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Abstract: Tree peony (Paeonia suffruticosa Andrews) is a perennial woody shrub bearing large and
colorful flowers. However, the flowering period is short and relatively uniform, which to an important
extent hinders the cultivation and exploitation of ornamental peonies. In this study, the segregation of an
F1 population derived from P. ostti ‘Feng Dan’ (an early-flowering cultivar) × P. suffruticosa ‘Xin Riyuejin’
(a late-flowering cultivar) was used to screen and analyze candidate genes associated with flowering
period of the two parents. Extreme early- and late-flowering genotypes of the F1 population at full-bloom
stage were sampled to establish an early-flowering mixed pool (T03), a late-flowering mixed pool (T04),
a late-flowering male pool (T01), and an early-flowering female pool (T02), using the Sequencing By
Synthesis (SBS) technology on the Illumina HiSeq TM2500 platform. A total of 56.51 Gb of clean reads
data, comprising at least 87.62% of Quality30 (Q30), was generated, which was then combined into
173,960 transcripts (N50 = 1781) and 78,645 (N50 = 1282) unigenes, with a mean length of 1106.76 and
732.27 base pairs (bp), respectively. Altogether, 58,084 genes were annotated by comparison with
public databases, based on an E-value parameter of less than 10−5 and 10−10 for BLAST and HMMER,
respectively. In total, 291 unigene sequences were finally screened out by BSR-seq (bulked segregant
RNA-seq) association analysis. To validate these unigenes, we finally confirmed seven unigenes that were
related to early and late flowering, which were then verified by quantitative real-time PCR (qRT-PCR).
This is the first reported study to screen genes associated with early and late flowering of tree peony by
the BSA (bulked sample analysis) method of transcriptome sequencing, and to construct a high-quality
transcriptome database. A set of candidate functional genes related to flowering time was successfully
obtained, providing an important genetic resource for further studies of flowering in peony and the
mechanism of regulation of flowering time in tree peony.

Keywords: tree peony; BSR-Seq; flowering time; differentially expressed genes (DEGs); quantitative
real-time polymerase chain reaction (qRT-PCR)

1. Introduction

Tree peony (Paeonia suffruticosa Andrews) is a deciduous shrub with large and colorful flowers that
belongs to Sect. Moutan DC., genus Paeonia, family Paeoniaceae [1,2]. There are nine wild species in Sect.
Moutan DC., all of which are unique to China [3]. Tree peonies therefore originated in China, and they
have a long history of cultivation and use as ornamental plants. Over time, they have been introduced
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from China, either directly or indirectly, to many other countries throughout the world. Tree peonies
possess abundant germplasm resources, and more than 1200 varieties may be recognized, following
long-term natural and artificial selection [4,5]. Generally speaking, the individual flowers of any
particular strain last for 10 days, but the flowering period from the first to the last flower is only 20 days,
a very limited time period. Mid-season peonies predominate in the various different cultivation
regions, with smaller numbers of early- and late-flowering varieties. Flowering characteristics and
particular flowering period are key properties of the ornamental peony, and to an extent they have
limited the commercial development of the plant [6]. Consequently, further studies of the molecular
mechanisms that regulate flowering in peony are potentially of great significance for the manipulation
and prolongation of the flowering period.

In recent years, with the rapid development and application of genetics and molecular biology,
the functions of a large number of genes related to flowering have been extensively studied, especially
in model plants with sequenced genomes. Results have shown that there are four pathways that
regulate the mechanism of plant flowering at the molecular level. These comprise regulation by
photoperiod, by vernalization, by gibberellins, and by an autonomous pathway; together, these control
the timing of flowering in response to endogenous and environmental signals [7–12].

Arabidopsis possesses five phytochrome (PHY) genes (PHYA–PHYE) and two cryptochrome (CRY)
genes (CRY1 and CRY2) that are presumably involved in phase-setting under white-light-and-dark
cycles [13]. These photoreceptors determine the activity of the flowering gene CO, which encodes
a zinc-finger protein. CO acts as a floral activator and as a mediator of the circadian clock [14] to regulate
the expression of FT (FLOWERING LOCUS T) and hence control flowering. PHYA, CRY1, and CRY2 all
promote flowering, whereas PHYD and PHYE inhibit flowering [15–17]. Vernalization causes suppression
of expression of the central flowering repressor gene FLC (FLOWERING LOCUS C); the suppression is
stable for the remainder of the life of the plant, but expression returns to a high level in the following
generation. Since the level of gene expression does not change during the entire process, the suppression of
FLC by vernalization is not genetic [18]. In the unisexual flowers of cucumber, the plant hormone gibberellic
acid (GA) largely determines flower development, especially the regulation of sepal/petal development
in female flowers [19]. The autonomous flowering pathway accelerates flowering independently of
day length by inhibiting the expression of FLC [20], and several genes are known to be involved,
such as LUMINIDEPENDENS (LD), FLOWERING LOCUS CA (FCA), FLOWERING LOCUS D (FLD),
FLOWERING LOCUS Y (FY), FLOWERING LOCUS VE (FVE), FLOWERING LOCUS KH DOMAIN (FLK),
and FLOWERING LOCUS PA (FPA) [21–25]. The photoperiod and vernalization pathways are
mainly regulated by environmental factors such as light and a low-temperature signal, respectively.
On the other hand, the gibberellin and autonomous pathways are mainly regulated by developmental
factors [26]. The transcriptional regulation of two genes determining flowering time, SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FT [27], and two floral meristem identity genes,
APETALA1 (AP1) and LEAFY (LFY) [28,29] has been shown to integrate these four pathways responsible
for the regulation of flowering. These genes may, under particular circumstances, act either in isolation or
in concert to activate downstream flower meristem genes that then initiate plant flowering.

