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ABSTRACT
It is well known that female reproduction ability 

decreases during the forth decade of life due to age-related 
changes in oocyte quality and quantity; although the 
number of women trying to conceive has today increased 
remarkably between the ages of 36 to 44. The causes 
of reproductive aging and physiological aspects of this 
phenomenon are still elusive. With increase in the women’s 
age, during Assisted Reproductive Technologies (ART) we 
have perceived a significant decline in the number and 
quality of retrieved oocytes, as well as in ovarian follicle 
reserves. This is because of increased aneuploidy due to 
factors such as spindle apparatus disruption; oxidative 
stress and mitochondrial damage. The aim of this review 
paper is to study data on the potential role of the aging 
process impacting oocyte quality and female reproductive 
ability. We present the current evidence that show the 
decreased oocyte quality with age, related to reductions 
in female reproductive outcome. The aging process is 
complicated and it is caused by many factors that control 
cellular and organism life span. Although the factors 
responsible for reduced oocyte quality remain unknown, 
the present review focuses on the potential role of ovarian 
follicle environment, oocyte structure and its organelles. 
To find a way to optimize oocyte quality and ameliorate 
clinical outcomes for women with aging-related causes of 
infertility.
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INTRODUCTION
The human female reproductive system has a faster 

rate in aging than any other system of the body. According 
to population studies and reports the biological ability of 
a woman to fertilize decreases with age, similar to other 
species (Wood, 1989). The number of women delivering 
their first child after the age of 35 increased from 1/100 to 
1/12 from 1970 to 2006 (Cil et al., 2015). The fecundity 
capacity of females peaks is their 20s, it fails in late 30s, in 
defiance of regular menstrual cycles, ending in menopause 
at the mean age of 50 – 51 years (te Velde & Pearson, 
2002). The in vitro fertilization (IVF) study shows that the 
mother’s age is an essential cause that leads to impressing 
clinical results (Tan et al., 2014). While, between 1970 and 
2002, the percentage of first births in women over the age 
of 30 years increased 6-fold (Crawford & Steiner, 2015). 
According to an American report based on >120.000 as-
sisted reproduction technologies (ART), successful delivery 
rate per embryo transfer dropped from 43.2% in women 
<35 years old to 15.1% in women aged 41– 42 years and 
to 5.9% in women > 42 years old (Wright et al., 2005). 
Today, in developed countries, because of the women’s 
decision to delay their conception, families faced female 
aging-related infertility (Balasch, 2010). Despite neuroen-
docrine and uterine factors, it is well defined that ovaries 
and ovarian follicles are prominent regulators of reproduc-
tive aging. In humans, changes to the ovarian follicle pool 
and diminishing of ovarian reserve are the chief causes 

of decline in female reproduction ability (Faddy, 2000). 
This claim is confirmed by oocyte donation from younger 
women, in overcoming age-related infertility (Sauer et al., 
1990; te Velde & Pearson, 2002). By the fifth month of 
prenatal development, the size of ovarian follicle pool is 
estimate at 7 million oogonia (Sadler, 2011). At this time 
large numbers of oogonia, as well as primary oocytes be-
come atretic, except for a few near the ovarian surface. 
The surviving oogonia enter the prophase of first meiot-
ic division and transform into primary oocytes, and are 
surrounded by flat epithelial cells to forming the pool of 
primary follicles (Pepling, 2006). Primary oocytes stay ar-
rested in prophase in the so-called diplotene stage and 
do not complete their first meiotic division before puberty 
is reached. At birth, one million of primordial follicles are 
present, a number which will disappear by atresia. During 
childhood, this number reaches the amount of approxi-
mately 300,000 at the time of menarche (Faddy et al., 
1992). Over the past decades there has been controver-
sy about the origin of ovarian germ cells and oogenesis 
during one’s life span, which indicates the neo-oogenesis 
in mice ovaries and adult humans’ (Bukovsky, 2011; de 
Souza et al., 2017). During the female reproductive life 
span, under the influence of intra and extra ovarian fac-
tors, such as cytokines, growth factors and gonadal steroid 
follicles leave the resting pool to enter the growing pool 
on a regular manner (Pangas, 2007). Therefore, follicles 
behave differently in response to such stimulatory and 
regulatory signals (Craig et al., 2007). As a result of the 
ovarian follicular pool diminishing exponentially with age, 
decline is more prominent at the age of 38-39 and above 
(Faddy et al., 1992).

Therefore, according to the observations mentioned 
above, assessment of cellular and molecular aspects of fol-
licles/oocytes need precise attention to some factors. First, 
some oocytes and their surrounding cells remain in quies-
cent phase (diplotene stage) for ~ 40 years or more, it is 
unknown how this stage can retain the cells against envi-
ronmental influences (Absalan et al., 2017; Sadler, 2011). 
The fact that the increase in maternal age is directly re-
lated to chromosomal abnormalities in the fetus confirms 
that primary oocytes are susceptible to damage as they 
age (Sadler, 2011). Second, the growth of a mature oocyte 
depends on fine cross-talk signalling between all ovarian 
compartments. Age-related infertility is a multifactorial 
process and understanding factors affecting follicle/oocyte 
aging requires the comparison of the theories on aging 
mechanisms based on studies on tissues and organs other 
than the ovary (Hamet & Tremblay, 2003). Ultrastructur-
al changes in oocytes, such as meiotic spindle disruption 
and zona pellucida hardening are some of the factors on 
age-related declined fecundity (Eftekhari Moghadam et al., 
2018). In addition, higher tendency for acquired conditions 
such as uterine problems, hormonal changes, endometri-
osis, fibroids and pelvic infections occur in aged women 
(Schwartz & Mayaux, 1982). The most relevant theory for 
ovarian aging, conveys a reduction in oocytes and its sur-
rounding cells’ capacity to nullify reactive oxygen species 
(Sousa et al., 2015), which is the most essential cellular 
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damage inducer with aging (Harman, 2006). Loss of active 
DNA repair apparatus, bioenergetics status and mitochon-
drial damage of the oocytes are possibilities for follicle/oo-
cyte aging phenomenon (Titus et al., 2013). Other feasible 
mechanisms, like molecular pathways that could lead to 
loss of germ cells in aged ovaries, are poorly defined (Ben-
Meir et al., 2015). 

In this paper, we review studies on human and mice 
models about the basic age-related aspects of follicles/oo-
cytes, ovarian microenvironment and involvement of oxi-
dative stress in progressive reproductive aging.

