI. The final
fragmentation in the SmartROI example is triggered because
the intensity has risen again by α%. SmartROI typically results
in fewer, more precisely targeted fragmentation events than
TopN.

Shifted SmartROI. In a standard duty cycle, we complete an
MS1 scan, process it, and then perform up to N MS2 scans
based on the result. Due to the additional complexity of
updating the ROIs, calculating where to schedule the N MS2
scans takes longer in the SmartROI method (see Supporting
Information Table SI-6). Therefore, there is a significant
period where the MS stands idle between the MS1 and N MS2
scans. To overcoming this delay, we propose a slight variant to
the controller. After the initial MS1 scan, we schedule N − 1
(or N − 2) MS2 scans, followed by an MS1 scan and 1 (or 2)
MS2 scans related to the initial MS1 scan. While the final MS2
scans from from the initial MS1 scan are being completed on
the MS, we process the second MS1 scan, again scheduling N
− 1 (or N − 2) MS2 scans, followed by an MS1 scan and 1 (or
2) further MS2 scans. This means that we process each MS1
scan concurrently with other scans being completed on the
MS, meaning that the machine sits idle for only a small amount
of time, despite the complexity of the SmartROI method. The
result here demonstrates how we could potentially fit a greater
number of scans into one injection compared to the standard
SmartROI method.

WeightedDEW: A Fragmentation Strategy with
Weighted Dynamic Exclusion Scheme. WeightedDEW
generalizes the concept of the dynamic exclusion window. It is
motivated by the problem of setting DEW width in standard
TopN approaches: (i) too narrow and we waste MS2 scans
repeatedly fragmenting the same ions, and (ii) too wide and we
miss closely eluting peaks with similar m/z.
TopN DDA uses the intensity of the ion in the survey scan

for fragmentation prioritization. When using a DEW, peaks are
excluded from repeated fragmentation as long as their m/z and
RT values are still within the dynamic exclusion window of
previously fragmented ions. In a standard TopN DDA scheme,
this can be thought of as prioritizing ions based upon the
intensity multiplied by a binary indicator (which is 0 if the ion
is still excluded by DEW and 1 otherwise). The result of

Figure 2. SmartROI compared with a TopN strategy. Keeping track of an ROI in real-time allows for better targeting of MS2 events.
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multiplying the precursor ion intensities and the DEW
indicator terms are then used to select the TopN ranked
ions to fragment. WeightedDEW generalizes the binary DEW
indicators to nonbinary weights. It is defined by two
parameters: t0 and t1. The weight for a particular ion, w,
observed at time t is given by

w

t t t t

t t t
t t

t t t t t

0 if

( )
if

1 otherwise

f f 0

f 0

1 0
f 0 f 1=

< < +

− +
−

+ ≤ ≤ +

l

m

oooooooo

n

oooooooo
where tf is the most recent time at which this m/z was
fragmented. This function, for different values of t1, is shown in
Figure 3a. A standard exclusion is applied for the first t0
seconds after fragmentation, after which the weight increases
linearly from 0 at t0 to 1 at t1.
An example chromatogram and weighted intensity can be

seen in Figure 3b, with a fragmentation at 30 s, t0 = 20 s, and t1
increasing from 20 to 100 s. WeightedDEW down-weights
chromatograms for a period after their initial exclusion. Our
hypothesis is that, by allowing for dynamic “exclusion” to be
weighted linearly as a function of time and precursor ion
intensity (rather than in a binary DEW manner), the system
would be able to better prioritize smaller peaks that have not
yet been fragmented.