However, regulation of flowering in woody perennials and in herbaceous species is very different.
In perennial plants, flowering occurs following a transition between vegetative and reproductive
growth that occurs at sexual maturity, after a juvenile period. Thus, Hsu et al. [30] reported that in
woody perennial poplar (Populus spp.), FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2
(FT2) coordinate the repeated cycles of vegetative and reproductive growth, revealing that in
response to winter temperatures, FT1 determines reproductive onset, whereas FT2 responds to
warm temperatures and long days in the growing season and promotes vegetative growth and
inhibition of bud set. Li et al. [31] explored the differences of leaf and peel color change between
red and green walnut by transcriptome analysis and identified 3083 differentially expressed genes
(DEGs) between red and green walnut peel at the ripening stage. Ma et al. [32] investigated the
effects of low-temperature treatment on stamen petaloidy in rose (Rosa hybrida) and revealed that low
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temperatures increase petal number, at least to some extent. In tree peony, PsTm6, belonging to the
MADS-box gene family, was found to influence stamen petaloidy and flower shape formation [33].
Zhang et al. [34] isolated PsSOC1 from tree peony and determined its expression pattern during
dormancy; furthermore, they investigated the regulatory mechanisms controlling flowering time in
transgenic Arabidopsis. The results suggested that PsSOC1 may be an important target for the genetic
manipulation of dormancy release and flowering time in tree peony. Using transcriptome sequencing
technology and by comparison with the non-repeat-flowering tree peony cultivar (× P. suffruticosa
‘Luo Yang Hong’ (LYH)), Zhou et al. [35,36] revealed eight DEGs that were potential candidates for
determining repeat flowering in the repeat-flowering cultivar [Paeonia × lemoinei ‘High Noon’ (HN)].
Four genes, PsFT, PsVIN3, PsCO, and PsGA20OX, were identified that likely play important roles in
the regulation of the repeat-flowering process in tree peony. Furthermore, these researchers isolated
PsFT, a close homolog of FT found in the cultivars HN and LYH, and identified its potential role in the
regulation of flowering time in tree peony.

Bulked sample analysis (BSA) is a powerful tool for the rapid identification of genetic determinants
underlying phenotypic variation. It is applicable to both selected and pooled individuals, and it has
been used extensively in gene mapping through bulked segregant analysis with biparental populations,
in the mapping of molecular markers, such as single nucleotide polymorphisms (SNPs), and in pooled
genome-wide association studies (GWAS), using extreme variants in two groups with contrasting
phenotypes [37,38]. In maize, pools were constructed of mutants and wild-type individuals for
comparison by RNA sequencing (RNA-Seq) and, using this approach, the glossy 13 (gl13) gene [39],
the roothairless5 (rth5) gene [40], and the Brown midrib2 (bm2) gene [41] were all successfully mapped
and cloned. The three genes were related, respectively, to epicuticular waxes on the surfaces of seedling
leaves, root hair initiation and elongation, and a reddish-brown coloration associated with reductions
in lignin concentration and alterations in lignin composition. Ramirez-Gonzalez et al. [42] were able to
identify putative SNPs across a major disease resistance gene for wheat yellow rust, the Yr15 locus,
using BSA combined with RNA-Seq in an F2 population to generate high-density genetic maps across
target loci in polyploid wheat; they finally mapped Yr15 to a 0.77-cM interval. In sunflower, in the
absence of a reference genome, the putative locus PlARG conferring resistance to downy mildew was
successfully verified by combining BSA with next-generation sequencing (NGS) and de novo assembly
of the sunflower transcriptome, leading to SNP discovery through a sequence resource that combined
reads that originated from two sunflower species [43].

For tree peony, resolution of the molecular mechanisms underlying the regulation of flowering,
including time of flowering, is an important and complex problem and only limited progress
has been made to date. In this study, we used bulked segregant RNA-seq (BSR-seq) technology
for the first time to detect DEGs in 3 lines of early- and late-blooming flowers, selected from
an F1 population derived from P. ostti ‘Feng Dan’ (an early-flowering cultivar) × P. suffruticosa
‘Xin Riyuejin’ (a late-flowering cultivar). We aimed to identify flowering-time-related candidate genes
by comparing the transcriptomes of four different bulked pools of flowers, each selected at full-bloom
stage: T01 (male bulk, ‘Xin Riyuejin’, late-flowering), T02 (female bulk, ‘Feng Dan’, early-flowering),
T03 (20 early-blooming flowers), and T04 (20 late-blooming flowers). A set of candidate functional
genes related to flowering time was successfully obtained, providing a rich genetic resource for further
study of the molecular regulation of flowering initiation and timing in peony. In addition, the SSR and
SNP molecular markers identified will be useful in the analysis of genetic evolution, genetic diversity,
and population structure, and in genome-wide association studies (GWAS) of tree peony.

