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Abstract

The Equilibrium Optimizer (EO) is a recently proposed intelligent optimization algorithm

based on mass balance equation. It has a novel principle to deal with global optimization.

However, when solving complex numerical optimization problems and engineering prob-

lems, the algorithm will get stuck into local optima and degrade accuracy. To address the

issue, an improved Equilibrium Optimizer (IEO) based on multi-strategy optimization is pro-

posed. First, Tent mapping is used to generate the initial location of the particle population,

which evenly distributes the particle population and lays the foundation for diversified global

search process. Moreover, nonlinear time parameter is used to update the position equa-

tion, which dynamically balances the exploration and exploitation phases of improved algo-

rithm. Finally, Lens Opposition-based Learning (LOBL) is introduced, which avoids local

optimization by improving the population diversity of the algorithm. Simulation experiments

are carried out on 23 classical functions, IEEE CEC2017 problems and IEEE CEC2019

problems, and the stability of the algorithm is further analyzed by Friedman statistical test

and box plots. Experimental results show that the algorithm has good solution accuracy and

robustness. Additionally, six engineering design problems are solved, and the results show

that improved algorithm has high optimization efficiency achieves cost minimization.

1. Introduction

In recent years, optimization problems have become an important topic in the modern man-

agement field. They help provide the optimal solution for the application problems in various

fields of society. On the premise of comprehensive consideration of all aspects of constraints,

the practical application problems are abstracted as objective functions and solved. Because of

the development of science and technology, many optimization problems become more and

more complex. Meta-heuristic algorithms with high flexibility have subsequently attracted the

attention of a large number of researchers [1]. The meta-heuristic algorithms put forward a set

of new research ideas and solutions, some in the modeling and simulation of complex systems,
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others analyzing complex decision and solving optimization problems. Meta-heuristic algo-

rithms are used to solve optimization problems by simulating biological or physical phenom-

ena. The algorithms are divided into four categories: evolutionary algorithms, physics-based

algorithms, human-based algorithms and swarm intelligence algorithms [2].

Evolutionary algorithms realize the overall progress of the population and achieve the opti-

mal solution by simulating the evolution law of survival of the fittest in nature. The representa-

tive ones include the genetic algorithm (GA) that searches for the optimal solution by

simulating the natural evolution process [3], and the differential evolution (DE) that simulates

the crossover and mutation mechanism in heredity [4]. Similarly, population-based incremen-

tal learning (PBIL) is proposed based on two strategies: genetic search and competitive learn-

ing [5]. Biogeography-based optimization (BBO) is proposed based on the biogeography

theory of species’ migration and drift between geographical regions in nature [6].

Physics-based algorithms are inspired by the laws of physics in nature. Representative algo-

rithms mainly include simulated annealing (SA) [7], whose inspiration comes from the anneal-

ing process of solid materials. In addition, big-bang big-crunch (BBBC) is inspired by the Big

Bang and contraction theory [8]. Gravitational search algorithm (GSA) is based on Newton’s

law of universal gravity to guide the motion of each particle to search for the optimal solution

[9]. Inspired by the theory of physics kinematics, central force optimization (CFO) realizes the

update of the optimal solution by updating the acceleration [10].

Human-based algorithms are modeled after human behaviors, such as human teaching

behaviors and social behaviors. The representative algorithms are listed below. Tabu search

(TS) is a search process guided by memory. It is also a simulation of human intelligence pro-

cess and a manifestation of artificial intelligence [11]. Teaching learning based optimization

(TLBO) conducts search optimization by simulating the learning methods of human teaching

and techniques in the learning process [12]. The inspiration of harmony search (HS) comes

from the process of human musical performance [13], by repeatedly adjusting the solution var-

iables in the memory bank, the algorithm makes the function value continuously converge

with the increase of the number of iterations.

The swarm intelligence algorithm comes from the simulation of biological groups’ behavior

process. The individuals in the biological group follow the cooperative mode of aggregation,

division of labor, collision avoidance, and convergence, until the swarm intelligence emerges.

Representative swarm intelligence algorithms include: particle swarm optimization (PSO),

which simulates the foraging behavior of birds [14]; ant colony optimization (ACO), which

simulates the foraging path of ants by secretion concentration [15]; artificial bee colony

(ABC), which simulates the honey gathering behavior of bees [16], and whale optimization

algorithm (WOA), which is inspired by the feeding behavior of whales in the ocean [17].

Equilibrium Optimizer(EO) is a physics-based meta-heuristic algorithm proposed in 2020

[18], The algorithm was inspired by mass balance equations in physics. The EO algorithm is

inspired by the control volume mass balance, where the dynamic state and equilibrium state of

the particles can be estimated. In EO, the important parameters are: equilibrium pool

(C
!

eq;pool), exponential term ( F!) and generation rate (GCP
��!

). During the optimization process,

the search agent randomly updates its concentration (position) for certain particles called

equilibrium pool, eventually reaching an equilibrium state (the best result). The unique update

mechanism of EO algorithm makes it equipped with fast convergence speed and precision.

Some scholars have studied EO algorithm are listed here. Gupta et al. [19] introduced Gaussian

variation and new exploratory search mechanism on the basis of EO algorithm to improve the

diversity of solutions. Abdel-Basset et al. [20] introduced an equation and Gaussian mutation

strategy when EO was performing position update to improve the exploration and exploitation
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capability of the algorithm. Jia et al. [21] combined EO with thermal exchange optimization

(TEO) in order to improve the optimization accuracy of EO algorithm. Fan et al. [1] proposed

an improved EO algorithm based on opposition-based learning and new update rules, which

improve the exploration ability of the algorithm and avoid falling into local optimal value.

EO has a competitive advantage compared with other intelligent optimization algorithms.

Still, it has problems such as slow convergence speed, low solution accuracy and tendency to

fall into local optima when solving complex function and engineering problems. These defects

are mainly caused by the following reasons: low quality of randomly generated initial particle

population, unbalanced exploration and exploitation abilities in the iteration phase, and the

decrease of population diversity caused by particle aggregation in the later iteration phase.

Therefore, an improved Equilibrium Optimizer (IEO) based on multi-strategy optimization is

proposed. It includes three improvements: first, the random initialization is replaced by a Tent

chaotic map, so the particles are evenly distributed in the search space as far as possible, and

the quality of the initial solution is improved. Second, a dynamic control parameter strategy is

proposed to promote the balance between the exploration and exploitation phases of the algo-

rithm through the dynamic changes of parameters. Finally, the Lens Opposition-based Learn-

ing (LOBL) strategy is introduced in a late iteration, which prevents the algorithm from falling

into local optimum by finding other valuable search areas through generating new candidate

solutions. In the simulation experiment, three different complexity test sets are optimized,

namely 23 reference functions, IEEE CEC2017 and IEEE CEC2019 test sets. When all the

experimental results are compared with the six meta-heuristic algorithms, the results show

that the improved algorithm IEO has significant advantages in convergence accuracy and

effectiveness. Among statistical tests, the Friedman test and the Wilcoxon rank sum test prove

that IEO has superior performance when optimizing each test set. In addition, this paper also

selected a convergence curve and boxplot analysis to show the stability of IEO from different

perspectives. Finally, the improved algorithm IEO is applied to six engineering design prob-

lems: the pressure vessel problem, the welded beam problem, the tension/compression spring

problem, the three-bar truss problem, the speed reducer problem and optimal design of indus-

trial refrigeration system. Experimental results show that IEO has good optimization efficiency

in solving practical application problems. With knowledge of above discussion, the innova-

tions of this paper are listed as follows.

• To improve the quality of the initial particle population, Tent chaotic mapping is introduced

to increase the diversity of initial solutions through the map’s uniformity distribution.

• A new dynamic control parameter strategy is proposed to facilitate an effective transition

from exploration to exploitation, to improve search efficiency and avoid premature

convergence.

• To avoid falling into a local optimal solution due to population aggregation phenomenon at

the later stage of iterations, a LOBL strategy is introduced to expand the search space and

improve the convergence speed.

• Experiments are carried out on three function test sets of different difficulty, namely 23

benchmark functions, IEEE CEC2017 and IEEE CEC2019. IEO has the advantages of high

solution accuracy, fast convergence speed and strong robustness when optimizing complex

functions.

• The effectiveness and optimization efficiency of IEO are tested on six engineering problems

of different complexity.
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• This paper includes two different types of experiments, the first is about the analysis of

numerical experimental results, and the second is about the application of engineering prob-

lems. Two different types of tests prove that the proposed IEO algorithm has excellent

performance.

The remaining structure of this article is as follows: Section 2 introduces the research meth-

ods, including the basic Equilibrium Optimizer and the improved Equilibrium Optimizer. In

section 3, three function test suites are selected for simulation experiments, such as 23 classical

functions and IEEE CEC2017 and IEEE CEC2019. In section 4, the IEO algorithm is applied

to six engineering design problems. Finally, the fifth section summarizes the work of this

paper.

2. Method

In this section, the Equilibrium Optimizer (EO) and the improved Equilibrium Optimizer

(IEO) are described in detail respectively. Among them, the improved Equilibrium Optimizer

includes three innovation points, and the uniqueness of improved algorithm is reflected by

introducing each innovation point.

2.1. Equilibrium Optimizer

Equilibrium Optimizer (EO) [18] is a new intelligent algorithm proposed by Faramarzi et al.,

which is inspired by the mass balance equation in physics. The mass balance equation reflects

the physical process of mass entering, leaving and producing in the control volume. In EO, the

concentration of each particle is updated in a random way until it reaches equilibrium. EO

algorithm constructs three mathematical models: 1. Initialization phase 2. Equilibrium pool

and candidates 3. Updating the concentration. The specific description is as follows:

Step1. Initialization phase

Similar to most meta-heuristic algorithms, EO initiates the optimization process by initial-

izing the population. The initial concentration is constructed by randomly initializing the par-

ticles in the D - dimensional search space. The initial concentration of each particle is

described below:

Cinitial
i ¼ Lbþ randiðUb � LbÞ i ¼ 1; 2; . . . ; n ð1Þ

Where Cinitial
i is the initial concentration of the i-th particle, Ub and Lb represent the maxi-

mum and minimum values of particles in the search space, randi is a random vector in the

range of [0,1], and n represents the number of particles.

Step2. Equilibrium pool and candidates (C
!

eq)

In order to improve the global search ability of the algorithm and avoid falling into the local

optimal solution of low quality, after the initialization phase is completed, the concentration of

the generated particles is evaluated and the four particles with the highest fitness value are

selected to prepare for the formation of the equilibrium pool.

The equilibrium pool is used to provide candidate solutions during the algorithm optimiza-

tion process. It consists of four particles with optimal fitness values and one average particle

generated during the initialization phase. The mathematical definition is as follows:

C
!

eq ave ¼
C
!

eq1 þ C
!

eq2 þ C
!

eq3 þ C
!

eq4

4
ð2Þ
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C
!

eq;pool ¼ fC
!

eq1; C
!

eq2; C
!

eq3; C
!

eq4; C
!

eq aveg ð3Þ

Among them, C
!

eq1 � C
!

eq4 represent the four particles with the highest concentration

selected after the initialization of the algorithm, C
!

eq ave represents the average particle, and

C
!

eq;pool represents the equilibrium pool. Especially, in the equilibrium pool, the four particles

with the highest concentration contribute to the exploration of the algorithm, while the aver-

age particle plays an important role in the exploitation phase.

In the iterative process of the algorithm, each particle is selected from the five candidate

particles in the equilibrium pool with the same probability, which contributes to the genera-

tion of the global optimal solution.

Step3. Updating the concentration

The exponential term F! is an important indicator to balance the exploration and exploita-

tion capability of EO algorithm. The calculation of F is as follows:

F!¼ a1signð r
!� 0:5Þ � ½e� l

!
t � 1� ð4Þ

Where a1 is a constant that controls the exploration ability of the algorithm. signð r!� 0:5Þ

indicates the direction of exploration and exploitation. r! and l
!

represent vectors within the

interval of [0,1], t is the coefficient updated with the number of iterations, which can be calcu-

lated as follows:

t ¼ 1 �
Iter

Max iter

� � a2 �
Iter

Max iterð Þ
ð5Þ

Where Iter represents the current iteration number of the algorithm, and Max_iter repre-

sents the maximum iteration number of the algorithm. a2 is a constant that can control the

exploitation ability of the algorithm. According to the experimental data [18], when a1 = 2 and

a2 = 1, the performance of algorithm EO is the best. In order to improve the exploitation capa-

bility of EO, an equally important indicator is generation rate (G
!

), which is defined as follows:

G
!
¼ GCP
��!
ðC
!

eq � l
!

C
!
Þ � F! ð6Þ

GCP
��!

¼
0:5r1 r2 � GP

0 r2 < GP
ð7Þ

(

In the formula, GCP
��!

represents the control parameter vector of generation rate, C
!

repre-

sents the current particle concentration, r1 and r2 are random numbers within the interval

[0,1], and GP is a constant with value of 0.5. To sum up, after the concentration update phase

of EO algorithm, the update formula of each particle is as follows:

C
!
¼ C
!

eq þ C
!
� C
!

eq

� �
� F!þ

G
!

l
!
V
� 1 � F!
� �

ð8Þ

Where V is considered as unit.

According to the above description, the updating rule of algorithm EO is to construct the

initial concentration of each particle in the initialization phase, select four particles with the
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highest concentration and form an equilibrium pool with an average particle, which provides

candidate solutions for algorithm iteration. Then, the concentration of each particle is calcu-

lated using two important indexes: exponential term ( F!) and generation rate (G
!