■ RESULTS
Optimal Results. The results of our optimal analysis show

that, for both complex mixtures, the observed coverage from
TopN DDA strategies are far from optimal, motivating the
development of new methods. Optimal results were computed
by picking peaks (see Supporting Information S4) from data
acquired for the serum and beer extracts in full-scan mode.
Scan timings were then taken from our TopN method, using
the settings taken from the optimization presented in the
validation of ViMMS.10 This forms two sets (the peaks and the
MS2 scans) and can be formed into a bipartite graph matching
problem. A maximum solution can then be found using a

maximum matching algorithm,14 with the full results shown in
Table SI-5. In summary, for both the serum and beer extracts,
the coverage of the TopN method is significantly below the
optimal: 656 (observed) vs 1542 (optimal peaks) and 1046 vs
2955 for serum and beer, respectively. Although we would
never expect to be able to reach the optimum in practice (it
requires global knowledge of the peaks and when they elute),
the results demonstrate the considerable room for improve-
ment available in DDA controller design.

Controller Optimization. Both SmartROI and Weight-
edDEW were optimized using a grid search for coverage in
simulation (more details are in Supporting Information S7).
Supporting Information Figure SI-4 shows heatmaps of
coverage for the serum and beer extracts for the SmartROI
and WeightedDEW methods. For SmartROI, the parameter
combinations α = 1000 and β = 0.1 performed well for both
data sets and were chosen. For WeightedDEW, t0 = 15 s and t1
= 120 s were chosen. The grid search required 30 (SmartROI)
and 36 (WeightedDEW) virtual injections for each of the
serum and beer extracts, with each sample taking ∼1 h to
produce in total. This is a significant time savings over running
them on real equipment, demonstrating a clear advantage of
optimizing in silico.

Validation on Instrument. After parameter optimization,
the controllers were validated on the real MS. We initially
investigates the scanning frequency of the controllers by
recording the time between scan start times in successive scans
from the mzML file (Table SI-6). Here the timings for the
MS1 scans represent both the time taken to do the MS1 scan
and the time taken to process it and determine what scans to
do next. ViMMS does allow the processing times for each
controller to be tracked, but this was not implemented at the
time of the injections. We expect the time taken to acquire
scans on the instrument to be reasonably consistent, but for
some controllers to be significantly slower at processing MS1
scans and prioritizing which scans to do next. For instance, due
to the time needed to track ROIs in real time in the SmartROI
controller, we expect SmartROI to have longer processing
times than other controllers.

Figure 3. (a) Weight function in WeightedDEW. In standard DEW (t1 = t0), the weight is zero from the fragmentation event until t0 seconds has
elapsed. In WeightedDEW, as t1 increases, the weight takes longer to return to 1. (b) Example chromatogram (left) showing a fragmentation event
(black circle, 30 s) and minimum fragmentation intensity (dashed line). The weighted intensity (right) is zero until t0 (20 s) has elapsed. Different
curves show the effect on the weighted intensity of increasing t1.
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The results for the timings show that this is the case, with
total processing and MS1 scan time taking 0.68 s for the
SmartROI controller in the beer results, compared with 0.54 s
for full-scan, 0.56 s for TopN, and 0.61 s for WeightedDEW.
For both serum and beer extracts, the additional time between
scans due to the processing is the equivalent of roughly one
MS2 scan, motivating the development and evaluation of the
shifted SmartROI controller, with shifts of 1 and 2 scans.
WeightedDEW took slightly longer between scans than
standard TopN. This is due to the fact that, while TopN can
greedily move from the most intense MS1 peak down until it
has scheduled N MS2 scans (or runs out of nonexcluded
peaks), WeightedDEW has to compute the weights for all MS1
peaks above the minimum intensity threshold to ensure that it
takes the topN weighted intensities into consideration. The
time increase between TopN and WeightedDEW was not large
enough to justify the use of a shifted controller for
WeightedDEW.
Table 1 shows the performance in terms of coverage for the

five controllers as well as the optimal performance as shown

previously. In addition, we computed coverage based on peaks
picked using XCMS and peakonly, both of which gave the
same overall trends in performance with the new controllers
outperforming the TopN controller (see Supporting Informa-
tion S3). In both iterations of the serum and beer extracts, the
best performing controller is the WeightedDEW. SmartROI
performs the best with shifts of 2 and 1, respectively, for the
beer and serum extracts, as the shift compensates for the extra
processing time required. TopN is the worst performing
method in both cases. The TopN comparison used was our