2. Results

2.1. Sequence Assembly and Annotation of Functional Genes

Four expression libraries of tree peony were sequenced, which generated 37,069,313 reads
from T01, 33,883,337 reads from T02, 82,518,974 reads from T03, and 71,040,683 reads from T04,
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respectively. After data filtering, a total 56.51 Gb of clean data was obtained. The Q30 value was
not less than 87.62%, and the GC content of each sample was between 40 mol % and 60 mol %.
Furthermore, the ratio for T03 and T04 reached 85.60% and 85.18%, respectively (Table 1). A total
of 173,960 transcripts and 78,645 unigenes were combined and assembled from scratch using Trinity
software. The average length for a contig, a transcript, and a unigene was 59.211 bp, 1106.74 bp,
and 732.27 bp, respectively. The N50 length for a transcript and a unigene was 1781 bp and 1282 bp,
respectively (Table S1). The length distribution for all the combination unigenes is shown in Figure S1.
A total of 58,084 genes were annotated by comparison with public databases; for the Nr database,
the proportion annotated was 47.8%; for Swiss-Prot, it was 29.8%; for GO, 26.4%; for COG, 13.7%;
for KOG, 27.4%; for KEGG, 16.5%; and for Pfam, 31.2%. The E-value parameter for BLAST and
HMMER was <10−5 and <10−10, respectively.

2.2. Analysis of Differentially Expressed Genes (DEGs)

DEGs were identified by EBseq [44] using a False Discovery Rate (FDR) <0.01 and a Fold Change
(FC) ≥2, where FC represents the ratio of expression between the two samples (groups). The total
of 4789 DEGs that were identified from group T01- vs. -T02 was more than that from T04- vs. -T03;
thus, for T01- vs -T02 there were 2309 up-regulated and 2480 down-regulated genes, whereas for
T04- vs. -T03 there were 1879 up-regulated and 1094 down-regulated genes. Compared to T01 and
T02, the total number of DEGs for T03 was more than 4000; analogously, compared to T01 and T02,
the total number of DEGs for T04 was more than 3000 (Table 2). The volcano plot in Figure 1 shows that
there were a large number of DEGs between T01 (late-flowering pool) and T02 (early-flowering pool),
and between T04 (late-flowering pool) and T03 (early-flowering pool), and that the number of DEGs
between the two parent groups was more than between the two mixed groups, whether up-regulated or
down-regulated. DEGs with similar patterns of behavior were revealed through a hierarchical cluster
analysis. Although the expression levels of DEGs were different between T01 and T02, as compared
to between T03 and T04 (Figure 2), the differences between the two groups were similar, indicating
that the DEGs identified from the two pairs of groups may be closely related to the mechanism of
regulation of early and late flowering.
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Table 1. Results statistics and comparison of peony petal transcriptome sequencing and assembly.

Samples Samples-ID Base Number Read Number GC Content (%) %≥Q30 Clean Reads Mapped Reads Mapped Ratio

male parent (♂) T-01 9,332,641,596 37,069,313 44.69 87.82% 37,069,313 31,527,468 85.05%
female parent (♀) T-02 8,531,057,760 33,883,337 44.82 87.62% 33,883,337 28,497,709 84.11%

Early flowering pool T-03 20,778,247,714 82,518,947 44.61 88.16% 82,518,947 70,633,854 85.60%
Late flowering pool T-04 17,887,013,878 71,040,683 44.68 88.02% 71,040,683 60,509,445 85.18%

Note: Base number: the total number of bases in Clean Data; Read Number: the total number of paired-end reads in Clean Data; GC Content: the GC content of Clean Data (G and C bases
as a percentage of the total bases in Clean Data); %≥Q30: the percentage of bases in Clean Data for which the Quality Score is ≥30; Clean Reads & Mapped Reads: the number of clean
reads and mapped reads (calculated as paired-ended); Mapped Ratio: the percentage of mapped reads in clean reads.
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in the samples.

Table 2. The number of differentially expressed genes was calculated in four samples.

DEG Set All DEG Up-Regulated Down-Regulated

T01- vs. -T02 4789 2309 2480
T03- vs. -T01 4211 1983 2228
T03- vs. -T02 4415 1932 2483
T04- vs. -T01 3257 1398 1859
T04- vs. -T02 3644 1484 2160
T04- vs. -T03 3783 1879 1094

Note: T01, male pool; T02, female pool; T03, the earliest-flowering individuals from the F1 population sampled
at full-bloom stage to establish an early-flowering mixed pool; T04, the latest-flowering individuals from the F1
population sampled at full-bloom stage to establish a late-flowering mixed pool.

The DEGs were aligned to several public databases to obtain functional annotations
(E-value ≤ 1 × 10−5). Consequently, among the six groups, almost all the unigenes were annotated
to the Nr database; fewer were annotated to the Pfam and Swiss-Prot databases, and only a small
proportion to the KEGG and COG databases (Table 3).
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Table 3. The number of differentially expressed genes (DEGs) calculated for the four samples T01–T04.