).

2.2. The improved Equilibrium Optimizer

In this paper, an improved Equilibrium Optimizer (IEO) algorithm is proposed. In IEO, there

are three improved strategies: Firstly, the algorithm is initialized by using Tent chaotic map

instead of randomly generating initial population. The uniform initial population generated

by Tent mapping improves the quality of final optimization solution. Second, nonlinear

dynamic control parameter is introduced to maintain the balance between the exploration and

exploitation phases of the algorithm. Third, Lens Opposition-based Learning (LOBL) is used

to calculate the relative population of each iteration process to expand the search space of the

algorithm and improve the accuracy of the solution.

2.2.1. Tent chaotic sequence initialization. In the initialization phase, the basic EO algo-

rithm uses the method of random generation to determine the initial solution, which cannot

guarantee that the randomly generated initial solution is evenly distributed in the search space.

Therefore, in order to improve the quality of the initial solution, Tent chaotic map is intro-

duced [22]. The mathematical expression is as follows:

xiþ1 ¼

xi
0:7

xi < 0:7

10

3
ð1 � xiÞ xi � 0:7

ð9Þ

8
><

>:

Where xi shows the chaos variable of i-th particle, i2[1,n].

Tent chaotic mapping has a rich dynamic space, which is a nonlinear phenomenon between

determinism and randomness, and has neither periodicity nor convergence. The randomness

and ergodic characteristics of Tent chaotic mapping enable the search individual to experience

all states without repetition. In EO algorithm, Tent chaotic mapping is introduced to disperse

the population as much as possible in the initialization phase, so as to maintain the diversity of

the population and improve the global search ability of the algorithm.

In IEO, the Tent chaotic map is used to replace the random distribution to increase the

diversity of the population and accelerate the convergence rate of the algorithm. The number

of particles is set as n and the dimension is set as d. The basic steps of initializing particles by

using Tent chaotic map within the search range are as follows:

Step1: In the search range, the number of particles is set as n, and a group of 1×d vectors are

randomly generated, which are taken as the position information of the first particle.

Step2: Using Eq (9), the position information of the remaining n-1 particles is calculated to

form a chaotic sequence.

Step3: The resulting chaotic sequence is initialized by the Eq (10).

Cinitial
i ¼ Lbþ xiðUb � LbÞ i ¼ 1; 2; . . . ; n ð10Þ

In order to verify the rationality of this method, the Tent mapping chaotic sequence is com-

pared with the random initialization in EO algorithm, the particle number is set to 30, and

Sphere function among 23 classical reference functions and F15 function in CEC2017 are

taken as examples. The details are shown in Figs 1 and 2.

Each point in the figure represents a search individual. As shown in Fig 1, in the search

space [–100,100] where Sphere function is located, compared with the population generated

by random initialization in Figure (a), the initial population generated by Tent chaotic
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mapping in Figure (b) is more evenly distributed within the search space. In Fig 2, the F15

function in the CEC2017 test suite is selected for the experiment. Within the search range of [–

100,100], it can be clearly seen that the population initialized through the Tent mapping cha-

otic sequence has a relatively uniform distribution. This improves IEO’s global search

capabilities.

2.2.2. Dynamic parameter strategy. In EO, the exponential term F! is an important

index that balances the exploration and exploitation capability of EO algorithm. According to

Eq (4), it can be seen that the exponential term F! is affected by the time parameter t. In addi-

tion, According to Eq (5), the expression of the time parameter t contains the constant a2, so

the change of the parameter t largely determines the performance of EO algorithm. In EO, the

time parameter t decreases from 1 to 0, which is a process that produces nonlinear changes as

the number of iterations increases.

According to literature [1], the parameter t is redefined and expressed in a new way, as fol-

lows:

y ¼
p

2
�

Iter
Max iter

ð11Þ

Fig 1. The population distribution of the Sphere function.

https://doi.org/10.1371/journal.pone.0276210.g001

Fig 2. The population distribution of the CEC2017 F15.

https://doi.org/10.1371/journal.pone.0276210.g002
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t ¼ tend þ tstart � tendð Þð1 � sinyÞ a2
Iter

Max iterð Þ ð12Þ

Among them, tstart = 1; tend = 0. Iter indicates the number of iterations, Max_iter represents

the maximum number of iterations of the algorithm. The change curve of time parameter t in

nonlinear dynamic parameter strategy, original EO algorithm [18], and linear decline strategy

[23] is shown in Fig 3. The dynamic control parameter strategy proposed in this paper reduces

slowly in the early stage of algorithm iteration, which avoids premature convergence when the

particle is updated, and makes the particle fully search globally in the search space. In addition,

in the late iteration of the algorithm, the decreasing speed of parameter t is slowed down, so

that the particles can search accurately in the search space, thereby the balanced state can be

reached more effectively.

2.2.3. Lens Opposition-based Learning. The original EO algorithm often appears the

phenomenon of population aggregation in the late iteration, which makes the algorithm fall

into the local extreme value due to the lack of population diversity. In order to strengthen the

global search ability of the algorithm and improve the solving accuracy, Lens Opposition

Based Learning strategy (LOBL) is applied to EO algorithm. LOBL is used to calculate the

opposite solution of candidate solutions in the optimization process of the algorithm. By

expanding the opposite region of candidate solutions, the population diversity of the algorithm

in the iterative process is enhanced.

The LOBL strategy is a combination of Opposition-based Learning (OBL) strategy and lens

imaging principle [24]. When the distance between the object and the convex lens is set to be

more than two focal lengths, the process of particles searching for opposite solutions in the

search space can be regarded as the process of lens imaging, as shown in Fig 4.

In Fig 4, a convex lens of focal length r is placed on the origin O (this paper takes (Ub+Lb)/

2). An object of height h is placed x away from the point O and x is two focal lengths away. By

the lens imaging principle, an image of height h0 is generated at point x0 on the other side. In

other words, the point x takes O as the basis point to obtain the corresponding reverse point x0,
and the mathematical relationship is described as follows:

ðLbþ UbÞ=2 � x
x0 � ðLbþ UbÞ=2

¼
h
h0

ð13Þ

In the above equation, h
h0 ¼ k, and the scaling factor k represents the scaling relationship

between the object and the corresponding real image. Therefore, the Eq (13) can be trans-

formed into the formula to calculate the opposite solution of x0:

x0 ¼
Lbþ Ub

2
þ
Lbþ Ub

2k
�
x
k

ð14Þ

Since the above equation is only applicable to the opposite solution in one dimensional

space, when the optimization problem is multi-dimensional, the solution equation of LOBL

strategy is as follows:

x0i ¼
Lbi þ Ubi

2
þ
Lbi þ Ubi

2k
�
xi
k

ð15Þ

Where x0i represents the opposite solution generated by LOBL strategy in the i-th dimen-

sion, and Lbi and Ubi respectively represent the lower bound and upper bound of the i-th
dimension in the search range.
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Sphere function among the 23 reference functions and F15 function in the IEEE CEC2017

test suite are taken as examples, and the positions of each particle generated by LOBL strategy

are shown in Figs 5 and 6. In the figure, the blue points represent the positions of particles gen-

erated by the original EO algorithm when optimizing the function, and the red points repre-

sent the positions of particles generated by LOBL strategy. As shown in Fig 5, the original EO

Fig 3. Comparison of parameters.

https://doi.org/10.1371/journal.pone.0276210.g003

Fig 4. Lens Opposition-based Learning.

https://doi.org/10.1371/journal.pone.0276210.g004
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algorithm falls into local optimum when optimizing Sphere function, and the positions of each

particle produce high overlap. The specific magnified part is shown in the lower left corner of

Fig 5. In addition, as can be seen in detail from Fig 6, the original EO algorithm is easy to fall

into the plight of local optimal, resulting in a high degree of location overlap of each particle,

and the search space becomes increasingly narrow. By introducing LOBL strategy, the opposite

solution is generated, which significantly expands the search space of each particle and avoids

the algorithm falling into the local optimal solution.

In this paper, the LOBL strategy is used to calculate the opposite solution of the candidate

solution generated in each iteration. If the fitness value of the opposite solution is better than

the candidate solution, the opposite solution is used to replace the candidate solution to

become the current optimal solution, and the iterative operation continues. Therefore, the

LOBL strategy significantly improves the ability of particles to escape from the extreme region,

which effectively avoids the algorithm falling into the local optimal solution and makes the

particles reach the balance state better.

In IEO, firstly, the Tent chaotic sequence is used to initialize the particle concentration, so

that the initial solution is evenly distributed in the search space as far as possible, and the solv-

ing efficiency is improved. Secondly, the new nonlinear dynamic parameter strategy can better

balance the exploration and exploitation phases. Finally, the LOBL strategy is used to calculate

the opposite solution of the candidate solution generated by each iteration. This strategy avoids

falling into the local optimal by increasing the population diversity. These three improved

methods can effectively improve the solving speed and accuracy of the algorithm. The pseudo-

code of the IEO algorithm is illustrated in Algorithm 1. The flow chart of IEO is shown in

Fig 7.

Fig 5. The position of Sphere function generated by LOBL.

https://doi.org/10.1371/journal.pone.0276210.g005
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Algorithm 1 Improved Equilibrium Optimizer (IEO)
01. Initialize the particle’s populations via Eq (10)
02. Assign equilibrium candidates’ fitness a large number
03. Assign parameter’s value a1 = 2; a2 = 1; GP = 0.5
04. while (Iter<Max_iter)
05. for each particle
06. Calculate fitness of the i-th particle
07. If f(C1)<f(Ceq1)
08. Replace Ceq1 with C1 and f(Ceq1) with f(C1)
09. elseif f(C1)>f(Ceq1) and f(C1)<f(Ceq2)
10. Replace Ceq2 with C1 and f(Ceq2) with f(C1)
11. elseif f(C1)>f(Ceq1) and f(C1)>f(Ceq2) and f(C1)<f(Ceq3)
12. Replace Ceq3 with C1 and f(Ceq3) with f(C1)
13. elseif f(C1)>f(Ceq1) and f(C1)>f(Ceq2) and f(C1)>f(Ceq3) and f(C1)<f
(Ceq4)
14. Replace Ceq4 with C1 and f(Ceq4) with f(C1)
15. end if
16. end for
17. calculate the average particle Ceq_ave via Eq (2)
18. construct the equilibrium pool Ceq,pool via Eq (3)
19. Implement the memory saving
20. Calculate the value of t via Eq (12)
21. for each particle
22. Choose a random candidate from the concentration pool
23. Calculate the values of vectors F and G via Eq (4), Eq (6) and Eq
(7)
24. Update the concentration of the particle via Eq (8)

Fig 6. The position of CEC2017 F15 generated by LOBL.

https://doi.org/10.1371/journal.pone.0276210.g006

PLOS ONE Multi-strategy Equilibrium Optimizer

PLOS ONE | https://doi.org/10.1371/journal.pone.0276210 October 20, 2022 11 / 47

https://doi.org/10.1371/journal.pone.0276210.g006
https://doi.org/10.1371/journal.pone.0276210


25. Calculate the opposite position of the particle via Eq (15)
26. Choose the better one as the next initial solution
27. end for
28. Iter = Iter +1
29. end while

2.2.4. Computational complexity. Time complexity is one of the criteria for checking

algorithm performance. In this article, big-O notation is used to represent complexity [1]. The

computational complexity of the algorithm includes three main parts: initialization, fitness

evaluation and population updating mechanism. The complexity calculations for the original

EO and the improved IEO are as follows.

The original EO initializes the concentration of each particle in O(N×D) time, where N rep-

resents the number of particles and D represents the dimension of the problem. The fitness

assessment of each particle requires O(N) time. And the selection of the particle with the high-

est concentration requires O(N) time. The concentration of update mechanism in the original

EO requires O(N×D) time. Thus for the total Max-iter iterations, the total computation com-

plexity of the original EO is equivalent to O(N×D×Max-iter).

The initialization of particle concentration in IEO requires O(N×D) time, where N repre-

sents the number of particles and D represents the dimension of the problem. The fitness

assessment of each particle requires O(N) time. Moreover, the selection of the particle with the

Fig 7. The flowchart of IEO.

https://doi.org/10.1371/journal.pone.0276210.g007
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highest concentration requires O(N) time. The concentration of update mechanism in the IEO

requires O(N×D) time. Tent chaos strategy takes O (N) time. And the Lens Opposition-based

Learning strategy requires O (N) time. Thus for the total Max-iter iterations, the total calcula-

tion complexity of IEO is equivalent to O(N×D×Max-iter). Consequently, the original EO and

the proposed IEO are identical in terms of time complexity.

3. Numerical experiment results and analysis

In this section, 23 classical benchmark functions and two test suite functions IEEE CEC2017

and IEEE CEC2019 with complex changes are selected to carry out simulation experiments.

The CEC2017 and CEC2019 test suites contain different functions, which are divided into dif-

ferent categories: basic functions, hybrid functions, and composition functions. Among them,

the CEC2017 data suite includes 30 complex composite functions, and the CEC2019 test suite

includes 10 functions. These functions have different rotation matrices, each matrix is gener-

ated from standard normally distributed entries by Gram-Schmidt ortho-normalization with

condition number c that is equal to 1 or 2. Therefore, these functions have stable performance

in numerical experiments, which can show the optimization performance of the test

algorithm.