OVARY AGING
The ovarian tissue, like every organ of the body un-

dergoes aging with no exclusion. Every day, in an ovary, 
a certain number of primordial follicles are engaged from 
resting follicular pool (ovarian reserve) for more growth, a 
process called folliculogenesis. This action, takes approx-
imately 16 – 24 weeks, during which time the oocyte and 
its encompassing somatic cells endure a string of changes 
that finally result in an antral follicle to release a mature 
ovum (Baird et al., 2005). Primordial follicle recruitment 
ratio raises with age and it is reciprocally related to ovarian 
reserve (Orisaka et al., 2009). Ovarian follicles are essen-
tial for keeping endocrine function of female gonads, as 
well as fertility accordingly, the number of follicles pres-
ent in the tissue control ovarian lifespan (Tilly & Sinclair, 
2013). In older women, it appears that follicles enter pre-
cociously the growing phase in contrast with their younger 
counterparts. This condition may illustrate the quantitative 
and qualitative features of follicle aging (Westergaard et 
al., 2007). Based on research, the increased FSH serum 
level, reported to occur in the early follicular phase during 
reproductive aging, increases the final reduction in ovarian 
follicular reserve (Richardson & Nelson, 1990; te Velde & 
Pearson, 2002). However, studies on transgenic mice mod-
els with rising FSH serum levels show that elevation of 
this hormone decreases the proportion of good fertilized 
oocytes without significant alteration in ovarian follicle pool 
(McTavish et al., 2007), therewith indicating the intricate 
role of this hormone in ovarian aging-related changes. An-
ti-Müllerian hormone (AMH) is a 140kDa glycoprotein that 
does not belong to the pituitary–gonadal axis, secreted 
by granulosa cells of growing non-selected follicles. The 
serum levels accurately reflect the size of antral follicles’ 
pool, representing the quantity of the remaining primordial 
follicles. AMH is the best currently available and effective 
assay for ovarian reserve in several clinical cases. In ad-
dition, AMH has a role in predicting reproductive lifespan, 
ovarian dysfunction and the impact of gonadotoxic cancer 
treatment, or ovarian surgery (Broer et al., 2014). There 
is a positive relation between follicular fluid AMH concen-
trations and embryo implantation rates, but its correlation 
with the qualitative aspects of follicle aging remains to be 
elucidated (Fanchin et al., 2007).

Based on a central dogma, irreversible age-alteration 
in ovarian reserve in mammals depends on the lack of 
proliferative germ cells in adult ovarian tissues. However, 
there are new studies in rodents and humans offering the 
evidence of germline stem cells (GSCs), and consequently 
generating oocytes to form new follicles in adults -a pro-
cess called neo-oogenesis (White et al., 2012). Therefore, 
these paradigm shifting evidences support GSCs as argu-
ments on how female fertility and ovarian lifespan might 
be regulated in mammals.

OOCYTE CHARACTERISTICS IN AGING
Here, we provide a comprehensive discussion on mor-

phological criteria related to maturation competence of 
oocytes for understanding their role in the age-related 

pathophysiology of human oocytes, including the oocytes 
and their extracellular compartments and cells.

Cumulus Cells
The cells immediately encompassing oocyte are called 

Cumulus Cells. These cells accompany the oocyte through-
out development from an immature to a fully mature 
ovulated oocyte, and play a central role in supporting the 
oocyte, whether in vivo or in vitro. There is a bilateral de-
pendency between the two-cell compartments of the cumu-
lus-oocyte complex (COC). Indeed, the cumulus cells rely 
on the oocyte for their normal differentiation, regulation, 
and functions through intercellular interaction gap junc-
tions and paracrine signaling (Gilchrist et al., 2004; 2008). 
In addition, the direct interaction with COCs appears to de-
pend on members of transforming growth factor-β (TGF-β) 
– a family of signaling molecules (Knight & Glister, 2006). 
The cumulus-oocyte complex is embedded in a hyaluronic 
acid-rich extracellular matrix (ECM) which are secreted by 
them. This matrix is essential not only in ovulation but also 
for the fertilization process (Knight & Glister, 2006). In the 
pre-ovulatory follicle, the cumulus cells are firmly packed 
around the oocyte, because the follicle is stimulated by lu-
teinizing hormone (Hemadi et al., 2009) before ovulation, 
the cumulus cells producing ECM become much less tightly 
packed by the time of ovulation. The ovulated oocyte is 
still restricted by a number of cumulus cells called corona 
radiata. In the ampullary portion of the uterine tube ala, 
the place where the spermatozoa first encounter the oo-
cyte, they are confronted by the corona radiate, and some 
of cumulus cells. Recent studies suggest that mammalian 
spermatozoa have odorant receptors as similar to olfactory 
receptors in the nose, so they can respond to chemically 
specific odorants (Spehr et al., 2006).

The COCs collected from mature ovarian follicles are 
categorized based on compactness of the cumulus and ap-
pearance of oocyte cytoplasm (de Wit et al., 2000). For 
instance, the quality of bovine COCs are classified in three 
groups: 

1. Class A COCs. Five layers of dense and compact cu-
mulus cells enclose the oocyte and the cytoplasm of oo-
cytes, it is homogeneous, transparent with a dark ring en-
circling the cytoplasm. 

2. Class B COCs. Less compact cumulus cells along with 
an oocyte that has a dark and moderately granular cyto-
plasm.

3. Class C COCs. Expanded cumulus cells and oocyte 
with a dark and granular cytoplasm (Mayes & Sirard, 2001) 
(Figure 1). The cumulus cells’ layers are a remarkable fac-
tor in determining oocyte quality (Hemadi et al., 2009), 
and the oocytes which belong to the group B of COCs 
classification showed a better developmental ability when 
compared to other groups (B > A > C) (Boni et al., 2002).