DEG Set Annotated COG GO KEGG KOG Pfam Swiss-Prot NR

T01- vs. -T02 2606 815 1412 843 1321 1954 1816 2560
T03- vs. -T01 2911 978 1663 920 1424 2325 2118 2872
T03- vs. -T02 3004 1035 1754 960 1504 2450 2245 2972
T04- vs. -T01 2140 687 1183 714 1070 1679 1517 2104
T04- vs. -T02 2172 710 1198 744 1135 1703 1553 2138
T04- vs. -T03 2993 1063 1780 963 1478 2507 2294 2972

The GO (Gene Ontology) database is an internationally standardized database of gene functional
classification. Overall, for the two pairwise comparisons T01- vs. -T02 and T04- vs. -T03, 1412 and
1780 DEG unigenes, respectively, were classified into 13 “cellular component”, 16 “molecular function”,
and 20 “biological process” categories. With regard to cellular component, “organelle” (17.56% for
T01- vs. -T02, 15.56% for T04- vs. -T03) and “cell part” (35.62%, 32.98%) were the most prevalent categories.
For molecular function, the most prevalent were “transporter activity” (7.22%, 7.75%), “binding” (44.83%,
47.25%), and “catalytic activity” (57.08%, 62.36%); and for biological process, they were “cellular processes”
(44.62%, 47.81%) and “metabolic processes” (55.52%, 58.26%). The GO annotations for the two pairwise
comparisons are shown in Figure 3.

The COG (Clusters of Orthologous Groups (of proteins)) database is based on phylogenetic
relationships of gene products across bacteria, algae, and eukaryotes. Following the GO classification
of DEGs described above, categorization by COG revealed enrichment in 22 categories, of which the
largest proportion (209 or 17.23% for T01- vs. -T02, 311 or 18.45% for T04- vs. -T03) were assigned to the
“general function” prediction category. There were no DEGs represented in the categories “extracellular
structures,” “cell motility,” and “nuclear structures.” Otherwise, the least-represented categories were
“intracellular trafficking”, “secretion”, and “vesicular transport,” with six DEG unigenes (0.49%) in the
T01- vs. -T02 group, and “chromatin structure and dynamics,” having four unigenes (0.24%) in the
T04- vs. -T03 group (Figure 4).
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The KEGG (Kyoto Encyclopedia of Genes and Genomes) database enables the systematic analysis
of genes in relation to a range of biological functions, in principle from the molecular to the population
level. A KEGG annotation of the DEGs of the T01- vs. -T02 pairwise comparison revealed that 512 DEGs
were assigned to five top-level categories, including “cellular processes”, “environmental information
processing”, “genetic information processing”, “metabolism”, and “organismal systems”. These DEGs
were in turn mapped onto 118 pathway categories, of which the top three were “starch and sucrose
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metabolism” (47, 9.18%), “carbon metabolism” (33, 6.45%), “plant hormone signal transduction”
(31, 6.05%), and “phenylpropanoid biosynthesis” (31, 6.05%) (Figure 5a). The T04- vs. -T03 pairwise
comparison produced broadly similar results to the T01- vs. -T02 comparison, with 588 DEGs
assigned to the same five top-level categories and then mapped on to 113 pathway categories; thus,
50 (8.50%), 49 (8.33%), and 44 (7.48%) of these DEGs mapped onto “plant hormone signal transduction”,
“starch and sucrose metabolism”, and “carbon metabolism”, respectively (Figure 5). Taken together,
the two sets of data clearly indicated the importance of metabolic changes in flower development
and differentiation.
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2.3. Verification of Candidate Genes through Quantitative Real-Time PCR (qRT-PCR)

From the pairwise comparisons, a total of 291 DEGs that showed a significantly enriched association
with known genetic loci were selected (based on a False Discovery Rate (FDR) < 0.01) (Table S2).
These candidate genes were annotated using public databases including GO (Figure S2) and KEGG
(Figure S3). On the basis of this annotation analysis, the seven DEGs that displayed the highest number
of SNPs and associated loci and that had a greater likelihood of being associated with phenotypic
traits were selected (Table 4), and the relevant information is shown in Table S3 and Appendix 1
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(see Supplementary Materials 1). Next, to corroborate the RNA-Seq results and to investigate the
dynamics of expression of DEGs in tree peony flowers, these seven key DEGs, together with one reference
gene showing identical expression, were selected for qRT-PCR analysis. Figure 6 shows the differential
expression levels for these seven key DEGs for the pairwise comparisons T01- vs. -T02 and T04- vs. -T03.
The unigenes c42942.graph_c0, c58332.graph_c0, c58361.graph_c0, and c57417.graph_c0 were expressed at
a much higher level in T04 than in T03, yet they were expressed at comparable levels in the two parents.
In contrast, c46352.graph_c0 and c53143.graph_c0 were expressed at a much higher level in T02 than in T01,
but were expressed at comparable levels in both F1 pools. The unigene c58526.graph_c0 was expressed at
comparable levels in both the parents and the F1 pools. Additionally, in T02- vs. -T01, the expression
levels of four DEGs associated with “carbohydrate transport and metabolism”, “hothead-like”, “reduced
wall acetylation 4-like”, and “PTI 1-like tyrosine-protein kinase” were all observed to be down-regulated,
whereas the expression levels of three DEGs associated with “plant invertase/pectin methylesterase
inhibitor”, “K+ transporter”, and “peptidyl-prolyl cis-trans isomerase activity” were up-regulated. On the
other hand, five DEGs related to “carbohydrate transport and metabolism”, “plant invertase/pectin
methylesterase inhibitor”, “K+ transporter”, “hothead-like”, and “reduced wall acetylation 4-like”
were down-regulated in T01- vs. -T02. In the second pairwise comparison, T04- vs. -T03, two DEGs
identified as “PTI 1-like tyrosine-protein kinase” and “peptidyl-prolyl cis-trans isomerase activity”
were up-regulated. The sequencing of the seven key DEGs are listed in Appendix 1. The results
obtained from the qRT-PCR analysis were completely consistent with those obtained by RNA-Seq,
thereby demonstrating the reliability of the RNA-Seq data.
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Figure 6. Validation by qRT-PCR of seven differentially expressed unigenes (DEGs) isolated from
the four different pools (T01–T04) of flower petals of tree peony. Data from qRT-PCR were
normalized relative to the Actin gene of P. suffruticosa (F: GGTCTATTCTTGCTTCCCTCAG; R:
GAACTCACTATCAAACCCTCCAG). The x-axis denotes the four pools, T01, T02, T03, and T04,
representing the late-flowering male pool, the early-flowering female pool, the early-flowering mixed
pool, and the late-flowering mixed pool, respectively. The y-axis denotes relative levels of gene
expression and the values are expressed as the means of three replicates ±SD.
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Table 4. DEGs displaying the highest number of SNPs and associated loci.