In the experiment, the performance of IEO optimization results is analyzed and compared

with six famous meta-heuristic algorithms, which are Equilibrium Optimizer (EO) [18], salp

swarm algorithm (SSA) [25], sine and cosine algorithm (SCA) [23], butterfly optimization

algorithm (BOA) [26], the particle swarm optimization (PSO) [14] and bat algorithm (BA)

[27]. Among them, PSO and BA are classical swarm intelligence algorithms. In recent years,

these two algorithms are not only widely used in algorithm optimization [28], but also applied

to hot fields such as neural network [29] and artificial intelligence [30]. SSA, SCA and BOA

algorithms are representative intelligent algorithms emerging in recent years. These three algo-

rithms have good global optimization ability and are widely used in function optimization

problems [31]. The experimental parameter values of all algorithms are shown in Table 1,

which are selected from the original paper of each algorithm.

Table 1. The parameters of the algorithms.

Algorithm Parameters Values

EO Constant coefficient (a1) 2

Constant coefficient (a2) 1

SCA Convergence factor (r1) [0,2]

Constant coefficient (a) 2

SSA Constant coefficient (c1) [2/e,2]

PSO Maximum Inertia weight (Wmax) 0.09

Minimum Inertia weight (Wmin) 0.04

Minimum Velocity (Vmin) -5

Maximum Velocity (Vmax) 5

Constant coefficient (c1) 2

Constant coefficient (c2) 2

BOA Modular modality (c) 0.01

Power exponent (a) [0.1,0.3]

BA Frequency minimum (Qmin) 0

Frequency maximum (Qmax) 2

Loudness (A) 0.5

Pulse rate (r) 0.5

https://doi.org/10.1371/journal.pone.0276210.t001
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For fair comparison, three standards of mean value (mean), standard deviation (std) and

running time (time) are used as the evaluation indexes. The average value intuitively shows the

results of function optimization of each algorithm, and the standard deviation reflects the dis-

persion degree of optimization data. The smaller the standard deviation is, the higher the sta-

bility of the algorithm is. And the running time directly shows the convergence speed of the

algorithm. The following three experiments describe in detail the optimization of the

improved algorithm IEO for different problems.

3.1. 23 classical benchmark functions

In this section, 23 classical benchmark functions are selected for simulation experiments [17].

These functions are divided into unimodal functions and multimodal functions. Among them,

F1-F7 is a unimodal function with only one global optimal solution, which is mainly used to

test the optimization accuracy of the algorithm. The multimodal functions F8-F23 has multiple

optima and is easy to fall into local optima. It is often used to test the exploration ability of the

algorithm and the ability to avoid local optima. In addition, F14-F23 belong to fixed dimen-

sional multimodal functions, whose dimensions are lower and fixed, so they have fewer local

optimal solutions.

In order to ensure the fairness and comparability of the experiment, this paper sets the pop-

ulation number of the seven algorithms as 30, the maximum number of iterations as 500, and

the dimension of the algorithms as 30. Each algorithm runs the test function for 30 times inde-

pendently and records the mean value (mean), standard deviation (std) and running time

(time) of the experimental data. The optimization results of all the algorithms for the 23 classi-

cal functions are shown in Table 2. Note that the bold values in the table represent the best

results for each function optimization.

As can be seen from Table 2, IEO improves accuracy by several orders of magnitude for

most benchmark functions. For unimodal function F1-F7, the optimization efficiency of the

algorithm IEO is greatly improved, which indicates that IEO has strong exploitation ability

and can find the global optimal solution. For multimodal functions F8-F23, the average value

of fitness obtained by IEO in the optimization process of ten functions F9-F12, F15-F19 and

F23 is optimal. This shows that the improved IEO has strong exploration ability and robust-

ness when dealing with multimodal functions. In general, three improvement strategies

enhance the optimization performance of the algorithm and accelerates convergence speed.

The improved Equilibrium Optimizer achieves complementary advantages to enhance the

global search ability so that the IEO can find an accurate solution.

The convergence speed of the algorithm is reflected by calculating the running time of each

function. For the 30-dimensional functions F1-F13, except for functions F1, F7 and F13, the

running time of IEO algorithm is relatively fast. That is to say, IEO has a good convergence

speed when solving unimodal and multimodal functions. For low dimensional multimodal

functions F14-F23, these functions belong to 2-dimensional, 4-dimensional and 6-dimensional

functions, and the optimization effect of IEO is not outstanding. In general, the functions

F1-F13 are tested on the basis of 30 dimensions, and IEO can improve the solution accuracy

and avoid local optima when dealing with high-dimensional functions. However, for low-

dimensional functions F14-F23, the IEO algorithm tends to fall into the local optimum when

solving lower-dimensional functions, which greatly reduces the convergence speed and solu-

tion efficiency of the algorithm.

In order to analyze the optimization results of IEO and other algorithms more effectively,

the Friedman test is selected as a further evaluation index in the experiment. The order is

based on the mean and standard deviation of all the algorithms. If the mean is smaller, the
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Table 2. The comparison results of different algorithms on 23 benchmark functions with D=30.

Function Result IEO EO SSA SCA BOA PSO BA

F1 Mean 0 2.85E-41 1.48E-07 10.8237 1.31E-11 2.70E-73 3.34E+03

Std 0 5.08E-41 1.25E-07 11.3405 1.14E-12 1.43E-72 5.47E+03

Time 6.851 s 3.921 s 5.330 s 7.124 s 4.276 s 9.031 s 6.886 s

F2 Mean 1.08E-166 8.08E-24 2.2539 0.0207 4.32E-09 1.48E-51 33.8185

Std 0 7.82E-24 2.0791 0.0378 1.40E-09 5.78E-51 23.4872

Time 4.434 s 4.689 s 5.164 s 7.234 s 4.977 s 6.436 s 7.239 s

F3 Mean 2.01E-315 1.27E-09 1.78E+03 6.87E+03 1.29E-11 4.31E+04 1.91E+04

Std 0 3.54E-09 1.03E+03 4.15E+03 1.12E-12 1.41E+04 8.99E+03

Time 6.132 s 8.046 s 9.667 s 13.303 s 13.114 s 10.138 s 11.250 s

F4 Mean 8.21E-158 3.46E-10 11.7559 34.3367 5.99E-09 44.3426 70.3417

Std 1.39E-157 7.56E-10 3.0076 11.9158 4.42E-10 26.9932 8.7013

Time 4.027 s 5.924 s 5.212 s 7.107 s 4.537 s 5.721s 6.966 s

F5 Mean 25.4623 25.3233 281.2543 1.09E+05 28.9402 27.9294 2.68E+06

Std 0.2692 0.2454 783.4751 2.60E+05 0.0321 0.428 1.46E+07

Time 5.133 s 5.388 s 5.695 s 9.055 s 5.451 s 6.427 s 7.729 s

F6 Mean 3.67E-06 7.58E-06 1.53E-07 17.3566 6.0152 0.3729 3.01E+03

Std 2.82E-06 7.00E-06 2.15E-07 23.2015 0.5234 0.2593 5.35E+03

Time 4.135 s 4.686 s 5.724 s 7.325 s 4.251 s 6.875 s 7.350 s

F7 Mean 0 1.29E-74 2.95E-11 0.0229 1.15E-14 1.51E-111 4.3848

Std 0 3.02E-74 7.31E-11 0.0437 1.33E-15 8.28E-111 12.7958

Time 8.217 s 8.071 s 7.565 s 9.468 s 8.687 s 8.396 s 9.114 s

F8 Mean -8.82E+03 -8.96E+03 -7.62E+03 -3.77E+03 -3.72E+03 -9.97E+03 -8.33E+03

Std 537.6766 582.6549 729.6419 350.8453 351.4027 1.70E+03 792.1073

Time 5.740 s 7.133 s 5.763 s 7.699 s 9.702 s 9.434 s 7.624 s

F9 Mean 0 0 50.0795 49.4458 2.93E-09 5.68E-15 168.2969

Std 0 0 13.9522 39.0467 1.37E-08 2.29E-14 34.0651

Time 5.323 s 6.050 s 5.443 s 7.499 s 6.120 s 8.631 s 7.643 s

F10 Mean 2.31E-15 8.35E-15 2.8441 15.8001 6.04E-09 5.15E-15 15.8891

Std 1.77E-15 2.16E-15 1.1462 7.9825 5.53E-10 2.70E-15 6.2066

Time 4.760 s 5.098 s 5.639 s 9.342 s 5.335 s 7.563 s 7.442 s

F11 Mean 0 6.56E-04 0.0169 0.9049 4.65E-12 0.0054 27.9399

Std 0 0.0036 0.0126 0.3775 2.55E-12 0.0294 53.6106

Time 4.435 s 4.631 s 5.953 s 8.234 s 5.522 s 6.963 s 7.974 s

F12 Mean 5.93E-08 4.70E-07 7.7091 6.24E+04 0.6566 0.0228 12.0731

Std 9.98E-08 4.08E-07 4.1368 2.00E+05 0.1838 0.0138 21.5277

Time 12.365 s 13.563 s 12.831 s 14.402 s 17.617 s 19.845 s 13.707 s

F13 Mean 0.6807 0.0192 17.3181 5.79E+05 2.9499 0.5275 1.01E+03

Std 1.0265 0.0371 15.2915 2.27E+06 0.1343 0.2578 4.96E+03

Time 16.196 s 10.569 s 12.039 s 13.950 s 17.743 s 20.849 s 14.132 s

F14 Mean 1.1964 0.998 1.1304 1.7264 1.5197 3.5412 3.3945

Std 0.6054 1.37E-16 0.431 0.9718 0.6952 4.099 2.8086

Time 19.607 s 15.460 s 14.522 s 13.667 s 27.643 s 14.158 s 14.748 s

F15 Mean 3.54E-04 0.0011 0.0028 0.0011 4.03E-04 6.95E-04 0.0017

Std 1.72E-04 0.0037 0.006 3.51E-04 1.29E-04 4.69E-04 0.0036

Time 3.841 s 3.733 s 3.261 s 2.600 s 4.372 s 3.504 s 2.790 s

(Continued)
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rank obtained by the Friedman test is smaller. In the experiment, the software IBM SPSS24 is

used to calculate each algorithm, and the sorting results are shown in Table 2. IEO’s average

rank is 2.18, ranking first among the seven algorithms. In addition, in order to view the average

rank results of each algorithm more clearly, the Fig 8 is drawn, which shows that the ranking

of IEO is better than other algorithms. The results of Friedman simulation experiment show

that IEO has superior performance compared with the original EO algorithm and PSO. The

improved Equilibrium Optimizer not only has strong robustness and stability but also has a

faster convergence speed and higher calculation accuracy.

3.2. IEEE CEC2017 functions

The conditions of the CEC2017 test suite are more complex and challenging than uncon-

strained functions. Therefore, the CEC2017 is selected as the optimization problem to evaluate

the algorithm IEO. For the CEC2017 test suite [32], there are four types of problems: they are:

F1-F3 are unimodal rotation displacement functions, which are usually used to evaluate the

convergence rate and optimization accuracy of the algorithm; F4-F10 are multimodal rotation

displacement functions, which are usually used to reflect the ability of the algorithm to avoid

local optimality. In addition, F11-F20 are hybrid functions, and F21-F30 are composition

functions. It is difficult for most algorithms to reach the global optimal solution of the hybrid

functions and the composite functions. Among them, F2 is deleted from the function list due

Table 2. (Continued)

Function Result IEO EO SSA SCA BOA PSO BA

F16 Mean -1.0316 -1.0316 -1.0316 -1.0316 -9.94E+02 -1.0316 -1.0316

Std 6.12E-16 6.12E-16 3.38E-14 4.38E-05 3.08E+03 1.02E-09 6.78E-16

Time 3.725 s 3.626 s 3.278 s 2.203 s 6.024 s 2.806 s 2.418 s

F17 Mean 0.3979 0.3979 NAN 0.3997 NAN 0.3979 0.3979

Std 0 0 NAN 0.0032 NAN 2.96E-05 0

Time 2.362 s 3.398 s NAN 2.190 s NAN 2.530 s 2.642 s

F18 Mean 3 3 3 3.0001 3.3123 3 3

Std 1.44E-15 1.33E-15 2.87E-13 1.33E-04 1.109 1.09E-04 2.00E-15

Time 3.273 s 3.047 s 2.821 s 2.008 s 4.035 s 2.576 s 2.269 s

F19 Mean -3.8628 -3.8628 -3.8628 -3.8539 -4.0035 -3.8565 -3.8628

Std 2.49E-15 2.57E-15 1.81E-11 0.0028 0.3408 0.0086 2.71E-15

Time 2.845 s 3.013 s 4.302 s 3.212 s 9.666 s 3.379 s 2.926 s

F20 Mean -3.8625 -3.8628 -3.8628 -3.8536 -3.7484 -3.8528 -3.8628

Std 0.0014 2.54E-15 8.20E-11 0.0026 3.6326 0.0202 2.71E-15

Time 5.004 s 3.968 s 3.924 s 4.229 s 9.929 s 4.655 s 3.648 s

F21 Mean -8.5634 -8.8053 -7.3911 -2.5161 -4.4844 -8.5282 -5.7239

Std 2.5078 2.5419 3.3142 1.7151 0.3622 2.492 3.3265

Time 4.125 s 5.649 s 4.270 s 4.442 s 10.798 s 4.304 s 5.954 s

F22 Mean -9.4631 -10.0031 -8.6979 -3.6573 -4.2444 -8.0746 -7.5472

Std 2.4778 1.532 3.1699 1.6085 0.6247 3.1563 3.4071

Time 6.265 s 4.699 s 4.372 s 3.602 s 12.840 s 4.561 s 4.003 s

F23 Mean -9.9204 -9.8623 -8.9919 -4.0564 -4.0375 -6.8564 -7.2819

Std 1.9106 2.0874 2.9026 2.0752 0.553 3.2605 3.8045

Time 5.304 s 5.270 s 4.802 s 5.235 s 16.033 s 5.340 s 4.917 s

Average rank 2.18 2.25 4.23 5.82 4.18 3.70 5.64

Rank 1 2 5 7 4 3 6

https://doi.org/10.1371/journal.pone.0276210.t002
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to its instability and is not studied. Therefore, this section conducts simulation experiments on

the basis of 29 functions, and the specific information is shown in Table 3.