An aged follicular microenvironment could highly af-
fect oocytes and put a specific transcriptional footprint in 
the surrounding CCs (Al-Edani et al., 2014). New evidence 
shows that female age may have influence on the gene ex-
pression profiles of CCs that are crucial for oocyte quality 
and competence (McReynolds et al., 2012). For the first 
time as Al-Edani et al. (2014) showed that the angiogenic 
genes were notably overexpressed compared to patients 
of the younger groups. In contrast, the genes involved in 
TGF-ß signaling pathway such as AMH, TGF-ß1, inhibin, 
and activin receptor were under-expressed (Al-Edani et 
al., 2014). Miao et al. (2005), hypothesis suggests that 
CCs would accelerate the progression of in vitro aging of 
mice oocytes. Also, they assessed the effects of CCs on the 
susceptibility to activating stimuli, maturation promoting 
factor (MPF) activity, exocytosis of cortical granules (CGs), 
and anaphase onset during aging process of both in vivo 
and in vitro matured mice oocytes. They concluded that 
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Figure 1. Different classes of COCs (de Wit et al., 2000). 
Class A. Oocyte is surrounded by a compact cumulus 
with a homogeneous cytoplasm. Class B. Oocyte is 
surrounded by a less compact and darker cumulus. The 
cytoplasm is dark and moderately granular. Class C. 
Oocyte is surrounded by dispersed cumulus cells. Oocyte 
has a granular cytoplasm. Reproduced from Lasiene et 
al. (2009) with permission.

CCs accelerated the aging progression of both in vivo and 
in vitro-matured mice oocytes (Miao et al., 2005).

Zona Pellucida
Zona pellucida (ZP) is a glycoprotein interface among 

oocytes and their surrounding cells that coat and protect 
the mammalian ovum. In humans, it compromises four 
glycoproteins-hZP1 to hZP4 (Lefièvre et al., 2004). ZP2 
and ZP3 combine to form basic units that polymerize into 
long filaments. These filaments are periodically linked by 
cross-bridges of ZP1 and ZP4 molecules. But, the mice ZP 
is composed of three major glycoproteins: mZP1, mZP2, 
and mZP3 (Wassarman et al., 2005). In the mice, the ac-
rosome reaction inductor and the sperm receptor is the 
glycoprotein ZP3, a component of all mammalian oocyte 
ZPs (Wassarman, 1990). Because of difficulties with direct 
observation of the human oocyte, there has been a large 
number of investigations exploring the molecular mecha-
nism of fertilization in mice. It is estimated that the ZP of 

unfertilized mice oocyte include more than 1 billion copies 
of the ZP3 protein (Carlson, 2018). In mammals, there is 
less species alteration in ZP3composition; this may illus-
trate why penetration of the zona pellucida by sperma-
tozoa of nearly related mammalian species is sometimes 
feasible, whilst it is rare amongst lower beasts (Carlson, 
2018). The normal maturation of follicles and oocytes rely 
on presence of the ZP (Rawe & Combelles, 2009). The zona 
pellucida plays an essential role in the sperm-oocyte inter-
action, acrosomal reaction, sufficient block to polyspermy, 
preimplantation embryos and following troubles in devel-
opmental progression (Ebner et al., 2008). After penetrat-
ing the corona radiata, the spermatozoa attach firmly to 
the ZP via plasma membrane of the sperm head. Sperma-
tozoa binds in a specific manner to a sialic acid molecule, 
which is the terminal part of a sequence of four sugars at 
the end of an O-linked oligosaccharides that are attached 
to the polypeptide core of the ZP3 molecule (Carlson, 
2018). Ultrastructural study of mice ZP by conventional 
scanning electron microscopy (SEM) (Figures 2 and 3) 
shows various patterns in its outer and inner surfaces. The 
external surface is defined by the presence of abundant 
fenestrations, giving it a somewhat spongy configuration, 
whilst inner surface is smooth and condensed (Phillips et 
al., 1985). Two main forms of zona pellucida are identified 
as a mesh-like (spongy structure) ZP in mature oocytes 
and a more compact (smooth surface) one in atretic or 
immature oocytes (Familiari et al., 2006). Studies have re-
vealed a direct association between the ZP surface struc-
ture and the grade of oocyte development and (Sousa et 
al., 2015), hence it can be a valid predictor of oocyte qual-
ity (Calafell et al., 1992). Familiari et al. (2006) postulated 
that the condensation of the outer side of the ZP caus-
es sperm-binding site confusion, which would cause de-
creased sperm binding and reduced penetration ability, so 
it goes to in vitro oocyte fertilization disability. Calafell et 
al. (1992) reported four types of ZP in mice oocytes, aged 
in vivo or in vitro from immature, young, and elderly fe-
males, termed A, B, C, and D. Type-A oocytes have a struc-
ture observed in prepuberal females that may be related 
to immature oocytes. Type B was the usual type of the ZP 
between the groups reported by these authors and its rate 
decreases with advancing age. The A/B type ZP was spec-
ified by abundant large pores with fully cytoplasmic and 
matured nuclear and freshly ovulated oocytes. Type C was 
observed before degeneration and raise conspicuously with 
increasing female age (both in vivo and in vitro). This con-
cept is suggesting that there is a direct relation among the 
properties of the ZP fertilization ability of the oocyte. Type 
D with amorphous appearance, seemingly corresponded to 
degenerated oocytes, because the surface was similar to 
that seen in fragmented eggs (Familiari et al., 2006). In 
routine clinical intracytoplasmic sperm injection (ICSI) tri-
als, it is possible to recognize the ZP alterations. In spite of 
IVF, removal of cumulus cells enables clinicians to assess 
the ZP variants such as thickness, appearance, irregular-
ities and composition (Kilani et al., 2006). We know that 
the thicker ZPs are related to fertilization, implantation 
and fecundity rate (Figure 4) (Bertrand et al., 1995; Rama 
Raju et al., 2007). The zona pellucida of fresh oocytes con-
sists of granulofibrillar, interrelated reticulum with pores; 
whereas the zona pellucida of aged oocytes have ‘cobble-
stone-like’ cover, which is composed of narrow clusters 
of granulofibrillar material, apart from one another by an 
obvious space (0.3mm in width). Zona pellucida harden-
ing (explained increased time to enzymatically digest the 
ZP and decreased sperm binding and penetration) evalu-
ations have shown that the time for chymotrypsin-medi-
ated dissolution of the zona pellucida increases notably in 
aged oocytes, compared with fresh oocytes (Miao et al., 
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Figure 2. Conventional SEM. (a): Unfertilized human oocyte. Porousnet appearance of ZP (X 2,000). 
(b): Unfertilized human oocyte. Compact and smooth surfaced ZP (X 2,000). (c): Higher magnification of 
(a). The spongy ZP structure is evident (X 4,000). (d): Higher magnification of (b). It shows a dense and 
compact ZP structure (X 4,000). (e): Unfertilized mouse oocyte with very high magnification showing a 
branch of the spongy structure of the ZP (X 350,000). Familiari et al. (2006) with permission.
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Figure 3. (a): The outer surface of the ZP of a human mature oocyte. Many fenestrations are present 
in which the filaments form a large meshed network (X 9,000). (b): The outer surface of the ZP of a 
human atretic oocyte. The filaments form a tight meshed network (X 9,000). Familiari et al. (2006) with 
permission.