Unigene Annotation All Count Asso Count p-Value FDR
Regulated

T01- vs. -T02 T04- vs. -T03

c42942.graph_c0 Carbohydrate transport and metabolism 4 4 0 0 down down
c46352.graph_c0 Plant invertase/pectin methylesterase inhibitor 4 4 0 0 up down
c58332.graph_c0 K+ potassium transporter 9 7 0 0 up down
c58361.graph_c0 Hothead-like 13 12 0 0 down down
c57417.graph_c0 Reduced wall acetylation 4-like 16 5 1.23 × 10−9 1.41 × 10−6 down down
c58526.graph_c0 PTI 1-like tyrosine-protein kinase 14 4 4.19 × 10−8 2.10 × 10−5 down up
c53143.graph_c0 peptidyl-prolyl cis-trans isomerase activity 8 3 2.05 × 10−7 9.16 × 10−5 up up
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2.4. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs)

Structural analysis of unigenes (length > 1 kb) identified 6678 SSRs, which contained six types
of SSR, as follows: mono-nucleotide (4347; 65.09%), di-nucleotide (1443; 21.61%), tri-nucleotide (833;
12.47%), tetranucleotide (35; 0.52%), penta-nucleotide (8; 0.12%), and hexanucleotide repeat (12; 0.18%)
(Table 5). Furthermore, we also detected 219,291 SNPs, applying the following stringent screening
criteria: (1) the continuous single-base mismatch was not more than 3, within a range of 35 bp; (2) SNP
quality values were greater than 2, based on a sequence-depth normalization. SNPs could be classified
as homozygous SNPs (with only one allele) and heterozygous SNPs (Heterozygosity: two or more
digits) according to the number of alleles (Allele) of the SNPs, i.e., the number of different bases
supported by sequencing reads. Table 6 shows the statistical results of SNP loci.

Table 5. Types of simple sequence repeats (SSRs) identified in the transcriptome sequencing of
tree peony.

Searching Item Number

Total number of sequences examined 16,885
Total size of examined sequences (bp) 33,407,765

Total number of identified SSRs 6678
Number of SSR containing sequences 5191

Number of sequences containing more than 1 SSR 1170
Number of SSRs present in compound formation 333

Mono nucleotide 4347
Di nucleotide 1443
Tri nucleotid 833

Tetra nucleotide 35
Penta nucleotide 8
Hexa nucleotide 12

Table 6. SNP statistics for the transcriptome sequencing of the four tree peony pools (T01–T04).

Samples Homozygosity Heterozygosity SNP Number

T01 109,252 81,140 190,392
T02 142,760 43,169 185,929
T03 40,888 166,550 207,438
T04 50,735 155,675 206,410

3. Discussion

Plant flowering results from a transition from vegetative growth to reproductive growth, and time
of flowering is regulated by a series of gene–environment interactions. The molecular mechanism of
flowering plays a crucial role in plant growth and development, and it has become a “hot topic” in
plant science. A full understanding is, self-evidently, of great importance to the identification of genes
involved in plant developmental regulation. To date, a large number of genes have been discovered
based on the increasing amount of sequence data available and gene expression patterns in plant organs
such as flowers, leaves, and fruits. Because transcriptome sequencing can be undertaken irrespective
of whether the species of interest has a sequenced reference genome, transcriptome sequencing has
been recognized to be the most effective way of mining functional genes.

In the present study, the BSR-Seq method was used, employing the Illumina HiSeq TM2500
platform to screen and identify genes involved in time of flowering in tree peony. Petals from early-
and late-flowering samples of an F1 population derived from a cross between two cultivars with
flowering times (P. ostti ‘Feng Dan’ (early flowering) × P. suffruticosa ‘Xin Riyuejin’ (late-flowering))
were used for transcriptome sequencing, and a large number of gene sequences were obtained within
a short period of time. Thus, a total of 56.51 Gb of clean data was acquired by transcriptome sequencing
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of samples from four groups, viz. T01 (male bulk, ‘Xin Riyuejin’, late-flowering), T02 (female bulk,
‘Feng Dan’, early-flowering), T03 (20 early-blooming flowers), and T04 (20 late-blooming flowers).
Ultimately, a total of 78,645 unigenes were identified by de novo assembly.