In the experiment, the above six meta-heuristic algorithms are selected for comparison. In

order to maintain the fairness of experimental data, the population number is uniformly set as

30, the maximum number of iterations is set as 500, and the dimension of the function is 30.

All functions are independently run for 30 times and their average value (mean), standard

deviation (std) and running time (time) are recorded. Details of the experimental data are

shown in Table 4.

It is clear from Table 4 that the algorithm IEO is superior to other methods. Specifically, the

average value of fitness obtained by IEO reaches the minimum when optimizing 18 functions

(F3-F5, F10-F12, F14-F19, F21-F24, F26 and F30). In addition, the original EO algorithm

achieves the lowest average fitness values for the 10 functions (F6-F9, F13, F20, F25, F27-29).

From the experimental data of CEC2017, it can be seen that IEO is more efficient than the

original EO algorithm, especially for hybrid functions and composition functions, IEO algo-

rithm has superior performance, which indicates that IEO can avoid premature convergence

to effectively solve the function optimization problem. Moreover, it can be seen from the data

in the table that the running time of IEO and EO is the same order of magnitude, which indi-

cates that IEO algorithm has excellent performance in optimizing complex functions. For the

complex and challenging function set CEC2017, IEO can avoid falling into local optimal values

when optimizing complex functions, so the convergence accuracy and running time of IEO

are significantly improved.

As shown in Fig 9, for the Friedman statistical test, the value of IEO’s mean rank is 1.38,

which is much better than the value of the original EO algorithm. According to the Friedman

test results in Fig 9, IEO ranks best, followed by EO, SSA, BA, PSO, SCA, and BOA, which

indicates that the improved Equilibrium Optimizer has strong stability and feasibility. These

results also indicate that IEO has higher convergence accuracy when optimizing the CEC2017

test suite. The Tent chaotic map and LOBL strategy has a strong global search ability, and the

Fig 8. Mean rank of Friedman test on 23 benchmark functions.

https://doi.org/10.1371/journal.pone.0276210.g008
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dynamic parameter strategy has a strong local search ability, so that the improved algorithm

can effectively balance the global search ability and the local search ability to find the optimal

solution.

3.3. IEEE CEC2019 functions

In this section, the more challenging test suite IEEE CEC2019 [33] is selected to evaluate the

algorithms. These test functions are minimal and scalable. As shown in Table 5, the functions

F1, F2 and F3 are 9-dimensional, 16-dimensional and 18-dimensional problems respectively,

and they have different value ranges. Moreover, the functions F4-F10 are all 10-dimensional

problems and have the same search scope [–100,100]. In addition, the functions F4-F10 have

different rotation matrices. In the experiment, IEO is compared with Equilibrium Optimizer

(EO) [18], salp swarm algorithm(SSA) [25], sine and cosine algorithm (SCA) [23], butterfly

optimization algorithm (BOA) [26], the particle swarm optimization (PSO) [14] and bat algo-

rithm (BA) [27]. For all the algorithms, the population number of each algorithm is set to 30,

the maximum iteration number is set to 500, and all the algorithms are independently run on

Table 3. Description of CEC2017 benchmark functions.

ID Functions Class Optimum

F1 Shifted and rotated bent cigar function Unimodal 100

F2 Shifted and rotated sum of different power function Unimodal 200

F3 Shifted and rotated Zakharov function Unimodal 300

F4 Shifted and rotated Rosenbrock’s function Multimodal 400

F5 Shifted and rotated Rastrigin’s function Multimodal 500

F6 Shifted and rotated expanded Scaffer’s F6 function Multimodal 600

F7 Shifted and rotated Lunacek bi-Rastrigin function Multimodal 700

F8 Shifted and rotated non-continuous Rastrigin’s function Multimodal 800

F9 Shifted and rotated Levy function Multimodal 900

F10 Shifted and rotated Schwefel’s function Multimodal 1000

F11 Hybrid function 1 (N=3) Hybrid 1100

F12 Hybrid function 2 (N=3) Hybrid 1200

F13 Hybrid function 3 (N=3) Hybrid 1300

F14 Hybrid function 4 (N=4) Hybrid 1400

F15 Hybrid function 5 (N=4) Hybrid 1500

F16 Hybrid function 6 (N=4) Hybrid 1600

F17 Hybrid function 6 (N=5) Hybrid 1700

F18 Hybrid function 6 (N=5) Hybrid 1800

F19 Hybrid function 6 (N=5) Hybrid 1900

F20 Hybrid function 6 (N=6) Hybrid 2000

F21 Composition function 1 (N=3) Composition 2100

F22 Composition function 2 (N=3) Composition 2200

F23 Composition function 3 (N=4) Composition 2300

F24 Composition function 4 (N=4) Composition 2400

F25 Composition function 5 (N=5) Composition 2500

F26 Composition function 6 (N=5) Composition 2600

F27 Composition function 7 (N=6) Composition 2700

F28 Composition function 8 (N=6) Composition 2800

F29 Composition function 9 (N=3) Composition 2900

F30 Composition function 10 (N=3) Composition 3000

https://doi.org/10.1371/journal.pone.0276210.t003

PLOS ONE Multi-strategy Equilibrium Optimizer

PLOS ONE | https://doi.org/10.1371/journal.pone.0276210 October 20, 2022 18 / 47

https://doi.org/10.1371/journal.pone.0276210.t003
https://doi.org/10.1371/journal.pone.0276210


Table 4. The comparison results of different algorithms on CEC2017 functions with D=30.

Function Result IEO EO SSA SCA BOA PSO BA

F1 Mean 6.64E+04 1.56E+05 7.67E+03 2.20E+10 5.61E+10 5.59E+09 1.03E+10

Std Time 8.37E+04 5.539 s 3.50E+05 5.388 s 7.19E+03 3.953 s 3.36E+09 8.554 s 9.76E+09 5.723 s 1.80E+09 7.643 s 6.70E+09 8.293 s

F3 Mean 4.26E+04 5.28E+04 7.56E+04 8.20E+04 7.96E+04 2.57E+05 1.55E+05

Std 7.34E+03 1.25E+04 2.69E+04 1.67E+04 9.67E+03 7.02E+04 5.72E+04

Time 6.329 s 6.118 s 5.935 s 8.450 s 5.712 s 7.154 s 8.593 s

F4 Mean 511.7805 516.734 534.4998 3.00E+03 2.04E+04 1.37E+03 1.35E+03

Std 18.6095 24.0721 44.3882 6.87E+02 3.59E+03 473.671 844.6995

Time 5.294 s 5.001 s 5.763 s 4.437 s 5.738 s 7.975 s 8.574 s

F5 Mean 5.99E+02 603.0197 6.84E+02 831.9749 9.17E+02 860.098 695.3999

Std 2.58E+01 28.7098 4.07E+01 28.8511 2.84E+01 50.5377 45.4718

Time 5.829 s 6.511 s 6.240 s 9.084 s 7.266 s 9.009 s 9.084 s

F6 Mean 609.3797 6.02E+02 6.53E+02 661.6059 6.91E+02 682.8361 637.6466

Std 4.1784 1.7633 1.02E+01 7.1982 7.09E+00 12.6851 10.3965

Time 9.428 s 10.243 s 9.523 s 10.982 s 10.352 s 11.095 s 10.669 s

F7 Mean 872.0349 8.58E+02 9.79E+02 1.26E+03 1.40E+03 1.31E+03 1.11E+03

Std 41.1012 39.3815 9.64E+01 60.4739 3.57E+01 102.3825 167.919

Time 5.975 s 6.231 s 6.690 s 8.989 s 7.284 s 9.210 s 9.026 s

F8 Mean 896.4204 8.91E+02 9.67E+02 1.09E+03 1.14E+03 1.07E+03 1.01E+03

Std 25.4733 2.66E+01 3.87E+01 24.2593 22.8111 61.2718 51.044

Time 6.907 s 6.156 s 4.599 s 8.698 s 7.592 s 8.686 s 8.955 s

F9 Mean 2.65E+03 1.24E+03 5.68E+03 9.01E+03 1.12E+04 1.06E+04 7.58E+03

Std 1.25E+03 5.37E+02 1.79E+03 1.88E+03 1.36E+03 3.26E+03 2.40E+03

Time 6.964 s 6.367 s 6.341 s 9.276 s 7.145 s 9.218 s 9.188 s

F10 Mean 4.73E+03 5.47E+03 5.51E+03 8.89E+03 9.11E+03 7.77E+03 5.53E+03

Std 525.528 9.43E+02 7.86E+02 332.9991 314.9877 627.4289 653.9668

Time 7.654 s 8.137 s 7.763 s 9.328 s 7.952 s 9.571 s 9.850 s

F11 Mean 1.24E+03 1.25E+03 1.41E+03 3.81E+03 8.68E+03 8.83E+03 5.52E+03

Std 37.8988 4.80E+01 116.0291 717.8026 2.24E+03 4.14E+03 4.92E+03

Time 9.604 s 9.020 s 8.068 s 8.446 s 6.455 s 7.919 s 8.714 s

F12 Mean 1.30E+06 1.69E+06 4.19E+07 2.68E+09 1.39E+10 5.31E+08 1.99E+08

Std 1.04E+06 1.33E+06 3.69E+07 7.32E+08 4.34E+09 5.00E+08 5.04E+08

Time 9.908 s 9.284 s 6.697 s 8.679 s 7.752 s 8.037 s 8.975 s

F13 Mean 2.27E+04 2.16E+04 1.51E+05 1.14E+09 1.07E+10 1.29E+07 4.33E+07

Std 1.57E+04 2.05E+04 7.86E+04 5.33E+08 5.32E+09 9.94E+06 1.93E+08

Time 6.934 s 6.748 s 6.408 s 8.898 s 6.677 s 8.059 s 8.782 s

F14 Mean 5.22E+04 6.84E+04 1.34E+05 9.13E+05 4.52E+06 3.18E+06 8.64E+05

Std 5.08E+04 5.52E+04 1.14E+05 5.05E+05 5.40E+06 4.13E+06 2.13E+06

Time 8.585 s 8.864 s 10.156 s 9.094 s 10.817 s 9.715 s 9.596 s

F15 Mean 4.49E+03 8.71E+03 6.69E+04 5.54E+07 6.86E+08 7.71E+06 5.42E+04

Std 3.41E+03 9.31E+03 7.24E+04 4.07E+07 4.38E+08 9.29E+06 3.98E+04

Time 5.608 s 5.488 s 6.454 s 8.402 s 6.430 s 9.090 s 8.791 s

F16 Mean 2.44E+03 2.61E+03 3.12E+03 4.12E+03 8.73E+03 4.48E+03 3.02E+03

Std 284.6801 333.867 3.37E+02 264.0054 1.87E+03 720.7158 425.317

Time 6.768 s 6.831 s 7.264 s 8.804 s 6.795 s 7.610 s 8.981 s

F17 Mean 2.07E+03 2.11E+03 2.35E+03 2.82E+03 1.76E+04 2.86E+03 2.49E+03

Std 178.033 228.2042 228.2704 199.3174 1.74E+04 293.9794 249.1799

Time 9.634 s 10.044 s 11.036 s 10.538 s 10.128 s 11.131 s 10.213 s

(Continued)
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each function for 30 times, the average value (mean), standard deviation (std) and running

time (time) of the fitness value are recorded. The results are shown in Table 6.