Figure 4. An ideal oocyte which displaying good spindle retardance and length, trilaminar structure of 
zona with good retardance of inner layer. Magnification ×200. Reproduced from Rama Raju et al. (2007) 
with permission.
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Figure 5. Calculation method for measuring the size 
of each part of the oocyte. ZP: Zona pellucida. PS: 
perivitelline space. PB: 1st polar body. Diameter of 
cytoplasm (A) (A1+A2) / 2. Inner diameter of zona 
pellucida (B) = (B1+B2) / 2. Outer diameter of zona 
pellucida (C) = (C1+C2) / 2. Thickness of zona pellucida 
= (C B) / 2. Size of perivitelline space = (B A) / 2. Yoshida 
& Niimura (2010) with permission.

2005). In the clinic, assisted hatching (AH) of the ZP is 
sometimes applied to help the embryo escape its ZP. Some 
environmental agents such as non-physiological and pro-
longed culture conditions can lead to irreversible chemical 
changes or Zona hardening. Despite such knowledge, we 
need to increase our understanding about age-related ab-
normalities in zona morphology and their possible clinical 
importance (De Vos & Van Steirteghem, 2000).

Perivitelline Space
The perivitelline space (PVS) demonstrates that the 

acellular portion between the plasma membrane of the oo-
cyte (oolema) and the ZP PVS contains a hyaluronan-rich 
extracellular matrix that is not visible under light microsco-
py. In a mature human oocyte, it is fluctuating in size, and 
evident with the expelled polar body located in its most 
eminent part (Figure 5). PVS is one of the most signifi-
cant parts of extracytoplasmic maturation. There are three 
kinds of PVS classifications that are possible: immediately 
opposed to the plasma membrane, apart and recognizable, 
exaggerated (Rawe & Combelles, 2009; Talbot & Dan-
dekar, 2003). Despite these differences, there is a clear 
disagreement that still remains over PVS arrangement 
regarding what may be typical or deviant from healthy. 
PVS-size is important as it affects the prevalence of the 
polyspermy, fertilization rate and pronuclear morphology 
(Yoshida & Niimura, 2010). A retrospective study shows a 
direct relationship between PVS width and reduction in fer-
tilization and embryo quality, while others reported no sim-
ilar relevance (Plachot et al., 2002). Ten et al. showed no 
PVS effect on fertilization, but oocytes with large PVS were 
associated with higher likelihoods of yielding good-quality 
embryos (Ten et al., 2007). Anyway, there is no agreement 
as to whether PVS evaluation alone may influence oocyte 

quality. In another study on hamsters by Li et al. (2017), 
they reported that old hamsters produced a meaningful-
ly lower percentage of healthy oocytes with minimal PVS, 
compared with those in younger hamsters (Figure 6). They 
also gathered that a large PVS has been related to low-
er fertilization rates in humans (Rienzi et al., 2008). The 
reason for the high occurrence of polyspermy after insem-
ination in oocytes with small perivitelline space is vague. 
The precise source of the PVS chemicals remain unknown, 
although the cumulus cells and oocytes maybe candidates. 
Hyaluronic acid (HA) has been shown to have an inhibito-
ry impact on oocyte plasma membrane fusion. Therefore, 
it is believed that large amounts of HA in the expanded 
PVS may hinder the membrane fusion of sperm and oo-
cytes, resulting in a lower rate of polyspermy in oocytes 
with larger PVS (Yoshida & Niimura, 2010). Finally, Yoshi-
da & Niimura (2010), in rodents, reported that, oocytes 
with smaller perivitelline space show higher incidence of 
polyspermy after insemination, and suggested the size of 
PVS, whereas, evidence confirmed the presence of corti-
cal granule material in the PVS, in addition to creation of 
cortical granule envelope inside the PVS. In this manner 
PVS can impact sperm penetration and appropriate block 
to polyspermy. However, Yoshida & Niimura (2010) showed 
that the diffusion of cortical granules in some rodents with 
smaller PVS is similar to those with larger PVS. They dis-
cussed the higher frequency of polyspermy in oocytes with 
small PVS, which is not caused by the lack of cortical gran-
ules in those oocytes. Because of the lack of knowledge, 
we can understand that a large PVS may break the connec-
tion between the cumulus cells and the oocyte, specifically 
by means of transzonal projections and gap junctions. On 
the other hand, it may be useful to disconnect some ways 
of cell communication at the suitable time, and there may 
be a mechanism by which PVS controls oocyte competence 
(Rawe & Combelles, 2009). Overall, morphological assess-
ments of the three extracellular parts of the oocyte yields 
a definite measure of oocyte evaluation while not freely 
rendering predictors of oocyte quality. According to the 
intricacy in morphological diversity, we still require much 
research to detect and recognize these aspects, and then 
in determining their clinical importance. Randomized con-
trolled experiments may then test the impact of aging on 
extracytoplasmic evaluation on fecundity yields.

INTRACYTOPLASMIC COMPONENTS
Polar Body
Oocytes from mammalian species is arrested in the 

prophase meiosis I (MI). At puberty, a surge in luteinizing 
hormone [LH] impels a preovulatory growth phase and MI 
is complete, resulting in the formation of two unequal size 
cells with 23 chromosomes. One cell receives most of the 
cytoplasm (secondary oocyte), and the other cell, that ex-
truded between the ZP and the plasma membrane of the 
secondary oocyte in the form of a first polar body (PBI), 
has no function. Then the oocyte enters the metaphase 
meiosis II (MII) stage, almost 3 hours before ovulation 
(Rawe & Combelles, 2009). Eichenlaub-Ritter et al. (1995) 
reported that the PBI morphology revealed the postovula-
tory age of the oocyte. Several studies have revealed that 
the PB shape, size and contour can help anticipate oocyte 
quality, but other documents show that there is no associa-
tion between PB properties and oocyte developmental abil-
ity or genetic form for the embryo (Ciotti et al., 2004; De 
Santis et al., 2005). In a study by De Santis et al. (2005), 
they suggested that PBI morphology cannot give provide 
embryos with high developmental competency, and they 
proposed alternative parameters for oocyte selection. 
Halvaei et al. (2011) analyzed the role of PBI morphol-
ogy on rates of fertilization and embryo development in 
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Figure 6. Young oocytes (A) expanded against the zona pellucida with a minimal perivitelline space (PVS) 
and a clear indentation at the polar body, whereas old oocytes (B) had wide PVS with no indentation from 
the polar body. Reproduced from Li et al. (2017) with permission.