own TopN controller and not the vendor TopN controller.
This was due to the difficulty in comparing with the vendor
controller due to the parallelization it employs. However, for
context, we compared our new fragmentation strategies against
a vendor TopN controller (with identical scan parameters),
and our new controllers achieved higher coverage. A more
detailed description of this comparison can be found in
Supporting Information S2. Finally we also analyzed the
intensities of common precursor ions fragmented by all
methods and found that, while SmartROI and WeightedDEW
slightly decrease precursor intensities at the time of
fragmentation, this is compensated for by the increase in
coverage of fragmented peaks that were missed by TopN
(more details in Supporting Information S9).
We next consider the number of MS1 and MS2 scans

produced by each method and the acquisition efficiency,
shown in Table 2. We see a very wide range in the number of
scans between the methods, explained predominantly by the
variation in the number of MS2 scans. For the beer extract,
where TopN and WeightedDEW typically create ∼6000 MS2
scans, the SmartROI controllers produce far fewer, resulting in
a much higher efficiency. This is explained by the relative
reluctance of the SmartROI controllers to refragment the same
m/z values, even after a long time has elapsed. This increased
efficiency allows more MS1 scans to be produced, which is
useful if these files are also being used for peak picking and
relative quantification. The more efficient controllers (e.g.,
SmartROI and WeightedDEW) perform better as the samples
get more complex (Figure SI-5), where there would be more
coelution of metabolites and, hence, more peaks to fragment at
the same time.

■ DISCUSSION AND CONCLUSIONS

In metabolomics experiments and studies, identifying spectra
of interest is key to providing actionable scientific results. In
standard experiments only a small number of the relevant
species can be identified, as a result of there being no or poor
quality spectra available for the species that the experiment has
shown to be of scientific interest. Being able to acquire MS2
spectra for more species (increased coverage) improves the
ability to annotate ions in an LC-MS/MS analysis and
increases the chance of having spectra for the species of
interest. Developing new acquisition methods that improve
coverage is therefore a logical way to improve metabolomics
experiments.

Table 1. Coverage (Number of Picked Peaks Fragmented)
for Each Controller for Both Iterations of the Beer and
Serum Extracts, Where Peaks Have Been Picked Using
MZmine2

beer (4592 peaks) serum (3032 peaks)

method iteration 1 iteration 2 iteration 1 iteration 2

TopN 1046 656
WeightedDEW 1859 1768 1105 1226
SmartROI 1660 1546 991 1015
SmartROI (shift = 1) 1837 1740 1101 1193
SmartROI (shift = 2) 1838 1745 1040 1168
optimal (using TopN
scan timings)

2955 1542

Table 2. Total Number of Scans, Number of MS1 and MS2 Scans, and MS2 Efficiency (Eff) for the Two Experiment Iterations
(Iter)a

beer (4592 peaks) serum (3032 peaks)

Iter method total MS1 MS2 Eff total MS1 MS2 Eff

TopN 6404 583 5821 0.18 6317 575 5742 0.11
1 WeightedDEW 6282 572 5710 0.33 6235 567 5668 0.19

SmartROI 4948 1050 3898 0.43 4271 1268 3003 0.33
SmartROI (shift = 1) 5247 1056 4191 0.44 4299 1309 2990 0.37
SmartROI (shift = 2) 5361 1054 4307 0.43 4353 1315 3038 0.34

2 WeightedDEW 6294 573 5721 0.31 6205 566 5639 0.22
SmartROI 5078 1032 4046 0.38 4572 1237 3335 0.30
SmartROI (shift = 1) 5395 1027 4368 0.40 4376 1329 3047 0.39
SmartROI (shift = 2) 5413 1063 4350 0.40 4085 1414 2671 0.44