As shown in Table 6, it is obvious that the IEO obtains the minimum average value of the

fitness values of the ten functions F1-F10. In particular, compared with the original EO algo-

rithm, the optimization accuracy of the improved IEO algorithm for the CEC2019 functions

Table 4. (Continued)

Function Result IEO EO SSA SCA BOA PSO BA

F18 Mean 3.34E+05 9.27E+05 2.32E+06 1.47E+07 5.89E+07 1.45E+07 1.20E+07

Std 3.40E+05 9.15E+05 2.60E+06 7.99E+06 6.64E+07 1.78E+07 2.09E+07

Time 6.708 s 6.409 s 6.778 s 8.648 s 7.265 s 9.516 s 8.914 s

F19 Mean 4.96E+03 8.14E+03 5.06E+06 1.16E+08 9.74E+08 2.13E+07 2.37E+07

Std 1.76E+03 8.26E+03 3.11E+06 6.30E+07 1.19E+09 1.96E+07 5.13E+07

Time 14.877 s 15.915 s 17.233 s 17.659 s 24.749 s 25.116 s 17.894 s

F20 Mean 2.45E+03 2.42E+03 2.59E+03 2.92E+03 3.06E+03 2.94E+03 2.71E+03

Std 180.8249 1.52E+02 1.65E+02 160.5336 148.0879 248.8265 188.2608

Time 8.491 s 7.603 s 7.975 s 10.507 s 10.306 s 11.282 s 10.517 s

F21 Mean 2.37E+03 2.38E+03 2.45E+03 2.61E+03 2.70E+03 2.66E+03 2.50E+03

Std 15.1045 2.24E+01 4.26E+01 22.3865 98.8543 48.0492 49.3209

Time 11.155 s 12.957 s 8.774 s 11.492 s 11.917 s 13.729 s 11.259 s

F22 Mean 2.30E+03 4.55E+03 5.70E+03 9.09E+03 6.91E+03 8.46E+03 6.09E+03

Std 3.4659 2.24E+03 2.15E+03 2.44E+03 1.29E+03 1.25E+03 1.56E+03

Time 9.910 s 10.985 s 12.559 s 12.049 s 13.538 s 14.414 s 12.210 s

F23 Mean 2.72E+03 2.73E+03 2.80E+03 3.09E+03 3.60E+03 3.17E+03 2.83E+03

Std 20.9042 21.8163 3.98E+01 49.963 1.29E+02 110.3316 40.5196

Time 10.563 s 9.215 s 10.309 s 12.646 s 14.247 s 13.041 s 12.723 s

F24 Mean 2.89E+03 2.90E+03 2.95E+03 3.25E+03 4.16E+03 3.26E+03 2.99E+03

Std 16.6963 27.0045 3.53E+01 31.1493 251.4123 99.9632 37.488

Time 10.283 s 9.549 s 11.158 s 13.208 s 15.920 s 14.569 s 13.848 s

F25 Mean 2.92E+03 2.91E+03 2.95E+03 3.67E+03 6.06E+03 3.21E+03 3.25E+03

Std 21.9976 1.48E+01 3.39E+01 339.7615 5.53E+02 94.6752 321.6041

Time 10.871 s 10.618 s 11.939 s 12.313 s 13.811 s 14.465 s 13.016 s

F26 Mean 3.90E+03 4.28E+03 4.96E+03 7.83E+03 1.18E+04 8.55E+03 5.71E+03

Std 1.17E+03 5.48E+02 1.35E+03 345.4336 1.02E+03 937.3668 424.4831

Time 12.704 s 11.651 s 11.872 s 14.155 s 16.730 s 15.049 s 14.176 s

F27 Mean 3.23E+03 3.22E+03 3.27E+03 3.55E+03 4.37E+03 3.47E+03 3.26E+03

Std 13.421 1.06E+01 3.41E+01 82.9742 3.31E+02 159.0451 21.3432

Time 15.544 s 15.010 s 13.255 s 14.438 s 19.309 s 16.509 s 15.161 s

F28 Mean 3.28E+03 3.26E+03 3.30E+03 4.37E+03 8.23E+03 3.87E+03 4.35E+03

Std 20.5387 2.76E+01 3.59E+01 306.6997 515.4607 219.6228 985.7202

Time 9.804 s 10.623 s 11.369 s 13.707 s 16.001 s 10.595 s 13.946 s

F29 Mean 3.80E+03 3.77E+03 4.38E+03 5.19E+03 1.23E+04 5.36E+03 4.26E+03

Std 162.1826 1.81E+02 2.92E+02 265.2462 5.89E+03 478.9612 306.377

Time 12.192 s 10.824 s 9.874 s 12.124 s 13.613 s 10.799 s 12.349 s

F30 Mean 1.58E+04 1.90E+04 1.11E+07 2.08E+08 1.88E+09 7.26E+07 4.76E+05

Std 8.34E+03 1.25E+04 1.07E+07 8.79E+07 1.32E+09 6.00E+07 8.50E+05

Time 18.140 s 16.821 s 17.467 s 19.957 s 28.995 s 27.222 s 20.526 s

Average rank 1.38 1.69 3.14 5.48 6.79 5.45 4.07

Rank 1 2 3 6 7 5 4

https://doi.org/10.1371/journal.pone.0276210.t004
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has been improved to varying degrees. In other words, IEO is significantly better than other

algorithms in optimizing the CEC2019 function. Moreover, the running time of IEO and EO

is the same order of magnitude, and there is almost no difference in the running time of the

two.

In addition, IEO has a mean rank of 1.1 in the Friedman statistical test, which is smaller

than the other six comparison algorithms. The Fig 10 plots the average rank of each algorithm

obtained in Friedman test. It can be clearly seen that IEO ranks first, while EO, SSA, BA, PSO,

SCA and BOA rank second to seventh. Overall, it is clear from function optimization and

Friedman test that IEO performs well with CEC2019. For the function suite CEC2019 with dif-

ferent rotation matrices, IEO improves the convergence accuracy when optimizing these func-

tions. This further shows that IEO has excellent performance in complex functions.

In conclusion, the experimental result can prove adding three strategies into the Equilib-

rium Optimizer, the robustness and solution accuracy of the algorithm is improved, and the

performance of EO has the significant improvement. Comparison with other algorithm, the

IEO has better accuracy and speed to solve numerical optimization problems.

Fig 9. Mean rank of Friedman test on CEC2017 functions.

https://doi.org/10.1371/journal.pone.0276210.g009

Table 5. Description of CEC2019 benchmark functions.

No. Function Fi
�=Fi(x�) D Search range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [–8192,8192]

2 Inverse Hilbert Matrix Problem 1 16 [–16384,16384]

3 Lennard-Jones Minimum Energy Cluster 1 18 [–4,4]

4 Rastrigin’s Function 1 10 [–100,100]

5 Griewangk’s Function 1 10 [–100,100]

6 Weierstrass Function 1 10 [–100,100]

7 Modified Schwefel’s Function 1 10 [–100,100]

8 Expanded Schaffer’s F6 Function 1 10 [–100,100]

9 Happy Cat Function 1 10 [–100,100]

10 Ackley Function 1 10 [–100,100]

https://doi.org/10.1371/journal.pone.0276210.t005
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3.4. Analysis of convergence curve

The convergence speed and accuracy of each algorithm can be seen in detail from the conver-

gence curve. The CEC2017 test suite contains functions of different complexity levels, which

best represent the optimization performance of the algorithm. Therefore, this section analyzes

the convergence status of each algorithm by drawing the convergence curve of the algorithm

when optimizing the CEC2017 test suite. CEC2017 can be divided into three types of func-

tions: shifted and rotated functions (F1, F3-F10), hybrid functions(F11-F20) and composition

functions(F21-F30). According to the above three different types of functions, so three figures

are drawn: Fig 11 describes the convergence curve of the shifted and rotated functions (F1,

F3-F10), Fig 12 shows the convergence curve of hybrid functions (F11-F20), and Fig 13 shows

the convergence curve of the composition functions (F21-F30). The Figs 11–13 describe the

convergence results of IEO, EO, SSA, SCA, BOA, PSO and BA algorithms when the dimension

D=30. In the figure, the horizontal axis represents the maximum iteration times of the

Table 6. The comparison results of different algorithms on CEC2019 functions.

Function Result IEO EO SSA SCA BOA PSO BA

F1 Mean 1 1 2.22E+06 6.94E+06 1 1.22E+07 1.34E+07

Std 0 0 2.12E+06 7.83E+06 0 1.27E+07 1.82E+07

Time 8.247 s 8.075 s 4.299 s 4.771 s 6.127 s 4.625 s 4.543 s

F2 Mean 4.4745 4.53 1.62E+03 3.96E+03 4.991 7.59E+03 1.09E+03

Std 0.3504 0.3657 993.4936 1.68E+03 0.0337 3.51E+03 1.17E+03

Time 6.548 s 6.222 s 4.966 s 5.058 s 4.818 s 4.976 s 4.880 s

F3 Mean 1.5117 1.5596 4.2898 9.2874 6.2543 4.8255 7.1059

Std 0.3153 0.4958 1.7503 1.3239 0.8528 1.8222 2.0162

Time 4.056 s 4.193 s 4.327 s 4.929 s 4.756 s 4.732 s 5.400 s

F4 Mean 14.8968 15.4703 28.7514 47.5372 85.4029 54.4605 29.7908

Std 6.1189 6.4024 12.1888 8.8151 14.2692 18.5242 11.6568

Time 3.980 s 3.826 s 3.900 s 3.902 s 5.016 s 3.789 s 4.354 s

F5 Mean 1.0487 1.055 1.1848 10.1705 108.6633 2.4557 2.617

Std 0.0361 0.0422 0.1081 3.2055 23.6808 0.6545 4.5385

Time 3.837 s 4.122 s 3.951 s 4.036 s 5.204 s 3.890 s 4.281 s

F6 Mean 1.6811 1.8179 4.8786 7.8184 9.0551 9.0917 4.8567

Std 0.7109 0.7468 1.9377 1.0821 0.9323 1.9221 1.7535

Time 20.363 s 20.349 s 18.516 s 18.781 s 35.146 s 19.299 s 19.221 s

F7 Mean 753.474 858.0009 1.10E+03 1.62E+03 1.94E+03 1.39E+03 995.6335

Std 258.7518 312.3589 327.5567 234.8356 185.5797 375.4894 346.0445

Time 7.232 s 7.289 s 4.404 s 4.120 s 5.740 s 5.133 s 4.354 s

F8 Mean 3.7105 3.7587 4.282 4.5317 4.8326 4.6369 4.4854

Std 0.445 0.4918 0.4283 0.2465 0.196 0.3081 0.3704

Time 6.713 s 6.935 s 4.000 s 3.970 s 5.447 s 4.807 s 4.199 s

F9 Mean 1.1791 1.187 1.3712 1.6572 4.2831 1.4193 1.3426

Std 0.0551 0.0687 0.1629 0.1551 0.4278 0.1465 0.2017

Time 4.601 s 4.523 s 3.832 s 3.757 s 4.856 s 4.627 s 4.032 s

F10 Mean 17.5907 18.0956 20.3658 21.496 21.5022 21.2662 21.1728

Std 7.6927 7.43 3.6585 0.0898 0.086 0.1105 0.143

Time 4.234 s 4.453 s 4.520 s 4.649 s 5.259 s 4.843 s 4.473 s

Average rank 1.10 2.00 3.60 5.70 5.80 5.50 4.30

Rank 1 2 3 6 7 5 4

https://doi.org/10.1371/journal.pone.0276210.t006
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algorithm 500 times, and the vertical axis represents the log mode of fitness value obtained in

the optimization process of the algorithm.

It is clear from the figure that IEO has improved significantly for most functions. For other

algorithms, EO has the best convergence, followed by SSA, PSO, BA, SCA and BOA.

For shifted and rotated functions (F1, F3-F10), the convergence speed and accuracy of IEO

algorithm are obviously better than other algorithms except for functions F1, F5 and F9. It can

be seen from the convergence curve that IEO converges faster and reaches the minimum fit-

ness value at the early stage of iteration. In Fig 11, SCA has a slightly special convergence curve

for some functions. It can be clearly seen from the figure that for shifted and rotated functions

F1 and F3-F10, SCA has a slow convergence speed, and compared with other algorithms, SCA

has a slow iteration speed and is easy to fall into the local optimal solution, which leads to a

large change in the convergence curve. SCA algorithm is easy to fall into local optimization

and cannot get the optimal value in a short iteration period, which leads to poor stability of the

convergence curve and makes the convergence curve of SCA show significant changes. This

shows that SCA is not effective in solving complex functions.

For the hybrid functions (F11-F20), although the convergence curve of IEO algorithm dif-

fers little from that of other algorithms, the convergence curve of IEO algorithm is relatively

smooth and can form fast convergence within 100 iterations, showing good performance in

terms of convergence speed. The improved algorithm has a strong global search ability for

finding the better optimal value.

For the composition functions (F21-F30), the convergence curve of IEO algorithm is better

than other algorithms except for the functions F21 and F26. In addition, the step size of IEO

algorithm is obviously smaller than that of other algorithms, and it can always converge to the

optimal solution at the beginning of iteration, while other algorithms tend to fall into the local

optimal solution, resulting in slower convergence speed and lower convergence accuracy.

In general, convergence curve of the seven algorithms shows that IEO algorithm has signifi-

cantly better convergence curve in optimizing CEC2017 function. When dealing with hybrid

and composition functions, IEO has faster convergence speed and higher convergence

Fig 10. Mean rank of Friedman test on CEC2019 functions.

https://doi.org/10.1371/journal.pone.0276210.g010
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accuracy. Especially, from some functions, the IEO can obtain the optimal value in 100 itera-

tions. The convergence curve of CEC2017 also verifies the results in Table 4 again.

3.5. Stability analysis

In this section, the boxplot is used to show the data distribution of CEC2017 test suite running

for 30 times independently. It describes the stability and optimization performance of experi-

mental data by using five statistics such as the maximum value, minimum value, upper quar-

tile, lower quartile and median in the data [34]. In addition, boxplot can not only reflect the

fluctuation degree of data through the height of box, but also show the stability of data through

the number of outliers. The Figs 14–16 show the boxplot when dimension is set to 30, popula-

tion number is 30, and maximum number of iterations is 500. Among them, Fig 14 describes

the boxplot of the shifted and rotated functions (F1, F3-F10), Fig 15 shows the boxplot of

hybrid functions(F11-F20), and Fig 16 shows the boxplot of the composition functions

(F21-F30). In the figure, the horizontal axis represents each comparison algorithm, and the

vertical axis represents the range of fitness values obtained by the optimization function.