ICSI cycles. They concluded that PBI morphology does not 
seem to be a prognostic factor for rates of fertilization and 
embryo development in ICSI cycles (Figure 7) (Halvaei et 
al., 2011). Another study conducted by Zhou et al. (2016), 
on the relationship of polar body-morphology to embryo 
quality and pregnancy outcome at 16–18 hours after in-
semination. They reported that no remarkable differenc-
es in pregnancy rate (PR) or implantation rate (IR) were 
seen between the intact and fragmented groups of PBI. 
Although they reported little effects of PR or IR in fresh 
embryo transfer cycles, and concluded that better embryo 
quality can be attained in the PB-intact group, which is 
important for embryo selection (Zhou et al., 2016). Other 
studies show that oocytes with intact and good shaped PBI 
yield higher fertilization rates and higher embryo quality 
(Ebner et al., 2000). Evidence on the relationship between 
PBI and mother’s age show that the PBI from young in-
dividuals is intact and adjacent to the MII spindle, while 
aged oocytes contain degenerated and deviated PBI from 
the MII spindle, and space between PBI and the spindle 
raises with time throughout the oocyte aging (Miao et al., 
2004). PBI displacement can be due to increased PVS with 
time and facilitated moving from its usual place (Miao et 
al., 2004). Polar bodies due to their amount of cytoplasm, 
organelles and chromatids, can yield applicable data (by 
cytogenetic studies like fluorescent in situ hybridization) 
about the genetic condition of oocytes, without possibly 
endangering it. Does aging-related changes cause molecu-
lar alterations in the PBI in spite of apparent morphological 
modification? This question was the aim of a study by Jiao 
et al. (2012). In a prospective mice model survey, they 
assessed the oocyte-specific mRNAs detection in the PB of 
MII oocytes and define the effects of age on oocyte-spe-
cific transcript levels. They showed that transcript levels 
were lower in aged PBs compared with young PBs. Final-
ly, they concluded that there is a remarkable difference 
in the transcript levels of oocyte-specific genes in aged 
vs. young PB, that correlates with age-related reduction in 
oocyte capability (Jiao et al., 2012). This gene expression 
alteration in PB may be a possible biomarker of MII oocyte 
competence (Jiao et al., 2012). Therefore, the assessment 
of PBI could work as a strong genetic diagnostic device 

during pre-fertilization screening without the requirement 
of embryo biopsy (Gitlin et al., 2003), but some limitations 
should also be understood when PB analysis is taken into 
account (Rawe & Combelles, 2009). These restrictions in-
clude: first, the maternal genetic portion, which can be 
studied alone. In second, possible nondisjunction of sister 
chromatids during MII can happen, which requires second 
polar body analysis. In third, PB chromosomes are shorter, 
which makes the technique more difficult (Rawe & Com-
belles, 2009).

Ooplasm
Cytoplasmic and nuclear factors are important criteria 

in oocyte quality, which directly influence the developmen-
tal competence of embryos in ART. For this, nuclear matu-
rity indicates meiosis continuation and the progression to 
metaphase II, the arrested stage at the time of ovulation. 
MPF can be created by cyclin B and p34cdc2, which sup-
ports the transition from G2 to M phase. Active MPF starts 
nuclear maturation (e.g., germinal vesicle breakdown) and 
condensation of metaphase I (MI) chromosomes, then a 
reduction in MPF causes entry into anaphase I, and a sec-
ond peak in MPF activity drives the oocyte to metaphase 
II (Eppig, 1996). Even if oocytes get nuclear competence, 
they still may be lacking cytoplasmic maturation, which 
indicates all processes construct the oocytes for activa-
tion, fertilization, and embryo development. Completion of 
both kinds of maturation are highly sensitive to changes 
in follicular hormonal environment and/or in vitro culture 
status (e.g., pH, temperature, oxygen) that may lead to 
alterations in oocyte morphology. Some of these oocyte 
cytoplasmic aberrations are visible at the light-microscopic 
level (Hu et al., 2001). Elimination of cumulus cells with 
the ICSI method enables the clinician to directly evalu-
ate the morphological attributes of oocytes under light mi-
croscopy. Ooplasmic morphological characteristics can be 
categorized by the presence of vacuoles, inclusion, debris, 
fragmented corpuscles, dark cytoplasm, and organelle 
clustering (Kahraman et al., 2000; Moussa et al., 2015). 
In fact, more than 50% of human oocytes show at least 
one of these morphological abnormal features in the center 
or in the periphery of the Ooplasm (Ebner et al., 2003). 
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Figure 7. MII oocytes after denudation of cumulus cells before microinjection. (A) normal PBI and (B) 
fragmented PBI. Halvaei et al. (2011) with permission.

Nagano et al. (2006) in an animal model study revealed 
that the dark cytoplasm has an accumulation of lipids and 
good developmental potential of oocytes after in vitro 
fertilization. They found that a light-coloured cytoplasm 
indicated a low density of organelles and poor develop-
mental potential. An oocyte with a dark ooplasm declines 
by 83% in its likelihood of yielding good-quality embryos 
(Ten et al., 2007). The most evident cytoplasmic charac-
teristics that hinders developmental ability are aggrega-
tions of smooth endoplasmic reticulum (sER) and vacuoles 
(Figure 8). Vacuoles originate spontaneously by fusion of 
pre-existing vesicles derived from the sER or Golgi appara-
tus (Shafie et al., 2000; Van Blerkom, 1990). Few studies 
have been carried out on the effects of oocyte vacuoles 
on human fertility, but a large number of reports noted a 
negative influence on fertilization outcomes (Loutradis et 
al., 1999). Otsuki et al. (2004) for the first time evaluat-
ed the origin of smooth Endoplasmic Reticulum Clusters 
(ERCs) and defined their effect on embryonic development 
and clinical fecundity rates. They reported that pregnancy 
rates remain low with sERC-negative cohort oocytes in sER 
C-positive cycles (Otsuki et al., 2004). Another physiologi-
cal consequence of women’s aging is FSH rise, that can be 
correlated with morphometric parameters. In a study by 
Santos et al. (2015) they concluded that patients with high 
FSH levels displayed low-quality oocytes when compared 
with controls. This can be suggestive of ovarian aging, 
which negatively affects oocyte development into viable 
embryos. These findings were confirmed by other studies 
carried out by Kdous et al. (2016). Although, Valeri et al. 
(2011) showed that there is no significant relationship be-
tween FSH levels and morphometric oocyte parameters, 
they concluded that it maybe because other factors have 
an effect on this relationship. Despite several studies on 
the relationship between oocyte morphology and embryo 
quality, it is clear that microscopic observation alone can-
not determine fecundity pathology or its relative effect in 
ART, and we need more research and studies in this field.