There has been rapid progress recently in the application of transcriptome sequencing to peony,
with a range of different tissues having been selected for different purposes. For example, the different
developmental stages of peony flower buds were used for transcriptome sequencing by Shu et al. [45],
who constructed the first cDNA library of peony and obtained 2241 expressed sequence tags (ESTs).
Gai et al. [46] used the 454 GS FLX platform to transcriptome-sequence the dormant buds of ‘Feng Dan’
and revealed the molecular mechanism of dormancy in tree peony. A total of 50,829 unigene sequences
with an average length of 585 bp were obtained from the petals of ‘Luoyang Hong’ using the HiSeq
TM2000 platform, and from this the mechanism of anthocyanin synthesis in peony cut flowers was
clarified [47]. Li et al. [48] carried out transcriptome analysis of peony seeds at different developmental
stages and identified 175,875 contigs; subsequently, 2182 differentially expressed unigenes were
screened and a large number of DEGs involved in fatty acid metabolism were identified, providing
a molecular basis for potential strategies to increase the yield of peony seed oil. In comparison with
these results, it is gratifying that the number of unigenes in the present study was as high as 78,645,
which is 35 times the number of EST sequences of the flower bud transcriptome, and more than the
numbers reported by Zhang and Li et al. [47,48]. Therefore, the present study provides a comprehensive
and high-quality genetic resource for research on peony and its mechanism of flowering.

Four peony transcriptome samples (T01–T04) were sequenced in this study and, following de
novo assembly and alignment to publicly available databases, a total of 28,347 annotated unigenes,
36.04% of the total, were identified. The GO classification of T01- vs. -T02 was compared with that
of T03 vs. T04, and both were found to be enriched in 49 functional categories, mainly “response
to stimulus”, “biological regulation”, “cell part, “organelle”, “catalytic activity”, and “binding”.
Subsequently, KEGG pathway analysis revealed that the principal enriched pathways comprised
“plant hormone signal transduction”, “metabolic pathways”, and “secondary metabolic pathways”.
The above analysis therefore indicated that genes related to plant hormone signaling, cell metabolism,
and secondary metabolism play important roles in flower development in peony. In addition,
comparing T04 (late-flowering mixed pool) vs. T01 (late-flowering pool), there were 3257 DEGs,
of which 1398 were up-regulated and 1859 were down-regulated; comparing T03 (early-flowering
mixed pool) vs. T02 (early-flowering pool), there were 4415 DEGs, of which 1398 were up-regulated
and 1859 were down-regulated.

Following the BSR-seq association study, a total of seven genes involved in peony flowering were
selected for functional annotation, notably c57417.graph_c0, encoding a “removing wall acetylation”
(RWA) protein, an epigenetic gene. This gene plays an important role in acetylation processes in the
plant cell, and has a direct impact on the formation of cell wall polysaccharides and on related cellular
functions; it affects morphology, flowering, and other plant traits, depressing the expression of FLC
and initiating flowering [24]. Interestingly, the expression level of the gene in the late-flowering pool
was lower than in the early-flowering pool, indicating that the action of the gene might be unique.
The gene encoding a K+-ion transporter protein (c58332.graph_c0) relates to one of the three principal
mineral elements that are essential for plant growth and changes in its expression could therefore
have important physiological and biochemical effects. The gene c58526.graph_c0 could regulate plant
flowering via a signal transduction process.

These screened genes were verified via qRT-PCR, which showed that although the expression
levels of the genes in the two pairwise comparisons (T01- vs. -T02 and T04- vs. -T03) were different,
the trend was consistent. The quality of the peony petal transcriptome database constructed in
this study was high, and the database provides an accurate and information-rich resource for future
research related to peony flowering. However, because of the large apparent variation in flowering time
phenotype in the F1 generation, which may reflect the large genetic variation between the two parental
cultivars, P. ostti ‘Feng Dan’ (early-flowering) and P. suffruticosa ‘Xin Riyuejin’ (late-flowering),
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and heterosis and inbreeding depression may occur in the F1 generation. These factors could cause
epistasis or genetic interaction, and this could affect the functioning of the genes identified [49,50].
All these functionally annotated genes should therefore be further validated in future studies.

In addition to the seven genes mentioned above, other genes related to the four genes
PsFT, PsVIN3, PsCO, and PsGA20OX are known to play important roles in the regulation of
the repeat-flowering process in tree peony [37,38], including the unigenes c23725.graph_c0 and
c43875.graph_c0, which may be related to the MADS-box protein SOC1, c6585.graph_c0, which may
be related to gibberellin 20 oxidase, and the c51656.graph_c0, c30761.graph_c0, and c30761.graph_c0
unigenes, which may be related to the VIN3 protein. Further attention needs to be paid to these
particular unigenes in future work.

In this study, the identification of genes potentially associated with peony flowering has shed light
on potential control mechanisms and their possible commercial application in peony. Further studies
are needed to elucidate specific functions and possible interactions at the molecular level. In other
respects, the SSR and SNP markers that have been identified will be useful for characterizing the genetic
diversity of peony genetic germplasm resources and for genome-wide association studies (GWAS),
thus providing a theoretical basis for the conservation of germplasm and for the molecular-assisted
breeding of peony.