Fig 11. Convergence curve of CEC2017 functions: Shifted and rotated functions (F1, F3-F10).

https://doi.org/10.1371/journal.pone.0276210.g011
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For unimodal and multimodal functions (F1, F3-F10), except for functions F6, F7 and F9,

the differences between the maximum, minimum and median of five indexes of IEO algorithm

in the boxplot are the smallest, and there are no outliers, which indicates that IEO algorithm

has strong stability in the process of optimizing unimodal and multimodal functions.

Fig 12. Convergence curve of CEC2017 functions: Hybrid functions (F11-F20).

https://doi.org/10.1371/journal.pone.0276210.g012
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By observing the boxplot of hybrid functions (F11-F20), it can be seen that the data differ-

ence of IEO algorithm is small, and the number of outliers is also small, which indicates that

IEO has strong stability when processing the hybrid functions. For function F20, although the

Fig 13. Convergence curve of CEC2017 functions: Composition functions (F21-F30).

https://doi.org/10.1371/journal.pone.0276210.g013
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difference between BOA’s maximum value and minimum value is the smallest, BOA produces

a large number of outliers in the optimization process, while IEO does not produce outliers

when processing function F20, and its median value is the smallest among seven algorithms.

Compared with other algorithms, the IEO algorithm is the most stable when optimizing the

composition functions (F21-F30). Specifically, in the process of running IEO algorithm for 30

times independently, the data difference is the smallest, and the median value is also the small-

est among the seven algorithms, which indicates that IEO algorithm has superior optimization

performance.

Overall, the boxplot shows that IEO has better performance. In the initial phase of IEO

algorithm, Tent chaotic mapping is introduced to improve the quality of initial solution, and

dynamic control parameter strategy is introduced to maintain the balance between exploration

and exploitation phase in the iterative process, so that the particles can reach balance state

more effectively. In addition, the LOBL strategy is used to calculate the opposite solution of

candidate solution for each iteration, which improves the population diversity. Therefore,

compared with the original EO algorithm, the stability and optimization performance of the

improved IEO algorithm are greatly improved.

3.6. Wilcoxon rank sum test analysis

In order to further analyze the significance of experimental data from a statistical perspective,

Wilcoxon rank sum test is conducted at the significance level of 5% in this section [35].

Through statistical analysis of each two groups of sample data, the p-value and h-value

obtained are used as indicators to evaluate whether each algorithm has statistical significance.

In the experiment, if p-value<0.05 and h =1 are obtained, it means that the data of the two

groups are statistically significant different [36]. For three groups of functions with different

characteristics (23 classical functions, IEEE CEC2017 and IEEE CEC2019), the comparison

results of IEO and other six algorithms are shown in Tables 7–9 respectively.

As can be seen from Table 7, when Wilcoxon rank sum test is performed for function

F1-F13, IEO is significantly different from EO. However, IEO’s performance is not outstand-

ing for fixed dimensional multimodal functions F14-F23. When IEO and SCA perform statisti-

cal checks, all test functions are significantly different. Since BOA cannot optimize F17, the

comparison result is expressed as NAN. Compared with this algorithm, IEO has significant

differences for the other 22 functions. Compared with PSO, except F9, F11 and F16, the other

20 functions showed significant differences in statistical angle. When IEO and BA perform

Wilcoxon rank sum test, the other 17 functions have significant statistical differences except

the six fixed-dimension functions F16-F21.

As can be seen from the statistical test results in Table 8, in the Wilcoxon rank sum test of

IEO and EO, the two algorithms have significant differences for 13 functions. When IEO per-

forms statistical tests with SSA, SCA and BOA algorithms, all functions except F28 have signif-

icant differences. Compared with PSO algorithm, the differences of other functions except

F17, F20 and F29 are statistically significant. When comparing the experimental data of IEO

and BA, all functions have significant statistical differences. In general, IEO is statistically sig-

nificantly different from other algorithms, which indicates that IEO algorithm has higher con-

vergence accuracy.

As can be seen from Table 9, except for function F1, when IEO is respectively compared

with SSA, SCA, BOA and BA, the other 9 functions have significant differences. Compared

with the classical PSO algorithm, IEO has significant statistical differences for five functions.

In the statistical tests of IEO and EO, the two algorithms converge to the theoretical optimal

value in the test of function F1, resulting in the representation of p-value as NAN and h-value

PLOS ONE Multi-strategy Equilibrium Optimizer

PLOS ONE | https://doi.org/10.1371/journal.pone.0276210 October 20, 2022 27 / 47

https://doi.org/10.1371/journal.pone.0276210


as 0. In addition, the two algorithms have significant differences for the other four functions.

In general, when optimizing the function IEEE CEC2019, the improved algorithm IEO is sta-

tistically significant different from other algorithms.

Wilcoxon rank sum test is performed on three function test sets to verify the significance of

IEO algorithm from a statistical point of view, and further shows that IEO has higher conver-

gence accuracy.

4. Engineering design problems

In this section, the efficiency of IEO algorithm in solving practical application problems is

tested by solving six engineering problems. The solution of engineering optimization problems

Fig 14. The boxplot of CEC2017 functions: Shifted and rotated functions (F1, F3-F10).

https://doi.org/10.1371/journal.pone.0276210.g014
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Fig 15. The boxplot of CEC2017 functions: Hybrid functions(F11-F20).

https://doi.org/10.1371/journal.pone.0276210.g015
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Fig 16. The boxplot of CEC2017 functions: Composition functions(F21-F30).

https://doi.org/10.1371/journal.pone.0276210.g016

PLOS ONE Multi-strategy Equilibrium Optimizer

PLOS ONE | https://doi.org/10.1371/journal.pone.0276210 October 20, 2022 30 / 47

https://doi.org/10.1371/journal.pone.0276210.g016
https://doi.org/10.1371/journal.pone.0276210


Table 7. The results of Wilcoxon rank sum test on 23 benchmark functions with D=30.

Function IEO vs.

EO SSA SCA BOA PSO BA

F1 p-value 1.2118e-12 1.2118e-12 1.2118e-12 1.2078e-12 1.2118e-12 1.2118e-12

h 1 1 1 1 1 1

F2 p-value 3.0199e-11 3.0199e-11 3.0199e-11 3.0161e-11 3.0199e-11 3.0199e-11

h 1 1 1 1 1 1

F3 p-value 1.4043e-12 1.4050e-12 1.4057e-12 1.3947e-12 1.4057e-12 1.4057e-12

h 1 1 1 1 1 1

F4 p-value 3.0161e-11 3.0199e-11 3.0199e-11 3.0180e-11 3.0199e-11 3.0199e-11

h 1 1 1 1 1 1

F5 p-value 0.1494 5.0723e-10 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11

h 0 1 1 1 1 1

F6 p-value 0.0011 3.6874e-11 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11

h 1 1 1 1 1 1

F7 p-value 1.2118e-12 1.2118e-12 1.2118e-12 1.1980e-12 1.2118e-12 1.2078e-12

h 1 1 1 1 1 1

F8 p-value 0.1958 1.2023e-08 3.0199e-11 3.0199e-11 0.0292 0.0138

h 0 1 1 1 1 1

F9 p-value NaN 1.2039e-12 1.2118e-12 6.2385e-10 0.1608 1.2118e-12

h 0 1 1 1 0 1

F10 p-value 8.4109e-12 1.3324e-11 1.3369e-11 1.3360e-11 6.3428e-05 1.3369e-11

h 1 1 1 1 1 1

F11 p-value 0.3337 1.2118e-12 1.2118e-12 1.2118e-12 0.3337 1.2118e-12

h 0 1 1 1 0 1

F12 p-value 4.1804e-09 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11

h 1 1 1 1 1 1

F13 p-value 2.1880e-04 1.4727e-07 3.0180e-11 8.9827e-11 0.0103 3.0180e-11

h 1 1 1 1 1 1

F14 p-value 0.0814 0.9434 1.1248e-09 4.0051e-08 0.0016 1.5400e-04

h 0 0 1 1 1 1

F15 p-value 0.1103 3.9966e-10 1.3273e-10 1.1557e-07 9.2516e-09 2.3472e-10

h 0 1 1 1 1 1

F16 p-value NAN NAN 0.0027 1.2118e-12 NAN NAN

h 0 0 1 1 0 0

F17 p-value NAN NAN 1.2108e-12 NAN 0.0110 NAN

h 0 0 1 NAN 1 0

F18 p-value NAN NAN 2.7717e-05 1.2118e-12 0.0013 NAN

h 0 0 1 1 1 0

F19 p-value NAN NAN 1.2059e-12 1.3341e-08 1.6497e-11 NAN

h 0 0 1 1 1 0

F20 p-value 0.3337 0.3337 2.4110e-12 2.5886e-06 2.3157e-10 0.3337

h 0 0 1 1 1 0

F21 p-value 0.3321 0.3851 1.3265e-10 3.1917e-10 2.8457e-04 0.0020

h 0 0 1 1 1 0

F22 p-value 0.3710 0.2978 5.2776e-09 2.2527e-08 7.3127e-08 0.0164

h 0 0 1 1 1 1

F23 p-value 0.9773 0.1681 1.7566e-10 6.3054e-11 6.4169e-10 0.0019

h 0 0 1 1 1 1

https://doi.org/10.1371/journal.pone.0276210.t007
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Table 8. The results of Wilcoxon rank sum test on CEC2017 functions with D=30.

Function IEO vs.

EO SSA SCA BOA PSO BA

F1 p-value 0.0163 1.5292e-05 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11

h 1 1 1 1 1 1

F3 p-value 9.0307e-04 2.1947e-08 4.9752e-11 3.3384e-11 3.0199e-11 3.5708e-06

h 1 1 1 1 1 1

F4 p-value 0.4290 0.0339 3.0199e-11 3.0199e-11 4.1825e-09 3.0199e-11

h 0 1 1 1 1 1

F5 p-value 0.4643 1.1737e-09 3.0199e-11 3.0199e-11 0.0207 3.0199e-11

h 0 1 1 1 1 1

F6 p-value 1.1737e-09 3.0199e-11 3.0199e-11 3.0199e-11 1.1747e-04 3.0199e-11

h 1 1 1 1 1 1

F7 p-value 0.1537 1.2493e-05 3.0199e-11 3.0199e-11 0.0013 3.0199e-11

h 0 1 1 1 1 1

F8 p-value 0.4204 2.9215e-09 3.0199e-11 3.0199e-11 0.0040 3.0199e-11

h 0 1 1 1 1 1

F9 p-value 6.5277e-08 4.3106e-08 4.0772e-11 3.0199e-11 0.0049 3.0199e-11

h 1 1 1 1 1 1

F10 p-value 0.0012 1.4067e-04 3.0199e-11 3.0199e-11 4.9980e-09 3.0199e-11

h 1 1 1 1 1 1

F11 p-value 0.5106 2.0338e-09 3.0199e-11 3.0199e-11 2.2273e-09 3.0199e-11

h 0 1 1 1 1 1

F12 p-value 0.1858 6.0658e-11 3.0199e-11 3.0199e-11 2.3885e-04 3.0199e-11

h 0 1 1 1 1 1

F13 p-value 0.4553 6.0658e-11 3.0199e-11 3.0199e-11 0.0339 3.0199e-11

h 0 1 1 1 1 1

F14 p-value 0.1669 1.4932e-04 5.4941e-11 3.6897e-11 0.0025 3.0199e-11

h 0 1 1 1 1 1

F15 p-value 0.9470 7.3891e-11 3.0199e-11 3.0199e-11 1.9963e-05 3.0199e-11

h 0 1 1 1 1 1

F16 p-value 0.0303 4.9980e-09 3.0199e-11 3.0199e-11 0.0033 3.0199e-11

h 1 1 1 1 1 1

F17 p-value 0.3478 1.4298e-05 4.0772e-11 3.0199e-11 0.6735 3.0199e-11

h 0 1 1 1 0 1

F18 p-value 4.4592e-04 2.3168e-06 3.3384e-11 3.0199e-11 4.9980e-09 3.0199e-11

h 1 1 1 1 1 1

F19 p-value 0.2170 3.0199e-11 3.0199e-11 3.0199e-11 1.0277e-06 3.0199e-11

h 0 1 1 1 1 1

F20 p-value 0.9352 0.0014 5.0723e-10 7.3891e-11 0.8073 3.0199e-11

h 0 1 1 1 0 1

F21 p-value 0.0087 8.9934e-11 3.0199e-11 3.0199e-11 1.2860e-06 3.0199e-11

h 1 1 1 1 1 1

F22 p-value 1.5846e-04 4.6856e-08 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11

h 1 1 1 1 1 1

F23 p-value 0.1494 3.1589e-10 3.0199e-11 3.0199e-11 3.8053e-07 3.0199e-11

h 0 1 1 1 1 1

F24 p-value 0.5895 7.7725e-09 3.0199e-11 3.0199e-11 5.4941e-11 3.0199e-11

h 0 1 1 1 1 1

F25 p-value 0.0428 3.9859e-04 3.0180e-11 3.0180e-11 0.0070 3.0180e-11

h 1 1 1 1 1 1

(Continued)
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is to give the optimal design scheme under the premise of satisfying multiple constraints. In

the experiment, the overall size is set as 30, and the maximum number of iterations is 500. IEO

is compared with various meta-heuristic algorithms, and the optimal solution of each problem

is shown in bold in the table.