Meiotic Spindle
The spindle is an important barrel-shaped cellular 

structure, primarily composed of microtubules and cen-
trosomes, that are responsible for the precise segregation 

of homologous chromosomes (meiosis I) or two sets of 
chromatids (meiosis II) within germ cell division (Karsen-
ti & Vernos, 2001; Wang & Sun, 2006). Failure of equal 
separation will cause aneuploidy, which is thought to be 
a source of a lot of genetic problems and aneuploid em-
bryos (Hassold & Hunt, 2001; Wang & Sun, 2006). Some 
aneuploid embryos implant in the uterus undergo spon-
taneous abortion, while others develop to full term and 
bear genetic disorders (Bruyère et al., 2000; Robinson et 
al., 2001). Aneuploidy is indeed a main problem in get-
ting reproductive success. It is estimated that 20% of all 
human oocytes are aneuploid, although this can fluctuate 
from 10% to as high as 40–60% (Kuliev et al., 2005; Pac-
chierotti et al., 2007). The meiotic spindle organization and 
morphology is essential for ensuring accurate chromosome 
separation during MI and MII. The structural features of 
the meiotic spindle, such as length and location, are usu-
ally used for assessing oocyte quality. In somatic cells, 
there is a spindle check point mechanism that controls 
chromosome segregation (Eichenlaub-Ritter, 2012), while 
in mammalian oocytes these monitoring apparatus are 
not exactly engaged during the meiotic procedure, which 
may cause chromosome mis-segregation (Jones, 2008). 
An intact meiotic spindle is critically significant for precise 
segregation of chromosomes to the dividing blastomeres, 
thus ensuring accurate embryo development (Miao et al., 
2009). Spindle size is approximately 11.2±3.4 mm. Fresh 
human oocytes carry compact anastral spindles (spindles 
without centrosomes) placed orthogonally to the oolem-
ma, with the pole close to the oolemma being smaller than 
that related to the center of the oocyte (Miao et al., 2009). 
The human meiotic spindle size in the first day is short-
er (8.08±0.84 mm) than the spindle in fresh oocytes. In 
2-day oocytes, the spindles are smaller and can be bi- or 
multipolar, which will have serious aftermath for chro-
mosome segregation and, therefore, result in aneuploid-
ies (Figure 9) (Miao et al., 2009). Microtubules of meiotic 
spindles in 2-day-aged oocytes radiate to cell periphery 
and make additional microtubule asters in the cytoplasm. 
Immunocytochemical of tubulin staining in aged oocyte as-
sessments shows increased staining through the meiotic 
spindle, compared with that of fresh oocytes (Wang et al., 
2001). This staining shape exhibits a loss of centrosome 
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Figure 8. (A) Mature oocyte. Tubules (SER) and vesicles (V) of smooth endoplasmic reticulum associated 
with mitochondria (M) to form M-SER aggregates and MV complexes. TEM, bar is 0,5 μm. (B) Early 
degenerating mature oocyte. Numerous vacuoles (Va) associated with lysosomes (Ly) are found in the 
ooplasm. TEM bar is 1,2 μm. Nottola et al. (2007) with permission.

Figure 9. Confocal micrographs of fresh and aged mice oocytes. Configuration of meiotic spindle and 
chromosomes in (A) Normal spindle morphology of fresh oocytes, microtubules traversing between both 
poles and chromosomes aligned in a compact group on the equatorial plane (B) and (c) abnormal spindle 
morphologies of aged oocytes. Miao et al. (2009) with permission.

structure in the meiotic poles, which accompanies the loss 
of microtubule integrity (Schatten, 2008). Studies show 
that different patterns of spindle disruption can be seen in 
aged, failed-to-fertilize oocytes. This spindle disorganiza-
tion includes: tetrapolar spindles, abnormal expression of 
the nuclear mitotic apparatus (NuMA) protein, which gives 
spindle stability to fresh oocytes, and alters the microtu-
bule kinesin motor protein EG5 (Hall et al., 2007). Because 
of ethical issues and limitations of human oocytes for re-
search, mice and pigs have been used for many studies 
with the purpose to infer data to humans (Prather, 2007). 
These studies indicate that microtubules in fresh mice oo-
cytes are obviously detected in the meiotic spindle, addi-
tional small microtubule asters are detected in the cyto-
plasm, which are arranged by cytoplasmic centrosomes. 
Microtubules in aged mice oocytes become slowly mis-
placed from the spindle, with preferential loss in the cen-
tral spindle area, close to the chromosomes. Astral fibers 
radiate out from the polar centrosomes into the cytoplasm, 
whereas the mean pole-to-pole distance becomes remark-
ably decreased (Miao et al., 2009). Concurrently, astral 
microtubules in the cytoplasm become steadily depolym-
erized (Segers et al., 2008). Studies revealed that the ex-
pression of the spindle checkpoint protein MAD2 (mitotic 
arrest deficient protein) is gradually decreased in pig and 
mice oocyte aging (Steuerwald et al., 2005). Increases in 
premature chromosome segregation is an oocyte aging-re-
lated change that causes embryo aneuploidy (Steuerwald 

et al., 2005). Oocyte from older women grown in sub-
optimal environments are prone to a poorly-controlled 
mechanism of chromosome segregation. Rama Raju et al. 
(2007) investigated the meiotic spindle and other oocyte 
structure characteristics using the PolScope microscope, 
and analyzed their relationship to the embryonic develop-
ment potential. They showed that delays and the meiotic 
spindle length have a positive predictive value in relation 
to progression to blastocysts. In addition, they reported 
a significant change in retardance and spindle length in 
aged patients, and deduced that retardance reduction and 
spindle length is correlated with advanced age (Rama Raju 
et al., 2007). Eichenlaub-Ritter et al. (2002) found that 
human oocytes without birefringent spindles may still be 
at the telophase or prometaphase I stage, and as a result, 
have worse prognosis after IVF/ICSI. It has been indicat-
ed, that’s why meiotic spindle assessment is an important 
structure for evaluating oocyte quality (Moon et al., 2003; 
Rienzi et al., 2003). 