4. Materials and Methods

4.1. Plant Materials

P. ostti ‘Feng Dan’ (an early-flowering cultivar) × P. suffruticosa ‘Xin Riyuejin’ (a late-flowering
cultivar) were hybridized, and the two parents and 20 early- and late-flowering individuals
from the F1 population selected at the full-bloom stage were used to construct BSA segregation
groups [51]. The flowering times of the F1 population and of the parent cultivars are given in Table S4
(Supplementary Materials 2). Flower petals from the parent cultivars and the 40 F1-population
individuals were collected from a farm at the Henan University of Science and Technology
Experimental Station, Luoyang, China (34◦60 N, 112◦42 E) in April 2015. All samples were frozen in
liquid nitrogen immediately after collection in the field and were stored in a −80 ◦C freezer pending
RNA extraction.

4.2. RNA Extraction and Illumina Sequencing

Total RNA was extracted from tree peony petals using a RNA prep Pure Plant Kit (Polysaccharides
& Polyphenolics-rich) (Tiangen, Beijing, China). RNA quality and concentration were assessed
by electrophoresis on a 1.2% agarose gel and using a NanoDrop 2000 UV-Vis Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA), respectively. RNA samples were taken from
each of four groups: T01 (male bulk, ‘Xin Riyuejin’, late-flowering), T02 (female bulk, ‘Feng Dan’,
early-flowering), T03 (20 early-blooming flowers), and T04 (20 late-blooming flowers). These were
then analyzed by Biomarker Technologies Corporation (Beijing, China).

The bulked RNA was enriched for mRNA using Oligo (dT) Beads and then randomly-cleaved
into short fragments. First-strand cDNA was synthesized from mRNA using random-hexamer primers.
DNA polymerase I, RNase H, dNTPs, and buffer were used to synthesize the second-strand cDNA.
The double-stranded cDNA was then purified using an AMPure XP beads kit and end-repaired, and then
a single nucleotide A (adenine) addition was ligated to the sequencing adapters. The required fragments
were selected using AMPure XP beads and enriched by PCR amplification to create the final cDNA library.
Finally, the mRNA-seq library was constructed for paired-end sequencing (reads = 125 bp) on the Illumina
HiSeq TM2500 sequencing platform (Biomarker Technologies Corporation Beijing, China). In addition,
library concentration and insert size were assessed using Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany),
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and Q-PCR (an Applied Biosystems Step One machine, Applied Biosystems, Foster City, CA, USA) was
used to accurately quantify the effective concentration of the library and to ensure its quality.

4.3. De Novo Assembly and Quality Control

In order to obtain high-quality clean reads data for de novo assembly, the raw data reads
were filtered to remove adaptor sequences and low-quality sequences containing unknown bases
(reads with ‘N’ bases) > 10% and with a Q-value < 20. At the same time, the Q20, Q30, and GC
content of the clean data were calculated. All the downstream analyses were based on high-quality
clean data. After obtaining the clean data, reads assembly was accomplished using Trinity
software (http://trinityrnaseq.sourceforge.net/) [52]; the diversiform clean reads were assembled
with transcripts characterized by the same subcomponent being regarded as a gene and the longest
transcript of each gene being selected and defined as the unigene.

4.4. Unigene Functional Annotation and Gene Structure Analysis

No genomic data is available for peony. The functional annotation of unigenes was achieved
using BLAST software [53] to search for similarity in public databases, and then the functions of
unknown genes were inferred from the homology of annotated genes in the databases. We searched
against the following public databases: Nr database (NCBI non-redundant protein sequences)
(ftp://ftp.ncbi.nih.gov/blast/db/) [54], Swiss-Prot protein database, (http://www.uniprot.org/) [55],
GO (Gene Ontology) (http://www.geneontology.org/) [56], COG (Clusters of Orthologous
Groups) (http://www.ncbi.nlm.nih.gov/COG/) [57], KOG (euKaryotic Orthologous Groups)
(http://www.ncbi.nlm.nih.gov/COG/) [58], and KEGG (Kyoto Encyclopedia of Genes and Genomes)
(http://www.genome.jp/kegg/) [59]. After prediction of the translated amino acid sequence of the
unigene, annotation of the amino acid sequence was obtained by aligning HMMER [60] with the Pfam
Protein family database (http://pfam.xfam.org/) [61].

The prediction of the unigene coding region sequence and its corresponding amino acid sequence
was realized via TransDecoder software (http://sourceforge.net/projects/transdecoder/). In addition,
the MISA (MIcroSAtellite identification tool) software (http://pgrc.ipk-gatersleben.de/misa/misa.html)
was used to analyze unigene sequences.

4.5. Gene Expression Quantification

Reads of each sample sequenced were aligned with the unigene library using Bowtie [62], and then
the level of expression was estimated based on the alignment results and RSEM [63]. Subsequently,
the expression level of the unigene was expressed as FPKM (Fragments Per Kilobase of transcript per
Million mapped reads) [64]. FPKM can eliminate the influence of the difference between gene length
and the amount of sequencing on the calculation of gene expression, hence permitting gene expression
differences to be compared among different samples.