4.1. Pressure vessel design problem

The optimization objective of pressure vessel design problem [37] is to minimize the total cost

of cylindrical pressure vessels, a schematic diagram of this problem is shown in Fig 17, where

four key optimization variables are involved: thickness of the head (Th), the thickness of the

Table 8. (Continued)

Function IEO vs.

EO SSA SCA BOA PSO BA

F26 p-value 0.0451 0.0035 3.3384e-11 3.0199e-11 5.2650e-05 3.0199e-11

h 1 1 1 1 1 1

F27 p-value 0.0421 2.3887e-08 3.0180e-11 3.0180e-11 1.0930e-10 6.3599e-07

h 1 1 1 1 1 1

F28 p-value 5.8696e-04 0.0537 3.0123e-11 3.0123e-11 0.0046 6.0111e-08

h 1 0 1 1 1 1

F29 p-value 0.4918 4.1997e-10 3.0199e-11 3.0199e-11 0.8187 3.0199e-11

h 0 1 1 1 0 1

F30 p-value 0.3042 3.0199e-11 3.0199e-11 3.0199e-11 6.5277e-08 3.0199e-11

h 0 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0276210.t008

Table 9. The results of Wilcoxon rank sum test on CEC2019 functions.

Function IEO vs.

EO SSA SCA BOA PSO BA

F1 p-value NaN 1.2118e-12 1.2118e-12 NaN 1.2118e-12 NaN

h 0 1 1 0 1 0

F2 p-value 0.0480 2.7687e-11 2.7687e-11 5.5233e-06 2.7687e-11 2.0815e-07

h 1 1 1 1 1 1

F3 p-value 0.0477 1.4130e-09 2.5303e-11 2.5303e-11 5.1096e-11 4.4498e-07

h 1 1 1 1 1 1

F4 p-value 0.8999 4.0449e-06 4.4739e-11 2.9991e-11 0.1512 2.9991e-11

h 0 1 1 1 0 1

F5 p-value 0.4914 2.9887e-07 2.9935e-11 2.9935e-11 7.7209e-09 2.9935e-11

h 0 1 1 1 1 1

F6 p-value 0.4290 2.0152e-08 3.0199e-11 3.0199e-11 0.0748 3.0199e-11

h 0 1 1 1 0 1

F7 p-value 0.0468 3.3681e-05 4.0772e-11 3.0199e-11 0.0127 3.0199e-11

h 1 1 1 1 1 1

F8 p-value 0.6204 2.2780e-05 4.5726e-09 4.9752e-11 0.5106 3.6897e-11

h 0 1 1 1 0 1

F9 p-value 0.0326 3.9532e-07 3.6874e-11 3.0180e-11 0.2282 3.0180e-11

h 1 1 1 1 0 1

F10 p-value 0.8359 1.5075e-04 9.5200e-07 9.1649e-07 0.0701 6.7556e-05

h 0 1 1 1 0 1

https://doi.org/10.1371/journal.pone.0276210.t009
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shell (Ts), the inner radius (R), and the length of the cylindrical section without considering

the head(L). The mathematical expression of this problem is as follows [38]:

Consider x!¼ ½x1 x2 x3 x4� ¼ ½Ts Th R L�
Minimize fð x!Þ ¼ 0:6224x1x3x4 þ 1:7781x2x2

3
þ 3:1661x2

1
x4 þ 19:84x2

1
x3

Subject to g1ð x
!Þ ¼ � x1 þ 0:0193x3 � 0

g2ð x
!Þ ¼ � x2 þ 0:00954x3 � 0

g3 x!
� �

¼ � px2
3
x4 �

4

3
px3

3
þ 1296000 � 0

g4ð x
!Þ ¼ x4 � 240 � 0

Variable range 0�x1�99, 0�x2�99, 10�x3�200, 10�x4�200

Four key variables of the pressure vessel problem are optimized by IEO algorithm and the

optimal values are obtained, and the results are compared with the data of 12 algorithms that

have solved the problem. Table 10 shows the values of the lowest costs and associated variables

derived from each algorithm. To more clearly reflect the optimal cost of each algorithm, the

Fig 18 is drawn.

As can be seen from Table 10, IEO algorithm can obtain the minimum cost when solving

the pressure vessel problem, and the values of four related parameters are relatively good,

which effectively saves the engineering design cost.

4.2. Welded beam design problem

The objective of welded beam design problem is to minimize the manufacturing cost of welded

beam design [46], as shown in Fig 19. The following constraints must be met during the

Fig 17. Pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0276210.g017

Table 10. Comparison of result on pressure vessel design problem.

Algorithm Optimal values for variables Optimal cost

Ts Th R L
IEO 0.7790748 0.3850971 40.36657 199.3474 5886.8835

EO 0.8257301 0.4081611 42.78394 168.3235 5971.7095

m-EO [19] 0.8125 0.4375 42.0984 76.6366 6059.7144

ESSAWOA [39] 0.7817639 0.3864301 40.5056956 197.4631899 5892.3546036

WOA [17] 0.812500 0.437500 42.0982699 176.638998 6059.7410

hHHO-SCA [40] 0.945909 0.447138 46.8513 125.4684 6393.092794

GWO [41] 0.8125 0.4345 42.0892 176.7587 6051.564

DDSCA [42] 0.7782114 0.3855657 40.31989 200 5888.3366

ES [43] 0.8125 0.4375 42.098087 176.640518 6059.74560

AFA [44] 0.8125 0.4375 42.0984 176.6366 6059.7143

LSA-SM [45] 0.8103764 0.4005695 41.98842 178.0048 5942.6966

HHO [2] 0.8175838 0.4072927 42.09174576 176.7196352 6000.46259

GSA [9] 1.125 0.625 55.9886598 84.4542025 8538.8359

https://doi.org/10.1371/journal.pone.0276210.t010
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optimization of welded beam problem: height (t), thickness of weld (h), length (l), and thick-

ness (b) of the bar.

The mathematical model of this problem is expressed as follows:

Consider x!¼ ½x1 x2 x3 x4� ¼ ½h l t b�
Minimize fð x!Þ ¼ 1:10471x2

1
x2 þ 0:04811x3x4ð14:0þ x2Þ

Subject to g1ð x
!Þ ¼ tð x!Þ � tmax � 0

g2ð x
!Þ ¼ sð x!Þ � smax � 0

g3ð x
!Þ ¼ dð x!Þ � dmax � 0

g4ð x
!Þ ¼ x1 � x4 � 0

g5ð x
!Þ ¼ p � pcð x

!Þ � 0

g6ð x
!Þ ¼ 0:125 � x1 � 0

g7ð x
!Þ ¼ 0:10471x2

1
þ 0:04811x3x4ð14:0þ x2Þ � 5:0 � 0

Variable range 0.1�x1�2, 0.1�x2�10

0.1�x3�10, 0.1�x4�2

where t x!
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt0Þ
2
þ 2t0t00

x2

2Rþ ðt
00Þ

2
q

; t0 ¼
pffiffi

2
p

x1x2
; t00 ¼ MR

J

M ¼ p Lþ x2

2

� �
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ

x1þx3

2

� �2

q

J ¼ 2
ffiffiffi
2
p

x1x2

x2
2

12
þ

x1þx3

2

� �2
h in o

; s x!
� �

¼ 6PL
x4x2

3

; d x!
� �

¼ 4PL3

Ex3
3
x4

PC x!
� �

¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2 1 �
x3

2L

ffiffiffiffi
E

4G

p� �

p = 6000lb, L = 14 in., δmax = 0.25 in.

E = 30×106psi, G = 12×106psi

τmax = 13,600psi, σmax = 30,000psi
The welded beam problem is optimized by IEO and the original EO algorithm, and the

experimental results are compared with 13 algorithms in other literatures. Table 11 shows the

results of different algorithms and the values of four related parameters. To more clearly reflect

the optimal cost of IEO, the Fig 20 is drawn.

Fig 18. The optimal cost of pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0276210.g018
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It can be seen from Table 11 that the IEO algorithm has the smallest manufacturing cost for

welded beam problem. In other words, when the value of four key parameters are 0.20573,

3.4703, 9.0372, 0.20573, the manufacturing cost of welded beam is 1.7249. This shows that the

performance of IEO is better than other algorithms. It not only improves the optimization effi-

ciency, but also reduces the cost of solving welded beam problem.

Fig 19. Welded beam design problem.

https://doi.org/10.1371/journal.pone.0276210.g019

Table 11. Comparison of result on welded beam design problem.

Algorithm Optimal values for variables Optimal cost

h l t b
IEO 0.20573 3.4703 9.0372 0.20573 1.7249

EO 0.20593 3.4681 9.0322 0.20594 1.7257

CPSO [47] 0.202369 3.544214 9.048210 0.205723 1.72802

Random [48] 0.4575 4.7313 5.0853 0.6600 4.1185

CDE [49] 0.20317 3.542998 9.033498 0.206179 1.733462

IACO [50] 0.205700 3.471131 9.036683 0.205731 1.724918

RO [51] 0.203687 3.528467 9.004263 0.207241 1.735344

HHO [2] 0.204039 3.531061 9.027463 0.206147 1.7319906

ESSAWOA [39] 0.2055051 3.4753160 9.0366562 0.2057295 1.7251597

EHOI [52] 0.205377 3.472652 9.050768 0.205659 1.726501

BBO [53] 0.2287 3.2003 8.5666 8.9985 1.8077

IPSO [54] 0.2444 6.2175 8.2915 0.2444 2.3810

MTSA [55] 0.2442 6.2231 8.2956 0.2444 2.3824

DDSCA [42] 0.20516 3.4759 9.0797 0.20552 1.7305

NOSA [56] 0.2444 6.2175 8.2915 0.2444 2.3810

https://doi.org/10.1371/journal.pone.0276210.t011
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4.3. Tension/Compression spring design problem

The tension/compression spring problem is a classic structural engineering design problem [57],

whose purpose is to minimize the weight of tension/compression spring. To solve the problem,

three core variables are needed: wire diameter (d), mean coil diameter (D), and number of active

coils (N) [58]. The details of the spring and the three parameters are shown in Fig 21.

The mathematical model of this problem is as follows:

Consider x!¼ ½x1 x2 x3� ¼ ½d D N�,
Minimize f ð x!Þ ¼ ðx3 þ 2Þx2x2

1
,

Subject to g1 x!
� �

¼ 1 �
x2

2
x3

71785x4
1

� 0,

g2 x!
� �

¼
4x2

2
� x1x2

12566ðx2x3
1
� x4

1
Þ
þ 1

5108x2
1

� 1 � 0,

g3 x!
� �

¼ 1 �
140:45x1

x2
2
x3
� 0,

g4 x!
� �

¼
x1þx2

1:5
� 1 � 0,

Fig 20. The optimal cost of welded beam l design problem.

https://doi.org/10.1371/journal.pone.0276210.g020

Fig 21. Tension/Compression spring design problem.

https://doi.org/10.1371/journal.pone.0276210.g021
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Variable range 0.05�x1�2, 0.25�x2�1.30, 2�x3�15,

On the basis of IEO and EO, the tension/compression spring problem is optimized and the

values of relevant parameters are obtained. The optimization results are compared with 10

algorithms in other literatures. The detailed information is shown in Table 12. And the optimal

cost of IEO and comparison algorithms are shown in Fig 22.

As can be seen from Table 12, compared with other algorithms, the spring weight obtained

by IEO algorithm is 0.012665. In general, IEO algorithm can effectively obtain the optimal

solution of engineering problems and get the best parameter values.

4.4. Three-bar truss design problem

The problem of three-bar truss is a common application problem in civil engineering field [64],

and its optimization purpose is to minimize the weight of the three-bar truss. This engineering

problem includes two core parameters: A1 and A2 [65]. The details are shown in Fig 23.

Table 12. Comparison of result on tension/compression spring design problem.

Algorithm Optimal values for variables Optimal cost

d D N
IEO 0.0516704 0.356269 11.3153 0.012665

EO 0.0528 0.38404 9.8503 0.012687

BGRA [59] 0.0516747 0.3563726 1.309229 0.012665237

NM-PSO [60] 0.051620 0.355498 11.3333272 0.0126706

ES [43] 0.051643 0.355360 11.397926 0.012698

IHS [61] 0.0511543 0.3498711 12.0764321 0.0126706

AFA [44] 0.0516674837 0.3561976945 11.3195613646 0.0126653049

LSA-SM [45] 0.05170453 0.3570899 11.26718 0.01266524

EHO [52] 0.053666 0.406156 8.887284 0.012736

BWOA [62] 0.051602 0.357488 11. 24 41198 0.0126654

GSA [63] 0.050276 0.323680 13.525410 0.0127022

HS [61] 0.051609 0.354714 11.410831 0.0126702

https://doi.org/10.1371/journal.pone.0276210.t012

Fig 22. The optimal cost of tension/compression spring design problem.

https://doi.org/10.1371/journal.pone.0276210.g022
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The mathematical formula of this problem is expressed as follows:

Consider x!¼ ½x1 x2� ¼ ½A1 A2�,

Minimize f ð x!Þ ¼ ð2
ffiffiffi
2
p

x1 þ x2Þ � l
Subject to g1 x!

� �
¼

ffiffi
2
p

x1þx2ffiffi
2
p

x2
1
þ2x1x2

P � s � 0,

g2 x!
� �

¼
x2ffiffi

2
p

x2
1
þ2x1x2

P � s � 0,

g3 x!
� �

¼ 1ffiffi
2
p

x2þx1
P � s � 0,

Variable range 0�x1, x2�1

l = 100cm, P = 2 km/cm2, σ = 2 km/cm2.