Mitochondria
Mitochondrias are double membrane-bound organelles 

present in cytoplasm of eukaryotic cells, with a highly spe-
cialized function and morphology that generate necessary 
energy for different cellular purposes (Kelly & Scarpul-
la, 2004). They are vital for metabolism, signalling, and 
apoptosis (Danial & Korsmeyer, 2004). Oocyte mitochon-
dria produce ATP via oxidative phosphorylation (OXPHOS), 
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which renders the energy demanded from fertilization 
through the blastocyst stage (Dumollard et al., 2007). In 
response to extra and intra cellular requirements, mito-
chondrial function is improved by complexed mechanisms 
that regulate various morphologies and distributions. In 
most types of cells, mitochondrial injury and oxidative 
stress represent the principle of cellular aging (Liochev, 
2013). Each mitochondrion consists of 1 to 15 mitochon-
drial DNA (mtDNA) molecules and developing oocyte 
competence is associated with a copy of mtDNA per oo-
cyte (Wai et al., 2010). The mitochondrial genome, which 
contains approximately 16k base pairs (bp) and encodes 
core complexes for cellular respiration like ATP synthase, 
cytochrome c-oxidase, cytochrome b and so on (Kogo et 
al., 2011). Mitochondrial DNA has no histone safeguard-
ing, antioxidant system and impression correction appa-
ratus (Zhang et al., 2017). Thus, oxidative factors such 
Reactive Oxygen Species (ROS) can simply lead to mtDNA 
and cellular damage, when there is oxidative/antioxidant 
imbalance (Zhang et al., 2017). In accordance to oocyte 
ATP demands for energy consumption in cytoplasmic and 
nuclear maturation, meiotic spindle formation, the mito-
chondria are able to spread and concentrate in ooplasmic 
regions (Figure 10). In addition to this, it appears that the 
arrangement of mitochondrial distribution is different in 
the mature oocyte of various species (Yu et al., 2010). 
Mitochondria, which are the main factors of oocyte qual-
ity, may be directly affected throughout ovarian aging. 
Studies revealed that there is a relationship between the 
mtDNA content, copy number, maternal age and ovarian 
reserve indexes (Duran et al., 2011). Studies have also 
indicated that mtDNA copy number in human oocytes re-
duces with advancing maternal age (Chan et al., 2005). 
It is possible that mitochondrial abnormalities may also 
play an essential role in age-related oocyte competence 
and aneuploidy rates (Barritt et al., 2000). Large numbers 
of evidence have revealed that mtDNA levels are remark-
ably higher in aneuploid embryos, compared with those in 
chromosomally-normal embryos (Fragouli et al., 2015). In 
humans and rodents, ultrastructural studies of aged mi-
tochondria (Figure 11) show morphological and functional 
abnormalities such as mitochondrial swelling, vacuolization 
and cristae alterations in comparison with young individu-
als (Kushnir et al., 2012; Simsek-Duran et al., 2013). Mi-
tochondrial membrane potential (Delta ψ), as is ATP pro-
duction, which indicates mitochondrial activity is another 
age-related change in human and mice (Ben-Meir et al., 
2015). Mitochondrial ATP production requires the opera-
tion of the electron transport chain, situated on the inner 
mitochondrial membrane. Complexes I and II oxidize the 
tricarboxylic acid (TCA) cycle products and transfers the 
electrons to ubiquinone, also the well-known coenzyme Q 
(CoQ). CoQ has an important antioxidant characteristic, 
controls cellular redox and impacts transcriptional activity, 
necessary to the electron transport chain (Crane, 2001). 
CoQ proteins make a big mitochondrial complex and the 
existence of all protein elements is essential for steadiness 
(Wang et al., 2009). Evidence has shown that coenzyme 
Q10 supplementation in aged animal models (but not in 
younger animals), can be used to postpone the reduction 
of ovarian reserve, fortify the expression of mitochondrial 
genes in oocytes and ameliorate the mitochondrial activity. 
Ben-Meir et al. (2015) concluded that the reduction of mi-
tochondrial activity produced by suboptimal CoQ10 avail-
ability plays a key role in age-related oocytes, and its lack 
causes infertility. Different studies on animal models have 
shown that injection of mitochondria or cytoplasm from 
young donor oocytes into an aged oocyte enhances oocyte 
competence, embryo quality, decreased fragmentation, 
and finally enabling successful implantation (May-Panloup 
et al., 2016). With this definition, cytoplasmic mtDNA, ATP 

content and mitochondrial distribution may be considered 
as prognostic factors of oocyte developmental compe-
tence. However, these procedures are invasive and there-
fore have no value as prediction implements in the clinical 
IVF laboratory.