4.6. Analysis of Genes with Differential Expression (DEGs)

The recognized effective Benjamini–Hochberg method was used to correct the significant p-value
that was obtained from the original hypothesis test among the differentially expressed genes (DEGs)
analysis. Finally, the corrected p-value, the False Discovery Rate (FDR), was used as a key indicator
of DEGs screening and a false-positive test was performed to reduce the expression value of a large
number of genes independently. The DEGs (FDR < 0.01 and Fold Change (FC) ≥ 2) were identified
by EBseq [44], of which FC represents the ratio of expression between two samples (groups). In our
study, four groups (T01, T02, T03, and T04) were compared with each other (T01- vs. -T02, T03 vs. T01,
T03 vs. T02, T04 vs. T01, T04 vs. T02, and T04- vs. -T03) to screen out genes related to early and
late flowering of peony. A volcano plot was created to intuitively show the significance of the
DEGs, and a MA diagram was created to identify the distribution of gene expression abundance
and differential multiples between pairs of groups. Furthermore, a hierarchical cluster analysis
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that clustered genes with the same or similar expression was performed to display the differential
expression patterns of genes under different experimental conditions. Finally, the identified DEGs
were subjected to functional annotation by databases including GO, COG, and KEGG.

4.7. BSR-Association Study and Candidate Genes Identification

The reads and unigene sequences were compared for each sample using STAR (http://code.
google.com/p/rna-star/) [65] and the Single Nucleotide Polymorphism (SNP) site and then identified
by GATK (https://www.broadinstitute.org/gatk/) [66]. In order to ensure the accuracy of subsequent
analysis, loci for which the read support was <3 were first filtered out. To obtain high-quality
reliable SNP sites and to identify through association analysis loci differing between T03 and T04,
SNP discrepant-type loci were filtered out through T03 + T01 and T04 + T02, homoplastically, and then
SNP consistent-type loci were filtered out through T03 + T04. The Euclidean Distance (ED) algorithm
was used to calculate the region that related to the objective gene linkage. The arithmetic was based on
the depth of the SNP discrepancy between T03 and T04 and the ED value was calculated according to
the following formula (Equation (1)):

ED = A
√
(AT03 − AT04)

2 + (CT03 − CT04)
2 + (GT03 − GT04)

2 + (TT03 − TT04)
2 (1)

The higher the ED value, the greater the difference between T03 and T04 in SNPs. In order to
eliminate the difference in the ED results caused by differences in sequencing between the two mixed
pools, we used the frequency of each base at each locus instead of the absolute value to calculate
the ED value, and this was raised to a power of 5 (ED5) to eliminate the noise generated by small
variations in the estimations in our study.

Because of the lack of genomic information for peony at the chromosome level, we used the
following analysis strategy in order to determine a credible association area: (1) The ED values for
all loci were calculated and ED = 0.74 was used as the associated threshold; (2) Loci that exceeded
the association threshold were selected and served as candidate association loci; (3) Statistics of the
number of SNPs and candidate loci for every unigene difference between T03 and T04 were recorded;
(4) The probability of the accumulation of association sites in each unigene was calculated from the
hypergeometric distribution, calculated as follows (Equation (2)):

P = 1−
y−1

∑
x=0

(
K
x

)(
M − K
N − x

)
(

M
N

) (2)

In the above formula, M represents the total number of differences in SNPs between the T03 and
T04 mixed pools, K represents the total number of all candidate association loci, and Y represents the
number of candidate association loci in the unigenes; (5) The Benjamini–Hochber method was used to
multiply and correct the test for the probability of each unigene enrichment-associated locus, and then
calculate the FDR value; (6) Unigenes with significant enrichment-associated sites (FDR < 0.01) were
screened. Thereafter, the identified SNP-associated genes were subjected to functional annotation by
databases including GO, COG, and KEGG.

4.8. Quantitative Real-Time PCR (qRT-PCR) Verification of Candidate Genes

To study candidate gene expression profiles in the four samples (T01, T02, T03, and T04),
we selected the relatively stably expressed peony Actin gene as a reference gene for qRT-PCR [67].
cDNA synthesis was performed as described earlier (Section 4.4). Quantitative real-time PCR was
performed on a CFX ConnectTM Real-Time PCR System (Bio-Rad, Hercules, CA, USA). The primer
information for Actin and the candidate genes is shown in Table A3. Each PCR reaction was repeated
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three times and the volume of the qPCR reaction was 20 µL. The cycling protocol consisted of 3 min at
94 ◦C, followed by 40 cycles of 15 s at 94 ◦C for denaturation, 15 s at 55 ◦C for annealing, and 20 s at
72 ◦C for extension. The specificity of the PCR reaction was assessed by the presence of a single peak in
the dissociation curve after the amplification. Relative expressions of target genes were analyzed using
the 2−∆∆Ct algorithm [68], in which CT values of reference genes are calculated with a geometrical.

5. Conclusions

Flowering period is an extremely important parameter in the cultivation and commercial
production of peonies as ornamental subjects. Our study is the first to screen the genes of early-
and late-flowering in tree peony by the BSA analysis method of transcriptome sequencing and to
construct a high-quality transcriptome database. A set of candidate functional genes related to
flowering time was successfully obtained, providing a rich genetic resource for studies of peony
flowering and establishing a foundation for more detailed studies of flowering-period regulation in
tree peony. The development of SSRs and SNPs as molecular markers will be useful in the analysis of
gene evolution, genetic diversity, and population structure, and for genome-wide association studies
(GWAS) of tree peony. The data will also greatly assist breeding programs, and the conservation of
germplasm in tree peony.

Supplementary Materials: Supplementary materials are available online.
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