aEfficiency is the number of picked peaks that are fragmented divided by the number of MS2 scans.
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However, developing new acquisition methods has typically
required extensive experimentation on the MS apparatus,
which could be expensive and time-consuming. Here we
demonstrated how new DDA strategies can be rapidly
developed and prototyped in silico and then validated on the
machine. Additionally we introduce a framework to support
this development process by extending the capability of
ViMMS10 so it could easily run fragmentation strategies
implemented as controllers in the simulator on real MS
equipment with minimal change to the code. A similar
development process can be used for DIA, with new methods
developed in ViMMS and the estimated spectra they produce
using a deconvolution method such as MSDial7 compared
against the known spectra put into the ViMMS framework.
Using this iterative design, prototype, and validation process,

we presented two new DDA strategies that both considerably
outperform a conventional TopN strategy that prioritizes ions
for fragmentation based on intensity alone. In the first,
SmartROI, we use an ROI detection algorithm commonly used
for peak picking to only fragment molecules that are within
real-time ROIs and are therefore likely to be picked as peaks.
In the second, WeightedDEW, we generalize the dynamic
exclusion window approach to a real-valued weighting scheme,
allowing previously fragmented ions to smoothly rise up the
priority list as their intensity remains high. In both cases,
improved performance in silico was mapped to improved
performance in reality, instilling confidence in the simulation
procedures. Although the WeightedDEW controller out-
performed the SmartROI in our chosen performance measure,
we believe that both have utility. WeightedDEW is computa-
tionally straightforward, as demonstrated by its similar
processing time to TopN, and it produces higher coverage
compared to the alternatives here investigated. SmartROI
requires more computational time but also offers more direct
control in how often an ROI will be fragmented. The tracking
of ROIs in real time also offers the advantage of further
method development. For example, it should be possible to
predict, in real time, if an ROI contains a peak or not and only
fragment those predicted peaks. The increased efficiency of
SmartROI also suggests that it would perform better in more
crowded mixtures than those presented here. For example,
background signals where the intensity values do not change
much could potentially be fragmented multiple times in a
standard TopN DDA scheme, but in SmartROI it will only be
fragmented once. This is possible in SmartROI even without
having a prior knowledge of which is the background ion;
rather, it is accomplished through tracking of regions of
interests in real time.
When optimizing our controllers, we chose to maximize the

fragmentation coverage. MS2 scan parameters have remained
constant throughout, so it is not the case that we have
increased coverage at the expense of data quality, as would be
the case if, for example, reduced scan resolutions were used. All
of our MS2 scans were performed in the orbitrap mass analyzer
to obtain high-resolution fragmentation data. It would be
possible to improve coverage of all methods by performing
MS2 analysis in the linear ion trap mass analyzer and fully
make use of the possible parallelization.18 The optimization
procedure proposed here is independent of any particular
figure of merit: any other measure of MS2 acquisition quality
could be used in place of coverage if considered more
appropriate.

In addition, we have also shown how an optimal limit of
DDA performance for a particular mixture can be computed
via a bipartite graph matching scheme. This limit provides
context for acquisition analysis results: for the two complex
samples analyzed here, we are far from reaching these
theoretical maxima, suggesting that much more optimization
is possible. At the same time, this provides a framework for
future DDA and DIA method optimization studies to perform
benchmarking when applied to the samples used in their
studies.
For validation on actual instruments, our proposed frame-

work at the moment is limited to supporting the Thermo
Fusion Tribrid instrument through the manufacturer’s
provided IAPI. The modular nature of our software means
that all controllers communicate with the instrument through
bridging code, and therefore, the same controller implementa-
tions could easily run on different hardware if a real-time API is
available from the manufacturers. For instance, Waters
instruments could be supported by developing an appropriate
bridge from our framework to communicate with the Waters
Research Enabled Software (WREnS) API.
We conclude that there is much further improvement

possible in the development of DDA strategies. We show how
the use of a simulation system to optimize such strategies can
rapidly lead to improvements. We demonstrate two such
acquisition strategies, both exceeding performance over a
TopN controller in terms of coverage (number of unique
picked peaks that are fragmented). Finally, the flexibility of the
framework allows future development of methods for multiple
injections, in a similar manner to DsDA or AcquireX.
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