EPIGENETICS
Waddington (1942) was the first who presented the 

word of epigenetics in the early 1940s. He explained epi-
genetics as ‘‘the branch of biology which studies the causal 
interactions among genes and their products, which cause 
the phenotype into being (Waddington, 1968). In recent 
years, with the rapid growth of genetics, the meaning of 
this term has gradually changed. Epigenetics defined the 
process that regulates gene function and does not affect 
DNA sequence, and is heritable through cell division (Baird 
et al., 2005). Gene activation in the zygote and early em-
bryonic development are controlled by both genetic and 
epigenetic mechanisms. Epigenetic mechanisms are not 
DNA sequence-based, while the genetic mechanism relies 
on DNA sequence and codes. Epigenetic mechanisms es-
tablish inheritable alterations that play an important role 
in regulating gene expression (Lucifero et al., 2004). The 
main epigenetic alterations include DNA methylation, mod-
ification of histones and chromatin remodelling; they are 
intimately related and operated at the transcriptional level. 
Epigenetic reprogramming takes place at gametogenesis 
and the accurate establishment of epigenetic modifications 
are crucial for normal embryo growth and viability (Baird 
et al., 2005). The DNA methylation process is mostly cata-
lysed by DNA methyltransferase 3s (DMT3s) (Tomizawa et 
al., 2012). Studies imply that the epigenetic modifications 
in oocytes may be influenced by advanced maternal age, 
owing to the expression of DNMTs and histone acetyltrans-
ferases that varies with aging (Hamatani et al., 2004). 
In women older than 38 years, the expression pattern of 
TAP73 in oocytes is lower, and down regulated when com-
pared with oocytes from younger women (Guglielmino et 
al., 2011). However, there is still no clear evidence that the 
DNA methylation in human oocytes is influenced by aging. 
Immunocytochemical studies report histone deacetylation 
at the MI and MII stages by histone deacetylase (HDAC) 
activity in mammalian oocytes. Akiyama et al. (2004) re-
vealed that if meiotic histone deacetylation is restrained, 
aneuploidy raised in fertilized mice oocytes, and this cul-
minated in embryonic death in the uterus at an early stage 
of development. Hamatani et al. (2004) showed that HDAC 
is down-regulated at transcript level in aging mice oocytes 
older than 42 weeks, while histone remains acetylated in 
young female mice. Evidence revealed the relationship 
between histone acetylation and maternal age. The re-
sults show advanced maternal age negatively affects the 
deacetylation of some histone proteins (H4K12) in human 
MII oocytes (Steuerwald et al., 2007). Studies indicate 
that alterations in enzymes comprising methyltransfer-
ases (DNMTs) and demethylases (TETs), are possibly the 
direct cause of epigenetic changes in aged oocytes. How-
ever, whether/how aging impacts the modifications in their 
expression requires more explanation (Ge et al., 2015). 
Investigations recommend that age-related epigenetic 
changes on oocyte might be inhibited by diets, medicine 
or other methods.

NEW INSIGHTS IN OVARIAN STEM CELLS
Recent evidence indicate that components of adult 

mammalian ovaries in primary follicles; that is, primitive 
granulosa and germ cells may differentiate from mesen-
chymal progenitor cells (MPC) resting in the ovarian tunica 
albuginea (Bukovsky, 2015). Jonathan Tilly’s team for the 
first time explained stem cells in adult mice ovary (Johnson 
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Figure 10. Confocal microscopy images demonstrating mitochondria distribution during maturation of 
human oocytes. (A) GV oocyte displays the distribution of mitochondria in the peripheral zone. (B) GV 
oocyte with mitochondria diffused fairly in the cytoplasm. (C) MI oocyte with mitochondria displaying a 
peripheral type of distribution. (D) In vitro matured oocyte indicating the semiperipheral distribution of 
mitochondria in the oocyte. (E) In vitro matured oocyte showing the distribution of mitochondria throughout 
the cytoplasm. (F) In vivo matured oocyte: mitochondria are disseminated throughout the cytoplasm, and 
there are mitochondria in the central region. Scale bar represents 50 μm. Liu et al. (2010) with permission.
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Figure 11. TEM images of mitochondria from young and old mice oocytes. MII oocytes from hyperstimulated 
young and old mice were evaluated and the mitochondrial structures were compared. Representative 
electron micrographs of ooplasm at 11,000x magnification are shown; higher magnification views of 
individual mitochondria are also presented. (A) abundant mitochondria per field, also notice different size 
mitochondria compared to B. (B) relatively few mitochondria of uniform size per field in ooplasm of an 
aged animal. (C & E) undifferentiated round mitochondria with an electron dense matrix vs D, F & H. More 
differentiated mitochondria with an elongated shape and distinct cristae G. arrow indicating vacuoles 
within mitochondria, Kushnir et al. (2012) with permission.
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et al., 2004). Their results challenged old central dogmas 
that ovaries have a finite number of follicles that get re-
duced with age, resulting in menopause. Ovarian stem cells 
have opened a new landscape for a further understanding 
of human oogenesis, infertility preservation, and therapy. 
Recent findings reported Ovarian Stem cells (OSCs) isolat-
ed from rabbits, marmosets, sheep, and human ovaries. 
Researchers characterized two distinct populations of stem 
cells based on their size, which comprises quiescent Very 
Small Embryonic-Like (VSEL) stem cells that expresses 
nuclear OCT-4 and slightly bigger cells expressing cyto-
plasmic OCT-4 (Bhartiya et al., 2019; Kumar et al., 2009; 
Sriraman et al., 2015). Evidence shows that ovarian stem 
cells on culture medium developed spontaneously to oo-
cyte-like cells (OLCs) and expresses oocyte and germ cell 
specific markers (Kumar et al., 2009). Our recent find-
ings showed that ovarian derived SCs could differentiate 
to OLCs in BMP15 conditioned medium, and expresses ZP 
genes and proteins, which confirm earlier reports (Taheri 
Moghadam et al., 2021). Increasing our knowledge about 
ovarian stem cells and their differentiation into OLCs can 
help us better understand this phenomenon and retard the 
aging process. 

CONCLUSION(S) AND PERSPECTIVES
The main role of oocyte competence and aging in re-

lation to an embryo’s development has encouraged wide 
research for reliable predictors of oocyte quality. A se-
ries of age-related molecular, cellular and morphological 
alterations take place during the process of oocyte aging 
and fertilization. These changes not only influence pre- 
and post-implantation of embryo development quality 
but also the later life of the offspring. Essays to describe 
morphological features related to oocyte quality and ag-
ing have attained little results. A number of chemicals 
and physical facilities have been used to characterize a 
good oocyte quality and postpone the oocyte aging pro-
cess, to provide hopeful chances for intervention in the 
aging phenomenon. These specific steps are essential 
for ART procedures to elevate the rate of successful de-
livery, which leads to optimal production of healthy ba-
bies. With modern ART, the successful rate of this tech-
nology is affected by oocyte aging; therefore, control of 
oocyte aging would provide an important advantage in 
allowing adequate manipulation and selection of high 
quality oocytes. Hence, creating methods to control 
aging might increase progress in assisted reproduction 
technologies. Because in the lack of a good oocyte grad-
ing plan, the ability of morphological monitoring to aid 
oocyte/embryo selection is reduced.

In this review, we summarized the oocyte quality, and 
mechanisms of oocyte aging, and delay or reversibility of 
the aging process. Then, we showed briefly the importance 
of procedures to control oocyte quality and age-related 
changes in oocyte competence. There are still many unan-
swered questions, but several paths have now been paved 
unto much awaited advances and the detection of oocytes 
with compromised quality. 
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