The IEO algorithm is applied to the three-bar truss problem, and the experimental results

are compared with 8 other algorithms in other literatures. The results are shown in Table 13.

Compared with other algorithms, it is obvious that IEO obtains the optimal solution for solv-

ing three-bar truss problem. It can also be seen from Fig 24 that IEO also has superior perfor-

mance in solving practical engineering problems.

Fig 23. Three-bar truss design problem.

https://doi.org/10.1371/journal.pone.0276210.g023

Table 13. Comparison of result on three-bar truss design problem.

Algorithm Optimal values for variables Optimal cost

A1 A2

IEO 0.78868 0.40822 263.8958

EO 0.7896 0.40563 263.8965

m-SCA [66] 0.81915 0.36956 263.8972

CS [67] 0.78867 0.40902 263.9716

Tsai [68] 0.788 0.408 263.68

Ray and Sain [64] 0.795 0.395 264.3

BWOA [62] 0.788666327 0.408273202 263.8958435

m-EO [1] 0.78834565 0.40918256 263.89607783

OBTLBO [19] 0.78909 0.40706 263.89600

https://doi.org/10.1371/journal.pone.0276210.t013
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4.5. Speed reducer design problem

Speed reducer problem is an engineering problem with complex constraints, and its optimiza-

tion purpose is to minimize the weight of speed reducer itself. The constraint variables are

shown in Fig 25.

The mathematical model of speed reducer is as follows:

Consider x!¼ ½x1 x2 x3 x4 x5 x6 x7� ¼ ½b m z l1 l2 d1 d2�

Minimize f ð x!Þ ¼ 0:7894x2
2
x1ð14:9334x3 � 43:0934þ 3:3333x2

3
Þ þ

0:7854ðx5x2
7
þ x4x2

6
Þ � 1:508x1ðx2

7
þ x2

6
Þ þ 7:477ðx3

7
þ x3

6
Þ

Subject to g1ð x
!Þ ¼ � x1x2

2
x3 þ 27 � 0

g2ð x
!Þ ¼ � x1x2

2
x2

3
þ 397:5 � 0

Fig 24. The optimal cost of three-bar truss design problem.

https://doi.org/10.1371/journal.pone.0276210.g024

Fig 25. Speed reducer design problem.

https://doi.org/10.1371/journal.pone.0276210.g025
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g3ð x
!Þ ¼ � x2x4

6
x3x� 3

4
þ 1:93 � 0

g4ð x
!Þ ¼ � x2x4

7
x3x� 3

5
þ 1:93 � 0

g5ð x
!Þ ¼ 10x� 3

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16:91� 106 þ ð745x4x� 1
2
x� 1

3
Þ

2

q

� 1100 � 0

g6ð x
!Þ ¼ 10x� 3

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

157:5� 106 þ ð745x5x� 1
2
x� 1

3
Þ

2

q

� 850 � 0

g7ð x
!Þ ¼ x2x3 � 40 � 0

g8ð x
!Þ ¼ � x1x� 1

2
þ 5 � 0

g9ð x
!Þ ¼ x1x� 1

2
� 12 � 0

g10ð x
!Þ ¼ 1:5x6 � x4 þ 1:9 � 0

g11ð x
!Þ ¼ 1:1x7 � x5 þ 1:9 � 0

Variable range 2.6�x1�3.6, 0.7�x2�0.8, 17�x3�28, 7.3�x4, x5�8.3, 2.9�x6�3.9,

5�x7�5.5

On the basis of improved algorithm IEO, the speed reducer problem is optimized and the

values of relevant parameters are obtained. The optimization results are compared with seven

algorithms in other literatures. The details are shown in Table 14. To more clearly reflect the

optimal cost of each algorithm, the Fig 18 is drawn. In addition, Fig 26 presents the optimal

cost of IEO and comparison algorithms for speed reducer design problem.

Compared with other algorithms, the improved algorithm IEO in this paper has higher

accuracy in dealing with speed reducer engineering problem. In other words, The IEO algo-

rithm find the best values for seven design variables to minimize the weight of speed reducer.

4.6. Optimal design of industrial refrigeration system

At present, energy saving and emission reduction work has become the focus of various fields.

Industrial refrigeration system accounts for a large proportion of energy consumption, so it is

necessary to optimize and control the industrial refrigeration system. Optimal design of indus-

trial refrigeration system is an extremely complex engineering design problem, which has four-

teen design variables and fifteen constraints. Its mathematical model is shown as follows:

Consider x!¼ ½x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14�

Minimize f ð x!Þ ¼ 63098:88x2x4x12 þ 5441:5x2
2
x12 þ 115055:5x1:664

2
x6 þ

6172:27x2
2
x6 þ 63098:88x1x3x11 þ 5441:5x2

1
x11 þ 115055:5x1:664

1
x5 þ 6172:27x2

1
x5 þ

140:53x1x11 þ 281:29x3x11 þ 70:26x2
1
þ 281:29x1x3 þ 281:29x2

3
þ

14437x1:8812
8

x0:3424
12

x10x� 1
14
x7x� 1

9
þ 20470x2:893

7
x0:316

11
x2

1

Subject to g1ð x
!Þ ¼ 1:524x� 1

7
� 1

g2ð x
!Þ ¼ 1:524x� 1

8
� 1

Table 14. Comparison of result on speed reducer design problem.

Algorithm Optimal values for variables Optimal cost

b m z l1 l2 d1 d2

IEO 3.5000 0.7000 17.0000 7.30008 7.71532 3.35054 5.28665 2994.4254

EO 3.5000 0.7000 17.0000 7.30366 7.71532 3.35055 5.28665 2994.4586

m-EO [19] 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3482

SCA [19] 3.5198 0.7000 17.0000 7.3000 8.3000 3.4131 5.2919 3034.7970

OBSCA [19] 3.1507 0.7716 19.9472 7.7174 8.2332 3.5060 5.2938 3027.3263

TLBO [19] 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3482

MDE [40] 3.50001 0.7000 17.0000 7.300156 7.800027 3.350221 5.286685 2996.35669

ABC [69] 3.5000 0.7000 17.0000 7.3000 7.715319 3.350214 5.286654 2994.47106

https://doi.org/10.1371/journal.pone.0276210.t014
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g3ð x
!Þ ¼ 0:07789x1 � 2x� 3

7
x9 � 1 � 0

g4ð x
!Þ ¼ 7:05305x� 1

9
x2

1
x10x� 1

8
x� 1

2
x� 1

14
� 1 � 0

g5ð x
!Þ ¼ 0:0833x� 1

13
x14 � 1 � 0

g6ð x
!Þ ¼ 47:136x0:333

2
x� 1

10
x12 � 1:333x8x 132:1195 þ 62:08x2:1195

13
x� 1

12
x0:2

8
x� 1

10
�

1 � 0

g7ð x
!Þ ¼ 0:04771x10x1:8812

8
x0:3424

12
� 1 � 0

g8ð x
!Þ ¼ 0:0488x9x1:893

7
x0:316

11
� 1 � 0

g9ð x
!Þ ¼ 0:0099x1x� 1

3
� 1 � 0

g10ð x
!Þ ¼ 0:0193x2x� 1

4
� 1 � 0

g11ð x
!Þ ¼ 0:0298x1x� 1

5
� 1 � 0

g12ð x
!Þ ¼ 0:056x2x� 1

6
� 1 � 0

g13ð x
!Þ ¼ 2x� 1

9
� 1 � 0

g14ð x
!Þ ¼ 2x� 1

10
� 1 � 0

g15ð x
!Þ ¼ x12x� 1

11
� 1 � 0

Variable range 0.001�xi�5, i = 1,. . .,14

Fourteen key variables of optimal design of industrial refrigeration system are optimized by

IEO algorithm and the optimal values are obtained, and the results are compared with other

meta-heuristic algorithms. Table 15 shows the lowest cost of each algorithm and the values of

related variables. Fig 27 shows the optimal cost of the five algorithms for optimal design of

industrial refrigeration system.

As can be seen from the optimization results in Table 15, IEO algorithm still has good per-

formance in dealing with highly complex engineering design problems. Compared with the

original EO algorithm, the optimal value obtained by IEO algorithm is improved by several

orders of magnitude. In general, for engineering problems with fourteen objective variables

and constraints, IEO algorithm can also get the optimal value.

In this section, six engineering optimization problems of pressure vessel, welded beam, ten-

sion/compression spring, three-bar truss, speed reducer and optimal design of industrial

Fig 26. The optimal cost of speed reducer design problem.

https://doi.org/10.1371/journal.pone.0276210.g026
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refrigeration system with constraint state are solved by IEO algorithm, and the design scheme

given by IEO is compared with the scheme proposed by the algorithms in the existing litera-

ture. The comparison results show that the design cost of IEO is much lower than the original

EO algorithm and other comparison algorithms, and it is an algorithm that can effectively

solve engineering optimization problems. At the same time, the good optimization results also

show that IEO has better optimization efficiency and performance in practical application.

Each engineering optimization problem has different variables and constraints. According to

the number of variables and constraints, it can be divided into engineering problems of differ-

ent complexity. The mathematical model of each engineering optimization problem corre-

sponds to the actual engineering problems in real life. By using IEO to solve engineering

Table 15. Comparison of result on optimal design of industrial refrigeration system.

variable algorithm

IEO EO WOA SCA GWO

x1 0.001 0.001 0.0010002 0.001 0.001

x2 0.0010005 0.0010003 0.0010079 0.0028508 0.0010782

x3 0.0010001 0.0010005 0.0010205 0.0044385 0.0010242

x4 0.0010121 0.0012186 0.0058931 0.0016035 0.0012434

x5 0.0010002 0.0011102 0.001 0.0015727 0.0019951

x6 0.0010009 0.0013208 0.0010007 0.001235 0.0010718

x7 1.524 1.5245 1.5246 1.7023 1.5243

x8 1.524 1.524 1.524 1.7463 1.5244

x9 5 5 4.9963 4.6685 4.9977

x10 2 3.0708 2.0001 2.3346 2.0099

x11 0.0010001 0.029739 0.0010077 0.0037313 0.0067319

x12 0.001 0.029569 0.0010007 0.002211 0.0066506

x13 0.0072837 0.043223 0.0050226 0.0046903 0.017752

x14 0.087436 0.51759 0.060171 0.052574 0.21302

optimal value 0.032247 0.060632 0.042151 0.12256 0.03917

https://doi.org/10.1371/journal.pone.0276210.t015

Fig 27. The optimal cost of optimal design of industrial refrigeration system.

https://doi.org/10.1371/journal.pone.0276210.g027
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optimization problems, it shows that the algorithm has superior robustness, which indicates

that IEO can be applied to practical engineering problems in the future.

Through the above numerical experiments and the application of six engineering problems,

we can see that the IEO algorithm has excellent performance. Specifically, the effectiveness of

IEO is measured by three criteria: mean value, standard deviation and running time. For

F14-F23 in the 23 benchmark function sets, these functions belong to 2-dimensional, 4-dimen-

sional and 6-dimensional functions, and the optimization effect of IEO is not outstanding.

However, for functions F1-F13 with a dimension of 30, the solution efficiency of IEO is obvi-

ously improved. And for the complex function sets CEC2017 and CEC2019 in later sections,

the convergence accuracy of IEO is improved. In addition, through Friedman test and Wil-

coxon rank sum test, the significance of IEO algorithm can be clearly seen from the perspective

of statistics. In section 4, IEO is used to solve six engineering problems of different complexity.

By comparing the optimal cost with other algorithms, the practicability of IEO in engineering

problems is known, which further verifies the effectiveness of IEO algorithm. Overall, the

superiority of IEO is analyzed from different perspectives through complex numerical experi-

ments and the application of algorithms to engineering problems.

5.Conclusion

In this paper, a multi-strategy improved Equilibrium Optimizer (IEO) is proposed to solve

numerical optimization and engineering problems. Tent mapping is used to initialize the pop-

ulation and produce the initial solution with rich diversity, which lays a good foundation for

the global search of the search population in space. A nonlinear time parameter strategy is also

introduced into the update equation of the algorithm, which dynamically coordinates the

exploration and exploitation phase of IEO algorithm. The Lens Opposition-based Learning

(LOBL) strategy is adopted in the late iteration of the algorithm to improve the diversity of the

population and prevent the algorithm form falling into local optimal. Simulation experiments

are carried out by using 23 classical functions, IEEE CEC2017 and IEEE CEC2019. The experi-

mental results show that compared with the other six meta-heuristic algorithms, the improved

IEO algorithm has obvious advantages in solving accuracy and convergence speed. In addition,

the stability and effectiveness of IEO are proved from different perspectives by Friedman sta-

tistical test and Wilcoxon rank sum test. Finally, IEO is applied to six engineering design prob-

lems: the pressure vessel problem, the welded beam problem, the tension /compression spring

problem, the three-bar truss problem, the speed reducer problem and optimal design of indus-

trial refrigeration system. The research results show that the improved IEO algorithm has

good optimization efficiency when solving practical application problems. In the future, the

IEO will be tried to combine with other meta-heuristic algorithms to better improve the per-

formance. The IEO may be implemented on complex real-world application problems, such as

feature selection and robot path planning. The IEO also can be applied to multi-objective

problems and more complex practical engineering problems.
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